Submitted:
08 July 2024
Posted:
09 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Diets
2.3. Experimental Design and Measurements
2.4. Chemical Analyses
2.5. Calculations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 2017, 14, 1-8. [CrossRef]
- Zebeli, Q., Metzler-Zebeli, B.U. Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res. Vet. Sci. 2012, 93, 1099-1108. [CrossRef]
- Seo, J., Kim, S., Kim, M., Upadhaya, S., Kam, D., Ha, J. Direct-fed Microbials for Ruminant Animals. Asian-Aust. J. Anim. Sci. 2010, 23, 1657-1667. [CrossRef]
- Fijan, S. Microorganisms with claimed probiotic properties: An overview of recent literature. Int. J. Environ. Res. Public Health 2014, 5, 4745-4767. [CrossRef]
- Li, T., Teng, D., Mao, R., Hao, Y., Wang, X., Wang, J. A critical review of antibiotic resistance in probiotic bacteria. Food Res. Int. 2020, 136, 109571. [CrossRef]
- Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M.M., Sanders, M.E., Shamir, E., Swann, J.R., Szajewska, H., Vinderola, G. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [CrossRef]
- Thanh, N.T., Loh, T.C., Foo, H.L., Hair-bejo, M., Azhar, B.K. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 2009, 50, 298–306. [CrossRef]
- Aguilar-Toalá, J.E., García-Varela, R., García, H.S., Mata-Haro, V., González-Córdova, A.F., Vallejo-Cordoba, B., Hernández-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018, 75, 105-114. [CrossRef]
- Izuddin, W.I., Loh, T.C., Foo, H.L., Samsudin, A.A., Humam, A.M. Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status and upregulates the intestinal barrier function in post-weaning lambs. Sci. Rep. 2019, 9, 9938. [CrossRef]
- Kareem, K.Y., Ling, F.H., Chwen, L.T., Foong, O.M., Asmara, S.A. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut Pathog. 2014, 6, 23-29. [CrossRef]
- Rovai, M., Guifarro, L., Salama, A.A. Effects of long-term postbiotic supplementation on dairy heifer calves: Health status and wound healing after dehorning. J. Dairy Sci. 2019, 102, Suppl. 1, 221.
- Izuddin, W.I., Loh, T.C., Samsudin, A.A., Foo, H.L. In vitro study of postbiotics from Lactobacillus plantarum RG14 on rumen fermentation and microbial population. Rev. Bras. Zootecn. 2018, 47, e20170255.
- Fernández, C., Romero, T., Badiola, I., Díaz-Cano, J., Sanzol, G., Loor, J.J. Postbiotic yeast fermentation product supplementation to lactating goats increases the efficiency of milk production by enhancing fiber digestibility and ruminal propionate, and reduces energy losses in methane. J. Anim Sci. 2023, 101, skac370. [CrossRef]
- NRC Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001.
- Van Soest, P.J., Robertson, J.B., Lewis, B.A. Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [CrossRef]
- ISO ISO 23318:2022 Milk, dried milk products and cream. Determination of fat content - Gravimetric method, Edition 1, 2022; International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO ISO 8968-1:2014 IDF 20-1:2014 Milk and milk products- Determination of nitrogen content Part 1: Kjeldahl principle and crude protein calculation, Edition 2, 2014; International Organization for Standardization: Geneva, Switzerland, 2014.
- MAFF Energy allowances and feeding systems for ruminants. Reference Book 433, Ministry of Agriculture, Fisheries and Food: Reading, United Kingdom, 1984.
- ADAS Compound feed evaluation fir the ruminants. Technical Bulletin 85/21, Ministry of Agriculture, Fisheries and Food. Reading, United Kingdom, 1985.
- Quigley, J.D., Lago, A., Chapman, C., Erickson, P., Polo, J. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. J. Dairy Sci. 2013, 96, 1148-1155. [CrossRef]
- IDF A common carbon footprint approach for dairy. The IDF guide to standard lifecycle assessment methodology for the dairy sector. Bulletin IDF No. 479/2010. International Dairy Federation: Brussels, Belgium, 2015.
- R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2024.
