Submitted:
06 July 2024
Posted:
09 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Pre-Chamber Ignition Concept
1.3. Review Objectives
2. Major Achievements of CFD Applications on PCSI Engine design
3. CFD Modeling PCSI Engines
3.1. CFD Software
3.1. Turbulence Models
3.1.1. RANS Turbulence Models
3.1.2. LES Turbulence Model
3.2. Physical Phenomena and Combustion Models of PCSI Engines
3.2.1. Flamelet Assumption
3.2.2. G-Equation Model
3.2.3. The Extended Coherent Flame Model(ECFM)
3.2.4. The Multizone Well-Stirred Reactor (MZ-WSR) Model
3.3. Turbulence-Chemistry Interaction
3.2.5. The well-Tuned Versions of Combustion Models
3.4. Numerical Grid of Pre-Chamber Engine
3.3.1. Mesh Generation for LES Turbulence Model
3.3.2. Mesh Generation for URANS Turbulence Model
3.3.3. Differencing Process
3.4. Time Discretization
3.5. Appropriate Initial and Boundary Conditions
3.5.1. Inflow and Outflow Boundary Conditions of Intake and Exhaust
3.5.2. Wall Heat Transfer Modeling
4. Experimental Validation
5. Conclusions and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baumgartner, L.S.; Wohlgemuth, S.; Zirngibl, S.; Wachtmeister, G. Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications. SAE Int. J. Engines 2015, 8, 921–933. [Google Scholar] [CrossRef]
- Zhu, S.; Akehurst, S.; Lewis, A.; Yuan, H. A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines. Renew. Sustain. Energy Rev. 2022, 154. [Google Scholar] [CrossRef]
- Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P.; Libert, C.; Rampanarivo, F. Improving the performance of the passive pre-chamber ignition concept for spark-ignition engines fueled with natural gas. Fuel 2020, 290, 119971. [Google Scholar] [CrossRef]
- Wei, H.; Zhu, T.; Shu, G.; Tan, L.; Wang, Y. Gasoline engine exhaust gas recirculation – A review. Appl. Energy 2012, 99, 534–544. [Google Scholar] [CrossRef]
- Bravo, Y.; Larrosa, C.; Lujan, J.; Climent, H.; Rivas, M. Evaluation of EGR System Implementation in a GTDI Engine with Different Configurations: Assessment on Fouling and Corrosion Issues. SAE 2016 World Congress and Exhibition. SAE Technical Paper 2016-01-1016, 2016. [CrossRef]
- Uyehara, O.A. Prechamber for Lean Burn for Low NOx. SAE Technical Paper, 1995.
- Toulson, E.; Watson, H.C.; Attard, W.P. The Effects of Hot and Cool EGR with Hydrogen Assisted Jet Ignition. Asia Pacific Automotive Engineering Conference. SAE Technical Paper, 2007.
- Ronney, P.D. Laser versus conventional ignition of flames. Opt. Eng. 1994, 33, 510–521. [Google Scholar] [CrossRef]
- Böker, D.; Brüggemann, D. Advancing lean combustion of hydrogen–air mixtures by laser-induced spark ignition. Int. J. Hydrogen Energy 2011, 36, 14759–14767. [Google Scholar] [CrossRef]
- Getzlaff, J.; Pape, J.; Gruenig, C.; Kuhnert, D.; Latsch, R. Investigations on Pre-Chamber Spark Plug with Pilot Injection. SAE World Congress & Exhibition. SAE Technical Paper, 2007.
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P.; Libert, C.; Dabiri, M. Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Appl. Energy 2019, 248, 576–588. [Google Scholar] [CrossRef]
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C.; Rampanarivo, F.; Dabiri, M. Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Appl. Therm. Eng. 2020, 178, 115501. [Google Scholar] [CrossRef]
- Wang, M.; Leng, X.; He, Z.; Wei, S.; Chen, L.; Jin, Y. A Numerical Study on the Effects of the Orifice Geometry between Pre- and Main Chamber for a Natural Gas Engine. International Powertrains, Fuels & Lubricants Meeting. SAE Technical Paper 2017-01-2195, 2017.
- Onofrio, G.; Napolitano, P.; Tunestål, P.; Beatrice, C. Combustion sensitivity to the nozzle hole size in an active pre-chamber ultra-lean heavy-duty natural gas engine. Energy 2021, 235, 121298. [Google Scholar] [CrossRef]
- Bozza, F.; De Bellis, V.; Malfi, E.; Teodosio, L.; Tufano, D. Optimal Calibration Strategy of a Hybrid Electric Vehicle Equipped with an Ultra-Lean Pre-Chamber SI Engine for the Minimization of CO2 and Pollutant Emissions. Energies 2020, 13, 4008. [Google Scholar] [CrossRef]
- Assanis, D.; Engineer, N.; Neuman, P.; Wooldridge, M. Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion. SAE 2016 International Powertrains, Fuels & Lubricants Meeting. [CrossRef]
- Attard, W.P.; Toulson, E.; Huisjen, A.; Chen, X.; Zhu, G.; Schock, H. Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization. SAE 2012 World Congress & Exhibition. SAE Technical Paper 2012-01-0823, 2012.