- Olagaray, K.E., Sivinski, S.E., Saylor, B.A., Mamedova, L.K., Sauls-Hiesterman, J.A., Yoon, I., Bradford, B.J. Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. J. Dairy Sci. 2019, 102, 8092-8107. [CrossRef]
- Dann, H.M., Drackley, J.K., McCoy, G.C., Hutjens, M.F., Garrett, J.E. Effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. J. Dairy Sci. 2000, 83, 123-127. [CrossRef]
- Shi, W., Knoblock, C.E., Murphy, K.V., Bruinjé, T.C., Yoon, I., Ambrose, D.J., Oba, M. Effects of supplementing a Saccharomyces cerevisiae fermentation product during the periparturient period on performance of dairy cows fed fresh diets differing in starch content. J. Dairy Sci. 2019, 102, 3082-3096. [CrossRef]
- Gross, J.J., Wellnitz, O., Bruckmaier, R.M. Cortisol secretion in response to metabolic and inflammatory challenges in dairy cows. J. Anim Sci. 2015, 93, 3395–3401. [CrossRef]
- Zaworski, E.M., Shriver-Munsch, C.M., Fadden, N.A., Sanchez, W.K., Yoon, I., Bobe, G. Effects of feeding various dosages of Saccharomyces cerevisiae fermentation product in transition dairy cows. J. Dairy Sci. 2014, 97, 3081–3098. [CrossRef]
- Arambel, M.J., Kent, B.A. Effect of yeast culture on nutrient digestibility and milk yield response in early- to midlactation dairy cows. J. Dairy Sci. 1990, 73, 1560–1563. [CrossRef]
- Khalouei, H., Seranatne, V., Fehr, K., Guo, J., Yoon, I., Khafipour, E., Plaizier, J.C. Effects of Saccharomyces cerevisiae fermentation products and subacute ruminal acidosis on feed intake, fermentation, and nutrient digestibilities in lactating dairy cows. Can. J. Anim Sci. 2021, 101, 143-157. [CrossRef]
- Rovai, M., Guifarro, L., Anderson, J., Salama, A.A.K. Effects of long-term postbiotic supplementation on dairy heifer calves: Performance and metabolic indicators. In Proceedings of the ADSA Annual Meeting, Cincinnati, Ohio, USA, 23-26 June 2019.
- Shi, W., Knoblock, C.E., Yoon, I., Oba, M. Effects of supplementing a Saccharomyces cerevisiae fermentation product during the transition period on rumen fermentation of dairy cows fed fresh diets differing in starch content. J. Dairy Sci. 2019, 102, 9943-9955. [CrossRef]
- Izuddin, W.I., Loh, T.C., Samsudin, A.A., Foo, H.L., Humam, A.M., Shazali, N. Effect of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs. BMC Vet. Res. 2019, 15, 315. [CrossRef]
- Poppy, G.D., Rabiee, A.R., Lean, I.J., Sanchez, W.K., Dorton, K.L., Morley, P.S. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 6027-6041. [CrossRef]
- Díaz, A., Ranilla, M.J., Saro, C., Tejido, M.L., Pérez-Quintana, M., Carro, M.D. Influence of increasing doses of a yeast hydrolyzate obtained from sugarcane processing on in vitro rumen fermentation of two different diets and bacterial diversity in batch cultures and Rusitec fermenters. Anim. Feed Sci. Technol. 2017, 232, 129-138. [CrossRef]
- Williams, P.E.V., Tait, C.A.G., Innes, G.M., Newbold, C.J. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. J. Anim Sci. 1991, 69, 3016–3026. [CrossRef]
- Callaway, E.S., Martin, S.A. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J. Dairy Sci. 1997, 80, 2035–2044. [CrossRef]
- Wiedmeier, R.D., Arambel, M.J., Walters, J.L. Effects of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J. Dairy Sci. 1987, 70, 2063–2068. [CrossRef]
- Quigley III, J.D., Martin, K.R., Dowlen, H.H., Wallis, L.B., Lamar, K. Immunoglobulin concentration, specific gravity, and nitrogen fractions of colostrum from Jersey cattle. J. Dairy Sci. 1994, 77, 264-269. [CrossRef]
- Costa, A., Sneddon, N.W., Goi, A., Visentin, G., Mammi, L.M.E., Savarino, E.V., Zingone, F., Formigoni, A., Penasa, M., De Marchi, M. Bovine colostrum, a promising ingredient for humans and animals—Properties, processing technologies, and uses. J. Dairy Sci. 2023, 106, 5197–5217. [CrossRef]
- Galvao, K.N., Santos, J.E., Coscioni, A., Villasenor, M., Sischo, W.M., Berge, A.C. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [CrossRef]
- Salmon, H. Immunophysiology of the mammary gland and transmission of immunity to the young. Reprod. Nutr. Dev. 2003, 43, 471–475. [CrossRef]
- Agazzi, A. The beneficial role of probiotics in monogastric animal nutrition and health. Dairy Vet. Anim. Res. 2015, 2, 116–132. [CrossRef]
- Zanello, G., Meurens, F., Serreau, D., Chevaleyre, C., Melo, S., Berri, M., D'Inca, R., Auclair, E., Salmon, H. Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Vet. Immunol. Immunopathol. .2013, 152, 20-27. [CrossRef]
- Wu, H., Xu, C., Wang, J., Hu, C., Ji, F., Xie, J., Yang, Y., Yu, X., Diao, X., Lv, R. Effects of Dietary Probiotics and Acidifiers on the Production Performance, Colostrum Components, Serum Antioxidant Activity and Hormone Levels, and Gene Expression in Mammary Tissue of Lactating Sows. Animals 2023, 13, 1536. [CrossRef]
- Alonge, S., Aiudi, G.G., Lacalandra, G.M., Leoci, R., Melandri, M. Pre and Probiotics to Increase the Immune Power of Colostrum in Dogs. Front. Vet. Sci. 2020, 7, 570414. [CrossRef]
- Ramsing, E.M., Davidson, J.A., French, P.D., Yoon, I., Keller, M., Peters-Fleckenstein, H. Effects of yeast culture on peripartum intake and milk production of primiparous and multiparous Holstein cows. Prof. Anim. Sci. 2009, 25, 487–495. [CrossRef]
- Stella, A.V., Paratte, R., Valnegri, L., Cigalino, G., Soncini, G., Chevaux, E., Dell’Orto, V., Savoini, G. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin. Res. 2007, 67, 7–13. [CrossRef]
- Wohlt, J.E., Corcione, T.T., Zajac, P.K. Effects of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation. J. Dairy Sci. 1998, 81, 1345–1352. [CrossRef]
- Acharya, S., Pretz, J.P., Yoon, I., Scott, M.F., Casper, D.P. Effects of Saccharomyces cerevisiae fermentation products on the lactational performance of mid-lactation dairy cows. Transl. Anim. Sci. 2017, 1, 221–228. [CrossRef]
- Dias, A.L.G., Freitas, J.A., Micai, B., Azevedo, R.A., Greco, L.F., Santos, J.E.P. Effects of supplementing yeast culture to diets differing in starch content on performance and feeding behavior of dairy cows. J. Dairy Sci. 2018, 101, 186–200. [CrossRef]
- Yuan, K., Liang, T., Muckey, M.B., Mendonça, L.G.D., Hulbert, L.E., Elrod, C.C., Bradford, B.J. Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. J. Dairy Sci. 2015, 98, 532–540. [CrossRef]
- Piva, G., Belladonna, S., Fusconi, G., Sicbaldi, F. Effects of yeast on dairy cow performance, ruminal fermentation, blood components, and milk manufacturing properties. J. Dairy Sci. 1993, 76, 2717–2722. [CrossRef]
- White, R.A., Harrison, J.H., Yoon, I., Sanchez, W.K., Nicholson, N. Effect of yeast culture on efficiency of nutrient utilization for milk production and impact on fiber digestibility and fecal particle size. Prof. Anim. Sci. 2008, 24, 114-119. [CrossRef]