- Shah, A.; Tunestal, P.; Johansson, B. Effect of Relative Mixture Strength on Performance of Divided Chamber ‘Avalanche Activated Combustion’ Ignition Technique in a Heavy Duty Natural Gas Engine. SAE 2014 World Congress & Exhibition. SAE Technical Paper 2014-01-1327, 2014.
- Chao, Y.; Hu, K.; Wei, H.; Li, S.; Hu, Y.; Yu, J.; Scholten, I. Geely Jet Ignition System for 52. In 5% Indicated Thermal Efficiency. In Proceedings of the 43rd International Vienna Motor Symposium, Vienna, Austria, 27-29 April 2022. [Google Scholar]
- Turkish, M.C. 3 - Valve Stratified Charge Engines: Evolvement, Analysis and Progression. International Stratified Charge Engine Conference. [CrossRef]
- Dale, J.D.; Oppenheim, A.K. Enhanced Ignition for I. C. Engines with Premixed Gases. SAE International Congress and Exposition. SAE Transactions 1981, 90, 810146. [Google Scholar]
- Oppenheim, A.K. Combustion in Piston Engines: Technology, Evolution, Diagnosis and Control. Springer: New York, 2004.
- Toulson, E.; Schock, H.J.; Attard, W.P. A Review of Pre-Chamber Initiated Jet Ignition Combustion Systems. SAE 2010 Powertrains Fuels & Lubricants Meeting. SAE Technical Paper 2010-01-2263, 2010.
- Date, T.; Yagi, S.; Ishizuya, A.; Fujii, I. Research and Development of the Honda CVCC Engine. National West Coast Meeting. SAE Technical Paper 1974.
- Gentz, G.; Gholamisheeri, M.; Toulson, E. A study of a turbulent jet ignition system fueled with iso-octane: Pressure trace analysis and combustion visualization. Appl. Energy 2017, 189, 385–394. [Google Scholar] [CrossRef]
- Toulson, E.; Huisjen, A.; Chen, X.; Squibb, C.; Zhu, G.; Schock, H.; Attard, W.P. Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion. SAE Int. J. Engines 2012, 5, 1821–1835. [Google Scholar] [CrossRef]
- Di Sabatino, F.; Martinez-Hernandiz, P.J.; Novella, R.; Ekoto, I. Investigation of the effects of passive pre-chamber nozzle pattern and ignition system on engine performance and emissions. International Journal of Engine Research 2022. [CrossRef]
- Xu, G.; Wright, Y.M.; Schiliro, M.; Boulouchos, K. Characterization of combustion in a gas engine ignited using a small un-scavenged pre-chamber. Int. J. Engine Res. 2018, 21, 1085–1106. [Google Scholar] [CrossRef]
- Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C. Numerical analysis of the passive pre-chamber ignition concept for light duty applications. Appl. Therm. Eng. 2022, 213. [Google Scholar] [CrossRef]
- Wanker, R. Simulation Methods Covering Recent Technologies for GDI Engines. In Proceedings of the AVL International Simulation Conference, Graz, Austria, 22-24 October 2019. [Google Scholar]
- Vedula, R.T.; Song, R.; Stuecken, T.; Zhu, G.G.; Schock, H. Thermal efficiency of a dual-mode turbulent jet ignition engine under lean and near-stoichiometric operation. Int. J. Engine Res. 2017, 18, 1055–1066. [Google Scholar] [CrossRef]
- Mastorakos, E.; Allison, P.; Giusti, A.; De Oliveira, P.; Benekos, S.; Wright, Y.; Frouzakis, C.; Boulouchos, K. Fundamental Aspects of Jet Ignition for Natural Gas Engines. SAE Int. J. Engines 2017, 10, 2429–2438. [Google Scholar] [CrossRef]
- Allison, P.; de Oliveira, M.; Giusti, A.; Mastorakos, E. Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 2018, 230, 274–281. [Google Scholar] [CrossRef]
- Bunce, M.; Blaxill, H. Methodology for Combustion Analysis of a Spark Ignition Engine Incorporating a Pre-Chamber Combustor. In Proceedings of the SAE 2014 International Powertrain, Fuels & Lubricants Meeting, SAE International; 2014. [Google Scholar]
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C. Advantages of hydrogen addition in a passive pre-chamber ignited SI engine for passenger car applications. Int. J. Energy Res. 2021, 45, 13219–13237. [Google Scholar] [CrossRef]
- Dong, D.; Wei, M.; Zhang, Z.; Wei, F.; Long, W.; Dong, P.; Tian, J.; Lu, M.; Wang, R.; Xiao, G. Enhanced ignition possibilities of ammonia by the prechamber fueled methanol: Rich, stoichiometric and lean combustion evaluations. Sustain. Energy Technol. Assessments 2024, 64. [Google Scholar] [CrossRef]