- O’Regan, J., Mulvihill, D. Preparation, characterization and selected functional properties of sodium caseinate–maltodextrin conjugates. Food Chem. 2009, 115, 1257–1267. [CrossRef]
- Kleefisch, M.T., Zebeli, Q., Humer, E., Gruber, L., Klevenhusen, F. Effects of feeding high-quality hay with graded amounts of concentrate on feed intake, performance and blood metabolites of cows in early lactation. Arch. Anim. Nutr. 2018, 72, 290–307. [CrossRef]


| Prepartum | Postpartum | Concentrate1 | |
|---|---|---|---|
| Diet composition (g/kg dry matter) | |||
| Grass silage | 411.6 | 468.1 | |
| Cereal straw | 121.4 | 61.2 | |
| Compound feedstuff1 | 467.0 | 470.7 | |
| Chemical composition (g/kg dry matter) | |||
| Dry matter (DM) | 469.8 | 430.1 | 887.1 |
| Organic matter (OM) | 903.9 | 902.6 | 913.6 |
| Crude protein (CP) | 131.0 | 139.6 | 228.2 |
| Crude fiber (CF) | 259.2 | 212.9 | 49.6 |
| Ether extract (EE) | 36.0 | 40.8 | 35.4 |
| Nitrogen-free extract (NFE) | 477.6 | 509.4 | 600.4 |
| Starch | 138.9 | 174.0 | 375.2 |
| Neutral detergent fiber (NDF) | 488.0 | 431.9 | 201.7 |
| Acid detergent fiber (ADF) | 306.3 | 271.9 | 85.6 |
| Net energy for lactation (Mcal/kg DM) | 1.44 | 1.52 | 1.89 |
| CT | PC | PR | rsd | p | |
|---|---|---|---|---|---|
| Intake (kg/day) | |||||
| Dry matter | 10.26b | 10.46ab | 10.97a | 0.498 | 0.027 |
| Organic matter | 9.28b | 9.50ab | 9.94a | 0.451 | 0.025 |
| Crude protein | 1.44b | 1.60a | 1.57a | 0.068 | 0.001 |
| Neutral detergent fiber | 4.37b | 4.71a | 4.72a | 0.233 | 0.009 |
| Digestibility (%) | |||||
| Dry matter | 62.00 | 66.91 | 64.92 | 4.030 | 0.091 |
| Organic matter | 62.87 | 67.59 | 66.03 | 3.889 | 0.088 |
| Crude protein | 60.16b | 68.20a | 63.01ab | 4.059 | 0.005 |
| Neutral detergent fiber | 50.38 | 52.30 | 52.12 | 5.532 | 0.773 |
| Nitrogen balance (%) | 45.21 | 54.64 | 48.77 | 7.253 | 0.344 |
| CT | PC | PR | rsd | p | |
|---|---|---|---|---|---|
| Intake (kg/day) | |||||
| Dry matter | 18.37b | 18.06b | 19.88a | 1.118 | 0.001 |
| Organic matter | 16.53b | 16.49b | 17.95a | 1.014 | 0.015 |
| Crude protein | 3.35a | 3.05b | 3.24a | 0.167 | 0.008 |
| Neutral detergent fiber | 5.90b | 6.29b | 7.30a | 0.435 | 0.001 |
| Digestibility (%) | |||||
| Dry matter | 64.00b | 64.76b | 73.44a | 7.406 | 0.036 |
| Organic matter | 65.90b | 66.36b | 74.68a | 6.952 | 0.035 |
| Crude protein | 55.02 | 55.56 | 63.56 | 8.921 | 0.131 |
| Neutral detergent fiber | 57.67b | 55.49b | 71.65a | 8.686 | 0.003 |
| Nitrogen balance (%) | 41.28 | 44.85 | 50.32 | 11.040 | 0.307 |
| CT | PC | PR | rsd | p | |
|---|---|---|---|---|---|
| Milk (kg/d) | 29.61b | 33.73a | 30.06b | 6.908 | 0.044 |
| Fat (%) | 4.03 | 4.19 | 3.80 | 0.668 | 0.068 |
| Protein (%) | 3.10 | 3.22 | 3.27 | 0.307 | 0.083 |
| Solids-not-fat (%) | 8.73b | 8.68b | 8.99a | 0.413 | 0.007 |
| Lactose (%) | 4.83 | 4.79 | 5.08 | 0.648 | 0.148 |
| Urea (mg/kg) | 223 | 210 | 229 | 48.3 | 0.296 |
| Milk performance | |||||
| FPCM (kg/d) | 29.26b | 34.30a | 29.12b | 7.046 | 0.004 |
| kg fat/d | 1.16b | 1.42a | 1.13b | 0.336 | 0.002 |
| kg protein/d | 0.92b | 1.08a | 0.98b | 0.211 | 0.014 |
| Nitrogen eficiency (%) | 34.16 | 39.93 | 36.68 | 9.546 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