- Liu, X.; Aljabri, H.; Panthi, N.; AlRamadan, A.S.; Cenker, E.; Alshammari, A.T.; Magnotti, G.; Im, H.G. Computational study of hydrogen engine combustion strategies: Dual-Fuel compression ignition with Port- and Direct-Injection, Pre-Chamber Combustion, and Spark-Ignition. Fuel 2023, 350. [Google Scholar] [CrossRef]
- Liu, X.; Aljabri, H.; Silva, M.; AlRamadan, A.S.; Ben Houidi, M.; Cenker, E.; Im, H.G. Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: A computational study. Fuel 2023, 335. [Google Scholar] [CrossRef]
- Thelen, B.C.; Toulson, E. A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 2016, 231, 536–554. [Google Scholar] [CrossRef]
- Biswas, S.; Qiao, L. Ignition of ultra-lean premixed H2/air using multiple hot turbulent jets generated by pre-chamber combustion. Applied Thermal Engineering 2018, 132, 102–114. [Google Scholar] [CrossRef]
- Biswas, S.; Qiao, L. Ignition of ultra-lean premixed hydrogen/air by an impinging hot jet. Appl. Energy 2018, 228, 954–964. [Google Scholar] [CrossRef]
- Onofrio, G.; Napolitano, P.; Tunestål, P.; Beatrice, C. Combustion sensitivity to the nozzle hole size in an active pre-chamber ultra-lean heavy-duty natural gas engine. Energy 2021, 235, 121298. [Google Scholar] [CrossRef]
- Trombley, G.; Toulson, E. A fuel-focused review of pre-chamber initiated combustion. Energy Convers. Manag. 2023, 298, 117765. [Google Scholar] [CrossRef]
- Alvarez, C.E.C.; Couto, G.E.; Roso, V.R.; Thiriet, A.B.; Valle, R.M. A review of prechamber ignition systems as lean combustion technology for SI engines. Appl. Therm. Eng. 2018, 128, 107–120. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, L.; Liu, Z.; Wei, H. Toward highly-efficient combustion of ammonia–hydrogen engine: Prechamber turbulent jet ignition. Fuel 2023, 352. [Google Scholar] [CrossRef]
- Hlaing, P.; Echeverri Marquez, M.; Cenker, E.; Im, H.G.; Johansson, B.; Turner, J.W.G. CFD-based methodology for the characterization pre-chamber combustion engines. Fuel 2022, 313, 123029. [Google Scholar] [CrossRef]
- Shah, A.; Tunestal, P.; Johansson, B. Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines. SAE 2015 World Congress & Exhibition. SAE Technical Paper 2015-01-0867, 2015.
- Silva, M.; Sanal, S.; Hlaing, P.; Cenker, E.; Johansson, B.; Im, H.G. Effects of Geometry on Passive Pre-Chamber Combustion Characteristics. WCX SAE World Congress Experience. SAE Technical Paper 2020-01-0821, 2020.
- Distaso, E.; Amirante, R.; Cassone, E.; De Palma, P.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M. Analysis of the combustion process in a lean-burning turbulent jet ignition engine fueled with methane. Energy Convers. Manag. 2020, 223, 113257. [Google Scholar] [CrossRef]
- Gholamisheeri, M.; Thelen, B.; Toulson, E. CFD Modeling and Experimental Analysis of a Homogeneously Charged Turbulent Jet Ignition System in a Rapid Compression Machine. WCX™ 17: SAE World Congress Experience.
- Thelen, B.C.; Gentz, G.; Toulson, E. Computational Study of a Turbulent Jet Ignition System for Lean Burn Operation in a Rapid Compression Machine. SAE 2015 World Congress & Exhibition.
- Gentz, G.; Thelen, B.; Litke, P.; Hoke, J.; Toulson, E. Combustion Visualization, Performance, and CFD Modeling of a Pre-Chamber Turbulent Jet Ignition System in a Rapid Compression Machine. SAE Int. J. Engines 2015, 8, 538–546. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Bolla, M.; Benekos, S.; Bardis, K.; Xu, G.; Kotzagianni, M.; Wright, Y.M.; Giannakopoulos, G.; Frouzakis, C.E.; Boulouchos, K. Advanced Methods for Gas-Prechamber Combustion Research and Model Development. In Proceedings of the 16th Conference, The Working Process of the Internal Combustion Engine, Graz, Austria, 28-29 September 2017; pp. 167–183. [Google Scholar]
- Convergent Science Inc. Converge 2.3 Theory Manual; 2017.
- Siemens PLM. STAR-CD 12.02, Simcenter, Userguide, 2020.
- AVL. FIRE, Software Documentation Version 2021 R2, 2021.
- Ricardo Software Ltd. VECTIS CFD Release 2017.1 Theory Manual; 17. 20 December.
- Amsden, A.A. KIVA-3V, A block-structured KIVA program for engines with vertical or canted valve. Los Alamos National Laboratory, LA-UR-97-689, 1997.
- The-OpenFOAM-Foundation. OpenFOAM, 2022.
- Wang, B.; Xie, F.; Hong, W.; Du, J.; Chen, H.; Su, Y. The effect of structural parameters of pre-chamber with turbulent jet ignition system on combustion characteristics of methanol-air pre-mixture. Energy Convers. Manag. 2022, 274. [Google Scholar] [CrossRef]
- Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Bolla, M.; Boulouchos, K.; Tallu, G.; Lucas, G.; Weissner, M. Experimental and Numerical Analysis of Pre-Chamber Combustion Systems for Lean Burn Gas Engines. WCX SAE World Congress Experience. [CrossRef]
- Xu, G.; Wright, Y.M.; Kyrtatos, P.; Bardis, K.; Schiliro, M.; Boulouchos, K. Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior. SAE Int. J. Engines 2017, 10, 2414–2428. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Gao, Y.; Xia, C.; Zhu, Y.; Shreka, M.; Ming, P. Numerical simulation of lean premixed combustion characteristics and emissions of natural gas-ammonia dual-fuel marine engine with the pre-chamber ignition system. Fuel 2023, 343. [Google Scholar] [CrossRef]
- Vavra, J.; Syrovatka, Z.; Vitek, O.; Macek, J.; Takats, M. Development of a Pre-Chamber Ignition System for Light Duty Truck Engine. WCX World Congress Experience. [CrossRef]
- Baumgartner, L.S.; Wohlgemuth, S.; Zirngibl, S.; Wachtmeister, G. Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications. SAE Int. J. Engines 2015, 8, 921–933. [Google Scholar] [CrossRef]
- Silva, M.; Mohan, B.; Badra, J.; Zhang, A.; Hlaing, P.; Cenker, E.; AlRamadan, A.S.; Im, H.G. DoE-ML guided optimization of an active pre-chamber geometry using CFD. Int. J. Engine Res. 2022, 24, 2936–2948. [Google Scholar] [CrossRef]
- Syrovatka, Z.; Vitek, O.; Vavra, J.; Takats, M. Scavenged Pre-Chamber Volume Effect on Gas Engine Performance and Emissions. WCX SAE World Congress Experience. [CrossRef]
- Krajnović, J.; Sjerić, M.; Tomić, R.; Kozarac, D. A novel concept of active pre-chamber engine with a single injector – The passive main chamber approach. Appl. Therm. Eng. 2024, 250. [Google Scholar] [CrossRef]
- Kammel, G.; Mair, F.; Zelenka, J.; Lackner, M.; Wimmer, A.; Kogler, G.; Bärow, E. Simulation Based Predesign and Experimental Validation of a Prechamber Ignited HPDI Gas Combustion Concept. WCX SAE World Congress Experience. LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE;
- Beran, R.; Wimmer, A. Application of 3D-CFD Methods to Optimize a Gaseous Fuelled Engine with Respect to Charge Motion, Combustion and Knocking. SAE 2000 World Congress.
- Shin, J.; Choi, J.; Seo, J.; Park, S. Pre-chamber combustion system for heavy-duty engines for operating dual fuel and diesel modes. Energy Convers. Manag. 2022, 255, 115365. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Feng, Y.; Lu, Z.; Sun, K. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine. Fuel 2022, 325. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Y.; Xu, G.; Zhu, Y.; Ming, P.; Dai, L. Numerical investigations on charge motion and combustion of natural gas-enhanced ammonia in marine pre-chamber lean-burn engine with dual-fuel combustion system. Int. J. Hydrogen Energy 2023, 48, 11476–11492. [Google Scholar] [CrossRef]
- Dempsey, A.B.; Zeman, J.; Wall, M. A System to Enable Mixing Controlled Combustion With High Octane Fuels Using a Prechamber and High-Pressure Direct Injector. Front. Mech. Eng. 2021, 7. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, R.; Lin, H.; Jin, Z.; Qian, Y.; Zhou, D.; Yin, Y.; Li, Z.; Lu, X. Computational insights into flame development and emission formation in an ammonia engine with hydrogen-assisted pre-chamber turbulent jet ignition. Energy Conversion and Management 2024, 314, 118706. [Google Scholar] [CrossRef]
- de Oliveira, W.P.; Mendonça, M.S.; Chavda, N.B.; Filho, F.A.R.; Baeta, J.G.C. Numerical and experimental analysis of the combustion in a Single-Cylinder research engine with passive TJI pre-chamber operating with hydrated ethanol. Energy Convers. Manag. 2024, 310. [Google Scholar] [CrossRef]
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Martinez-Hernandiz, P.; Libert, C.; Dabiri, M. Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines. Appl. Energy 2019, 248, 576–588. [Google Scholar] [CrossRef]
- Chinnathambi, P.; Bunce, M.; Cruff, L. RANS Based Multidimensional Modeling of an Ultra-Lean Burn Pre-Chamber Combustion System with Auxiliary Liquid Gasoline Injection. SAE 2015 World Congress & Exhibition. [CrossRef]
- Assanis, D.; Engineer, N.; Neuman, P.; Wooldridge, M. Computational Development of a Dual Pre-Chamber Engine Concept for Lean Burn Combustion. SAE 2016 International Powertrains, Fuels & Lubricants Meeting. [CrossRef]
- Benajes, J.; Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C.; Rampanarivo, F.; Dabiri, M. Computational assessment towards understanding the energy conversion and combustion process of lean mixtures in passive pre-chamber ignited engines. Appl. Therm. Eng. 2020, 178, 115501. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, S.; Han, Z. Combustion characteristics and misfire mechanism of a passive pre-chamber direct-injection gasoline engine. Fuel 2023, 352. [Google Scholar] [CrossRef]
- Novella, R.; Gomez-Soriano, J.; Barbery, I.; Libert, C. Numerical analysis of the passive pre-chamber ignition concept for light duty applications. Appl. Therm. Eng. 2022, 213. [Google Scholar] [CrossRef]
- Piano, A.; Scalambro, A.; Millo, F.; Catapano, F.; Sementa, P.; Di Iorio, S.; Bianco, A. CFD-based methodology for the characterization of the combustion process of a passive pre-chamber gasoline engine. Transp. Eng. 2023, 13. [Google Scholar] [CrossRef]
- Peethambaram, M.R.; Zhou, Q.; Waters, B.; Pendlebury, K.; Fu, H.; Haines, A.; Hale, D.; Hu, T.; Zhang, J.; Wu, X.; et al. Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean Engine Operation. SAE Int. J. Engines 2024, 17. [Google Scholar] [CrossRef]
- Distaso, E.; Amirante, R.; Cassone, E.; De Palma, P.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M. Analysis of the combustion process in a lean-burning turbulent jet ignition engine fueled with methane. Energy Convers. Manag. 2020, 223, 113257. [Google Scholar] [CrossRef]
- Xu, L.; Li, G.; Yao, M.; Zheng, Z.; Wang, H. Numerical Investigation on the Jet Characteristics and Combustion Process of an Active Prechamber Combustion System Fueled with Natural Gas. Energies 2022, 15, 5356. [Google Scholar] [CrossRef]
- Gholamisheeri, M.; Wichman, I.S.; Toulson, E. A study of the turbulent jet flow field in a methane fueled turbulent jet ignition (TJI) system. Combust. Flame 2017, 183, 194–206. [Google Scholar] [CrossRef]
- Wang, M.; Leng, X.; He, Z.; Wei, S.; Chen, L.; Jin, Y. A Numerical Study on the Effects of the Orifice Geometry between Pre- and Main Chamber for a Natural Gas Engine. International Powertrains, Fuels & Lubricants Meeting. [CrossRef]
- Silva, M.; Sanal, S.; Hlaing, P.; Cenker, E.; Johansson, B.; Im, H.G. Effects of Geometry on Passive Pre-Chamber Combustion Characteristics. WCX SAE World Congress Experience.
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; E Longman, D. Numerical investigation of a fueled pre-chamber spark-ignition natural gas engine. Int. J. Engine Res. 2021, 23, 1475–1494. [Google Scholar] [CrossRef]
- Silva, M.; Liu, X.; Hlaing, P.; Cenker, E.; Turner, J.; Im, H.G. A Computational Assessment of Combustion Submodels for Predictive Simulations of Pre-Chamber Combustion Engines. ASME 2022 ICE Forward Conference. Indianapolis, Indiana, USA, -19, 2022. 16 October.
- Thelen, B.C.; Toulson, E. A Computational Study of the Effects of Spark Location on the Performance of a Turbulent Jet Ignition System. SAE 2016 World Congress and Exhibition. [CrossRef]
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; Longman, D.E. Assessment of Turbulent Combustion Models for Simulating Prechamber Ignition in a Natural Gas Engine. J. Eng. Gas Turbines Power 2021, 143. [Google Scholar] [CrossRef]
- Liu, X.; Aljabri, H.; Silva, M.; AlRamadan, A.S.; Ben Houidi, M.; Cenker, E.; Im, H.G. Hydrogen pre-chamber combustion at lean-burn conditions on a heavy-duty diesel engine: A computational study. Fuel 2023, 335. [Google Scholar] [CrossRef]
- Jamrozik, A.; Tutak, W.; Kociszewski, A.; Sosnowski, M. Numerical simulation of two-stage combustion in SI engine with prechamber. Appl. Math. Model. 2013, 37, 2961–2982. [Google Scholar] [CrossRef]
- Sforza, L.; Lucchini, T.; Gianetti, G.; D'Errico, G.; Onofrio, G.; Beatrice, C.; Tunestal, P. A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas. WCX SAE World Congress Experience. [CrossRef]
- Mastorakos, E.; Allison, P.; Giusti, A.; De Oliveira, P.; Benekos, S.; Wright, Y.; Frouzakis, C.; Boulouchos, K. Fundamental Aspects of Jet Ignition for Natural Gas Engines. SAE Int. J. Engines 2017, 10, 2429–2438. [Google Scholar] [CrossRef]
- Fei, Q.; Shah, A.; Zhi-wei, H.; Li-na, P.; Tunestal, P.; Xue-Song, B. Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combustion and Flame 2018, 188, 357–366. [Google Scholar]
- Borghi, F.T.; Moreira, T.A.A.; Whanco, R.; Barros, J.E.M.; Valle, R.M. Aerodynamic In-Cylinder Flow Simulation in an Internal Combustion Engine with Torch Ignition System. 23rd SAE Brasil International Congress and Display. 2014. [Google Scholar]
- Bolla, M.; Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Boulouchos, K. Numerical Simulations of Pre-Chamber Combustion in an Optically Accessible RCEM. WCX SAE World Congress Experience. [CrossRef]
- Shapiro, E.; Ahmed, I.; Tiney, N. Advanced ignition modelling for pre-chamber combustion in lean burn gas engines. In Proceedings of Ignition Systems for Gasoline Engines: internationale Tagung Zündsysteme für Ottomotoren; 2018. p. 104.
- Bolla, M.; Shapiro, E.; Tiney, N.; Kyrtatos, P.; Kotzagianni, M.; Boulouchos, K. Numerical Study of Turbulence and Fuel-Air Mixing within a Scavenged Pre-Chamber Using RANS and LES. WCX SAE World Congress Experience. [CrossRef]
- th International CAE Conference and Exhibition (CAE 2018), Vicenza, Italy, -9, 2018. 8 October. [CrossRef]
- Silva, M.; Liu, X.; Hlaing, P.; Sanal, S.; Cenker, E.; Chang, J.; Johansson, B.; Im, H.G. Computational assessment of effects of throat diameter on combustion and turbulence characteristics in a pre-chamber engine. Appl. Therm. Eng. 2022, 212. [Google Scholar] [CrossRef]
- Allison, P.; de Oliveira, M.; Giusti, A.; Mastorakos, E. Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 2018, 230, 274–281. [Google Scholar] [CrossRef]
- Zhao, P.; Ge, H.; Parameswaran, S. CFD-guided development of a pre-chamber ignition system for internal combustion engines. International Journal of Powertrains 2021, 10(1).
- Miccichè, S. Comparison of Optimization Methods for Prechamber Spark Plug Operations in Natural Gas Engines using CFD-Simulation. Master’s Thesis, in Mechanical Engineering, Institut für Kolbenmaschinen (IFKM), 2019. [Google Scholar]
- Nodi, A.; Sforza, L.; Lucchini, T.; Onorati, A.; Buttitta, M.; Marmorini, L. CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine. WCX SAE World Congress Experience. [CrossRef]
- Addabbo, A. A CFD methodology for the design of active prechambers in SI engines. Master’s Thesis, in Mechanical Engineering, Politecnico, Italy, 2023. [Google Scholar]
- Posch, S.; Gößnitzer, C.; Rohrhofer, F.M.; Geiger, B.; Wimmer, A. Finding the Optimum Design of Large Gas Engines Prechambers using CFD and Bayesian Optimization. In Scientific Computing 2023: Conference Proceedings, Granigg, W. (Ed.), Verlag der FH JOANNEUM Gesellschaft mbH, 2023, pp. 160-168.
- Silva, M.; Mohan, B.; Badra, J.; Zhang, A.; Hlaing, P.; Cenker, E.; AlRamadan, A.S.; Im, H.G. DoE-ML guided optimization of an active pre-chamber geometry using CFD. Int. J. Engine Res. 2022, 24, 2936–2948. [Google Scholar] [CrossRef]
- Krajnovic, J.; Dilber, V.; Tomic, R.; Sjeric, M.; Ilincic, P.; Kozarac, D. Numerical Simulations of Pre-Chamber Induced HCCI Combustion (PC-HCCI). WCX SAE World Congress Experience. [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics-the Finite Volume Method, 2nd Edition, 2007.
- Hanjalic, K. Will RANS Survive LES? A View of Perspectives. J. Fluids Eng. 2005, 127, 831–839. [Google Scholar] [CrossRef]
- Chen, C.-J.; Jaw, S.-Y. Fundamentals of Turbulence Modeling. Taylor & Francis, 1998, New York, USA, ISBN 1-56032-405-8.
- Chen, C.-J.; Jaw, S.-Y. Fundamentals of Turbulence Modeling. Taylor & Francis, 1998, New York, USA, ISBN 1-56032-405-8.
- Wilcox, D.C. Turbulence modeling for CFD, 2nd Edition. DCW Industries Inc., California, USA, 1994.
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A: Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef]
- Davidson, L. Fluid mechanics, turbulent flow and turbulence modeling. Chalmers University of Technology, 2024, Goteborg, Sweden.
- Pope, S.B. Turbulent Flows. Cornell University, 2000, New York, ISBN: 9780521598866.
- Durbin, P.A.; Reif, B.A.P. Statistical Theory and Modeling for Turbulent Flows, 2nd ed.; Wiley: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Nzebuka, G.; Waheed, M. Thermal evolution in the direct chill casting of an Al-4 pct Cu alloy using the low-Reynolds number turbulence model. Int. J. Therm. Sci. 2019, 147, 106152. [Google Scholar] [CrossRef]
- Hanjalić, K.; Popovac, M.; Hadžiabdić, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 2004, 25, 1047–1051. [Google Scholar] [CrossRef]
- Durbin, P.A. Near-wall turbulence closure modeling without “damping functions”. Theoretical and Computational Fluid Dynamics 1991, 3, 1–13. [Google Scholar] [CrossRef]
- Durbin, P.A. A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 1993, 249, 465–498. [Google Scholar] [CrossRef]
- Wu, X.; Durbin, P.A. Numerical Simulation of Heat Transfer in a Transitional Boundary Layer With Passing Wakes. J. Heat Transf. 1999, 122, 248–257. [Google Scholar] [CrossRef]
- Spall, R.E. An Assessment of k-w and v2-f Turbulence Models for Strongly Heated Internal Gas Flows. Numerical Heat Transfer, Part A 2004, 46, 831–849. [Google Scholar] [CrossRef]
- Sunden, B.; Faghri, M. Modelling and Simulation of Turbulent Heat Transfer. WIT Press, 2005, Southampton, UK, ISBN: 978-1-85312-956-8.
- Argyropoulos, C.D.; Markatos, N.C. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Smyth, T.A. A review of Computational Fluid Dynamics (CFD) airflow modelling over aeolian landforms. Aeolian Res. 2016, 22, 153–164. [Google Scholar] [CrossRef]
- Ansys, Inc. Fluent 18.0 User’s guide, Jan. 2017.
- CHAM, PHOENICS v.1.0 User’s guide, Oct. 2022. Available online: cham.co.uk/phoenics/d_polis/d_docs/tr316/tr316.
- The Smagorinsky Turbulence Model (Part 2). Fluid Mechanics 101, YouTube channel. Available online: https://www.youtube.com/watch?
- Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 1991, 3, 1760–1765. [Google Scholar] [CrossRef]
- Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 1992, 4, 633–635. [Google Scholar] [CrossRef]
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow, Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ham, F.; Wu, X. Application of a local SGS model based on coherent structures to complex geometries. Int. J. Heat Fluid Flow 2008, 29, 640–653. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab. Springer, 2015, ISBN 978-3319168739.
- Yoshizawa, A. Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 1986, 29, 2152–2164. [Google Scholar] [CrossRef]
- Kyrtatos, P.; Bardis, K.; Bolla, M.; Denisov, A.; Wright, Y.; Herrmann, K.; Boulouchos, K. Transferability of Insights from Fundamental Investigations into Practical Applications of Prechamber Combustion Systems. In Proceedings of Ignition Systems for Gasoline Engines: internationale Tagung Zündsysteme für Ottomotoren; 2018. p. 442.
- Zhou, L.; Liu, P.; Zhong, L.; Feng, Z.; Wei, H. Experimental observation of lean flammability limits using turbulent jet ignition with auxiliary hydrogen and methane in pre-chamber. Fuel 2021, 305, 121570. [Google Scholar] [CrossRef]
- Xu, G.; Kotzagianni, M.; Kyrtatos, P.; Wright, Y.M.; Boulouchos, K. Experimental and numerical investigations of the unscavenged prechamber combustion in a rapid compression and expansion machine under engine-like conditions. Combust. Flame 2019, 204, 68–84. [Google Scholar] [CrossRef]
- Rajasegar, R.; Niki, Y.; García-Oliver, J.M.; Li, Z.; Musculus, M.P. Fundamental insights on ignition and combustion of natural gas in an active fueled pre-chamber spark-ignition system. Combust. Flame 2021, 232. [Google Scholar] [CrossRef]
- Atis, C.; Chowdhury, S.S.; Ayele, Y.; Stuecken, T.; Schock, H.; Voice, A.K. Ultra-Lean and High EGR Operation of Dual Mode, Turbulent Jet Ignition (DM-TJI) Engine with Active Pre-chamber Scavenging. WCX SAE World Congress Experience. SAE Technical Paper 2020-01-1117, 2020.
- Nicoud, F.; Ducros, F. Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor. Flow, Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- Iacovano, C.; D’adamo, A.; Cantore, G. Analysis and Simulation of Non-Flamelet Turbulent Combustion in a Research Optical Engine. Energy Procedia 2018, 148, 463–470. [Google Scholar] [CrossRef]
- Stiesch, G. Modeling Engine Spray and Combustion Processes; Springer Nature: Dordrecht, GX, Netherlands, 2003; ISBN 9783030408534. [Google Scholar]
- Peters, N.; Dekena, M. Combustion Modeling with the G-Equation. Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouv. 1999, 54, 265–270. [Google Scholar] [CrossRef]
- Peters, N. Turbulent Combustion. Cambridge Monographs on Mechanics, 4th ed., Cambridge University Press, 2006, ISBN 9780521660822.
- Chinnan, J.A. Simulation and validation of in-cylinder combustion for a heavy-duty otto gas engine using 3D-CFD technique. Master of Science Thesis, KTH Industrial Engineering and Management Machine Design, Stockholm, Sweden, 2018. [Google Scholar]
- Iacovano, C.; D’adamo, A.; Cantore, G. Analysis and Simulation of Non-Flamelet Turbulent Combustion in a Research Optical Engine. Energy Procedia 2018, 148, 463–470. [Google Scholar] [CrossRef]
- Gülder. L. Turbulent premixed flame propagation models for different combustion regimes. Symp. (International) Combust. 1991, 23, 743–750. [Google Scholar] [CrossRef]
- Bradley, D.; Lau, A.K.C.; Lawes, M.; Smith, F.T. Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. London. Ser. A: Phys. Eng. Sci. 1992, 338, 359–387. [Google Scholar] [CrossRef]
- Ewald, J.; Peters, N. On unsteady premixed turbulent burning velocity prediction in internal combustion engines. Proc. Combust. Inst. 2006, 31, 3051–3058. [Google Scholar] [CrossRef]
- Veynante, D.; Vervisch, L. Turbulent Combustion Modeling. Progress in Energy and Combustion Science 2002, 28, 193–266. [Google Scholar] [CrossRef]
- Toulson, E. Applying Alternative Fuels in Place of Hydrogen to the Jet Ignition Process. Ph.D. thesis, Department of Mechanical Engineering, The University of Melbourne, 2009.
- Lu, T.; Law, C.K. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 2008, 154, 761–774. [Google Scholar] [CrossRef]
- Meneveau, C.; Poinsot, T. Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 1991, 86, 311–332. [Google Scholar] [CrossRef]
- Meneveau, C.; Sreenivasan, K.R. The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 1991, 224, 429–484. [Google Scholar] [CrossRef]
- Iacovano, C.; d’Adamo, A.; Cantore, G. Analysis and Simulation of Non-Flamelet Turbulent Combustion in a Research Optical Engine. In Proceedings of the 3rd Conference of the Italian Thermal Machines Engineering Association, Pisa, Italy, 2018., September 12-14.
- Suillaud, E. Modelling of high Karlovitz combustion in spark-ignition engines. Ph.D. Thesis, Chemical and Process Engineering, Université Paris-Saclay, 2021. [Google Scholar]
- Salerno, F.; Bargende, M.; Kulzer, A.; Grill, M.; Burkardt, P.; Günther, M.; Pischinger, S.; Villforth, J. A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion. SAE Int. J. Adv. Curr. Pr. Mobil. 2023, 5, 2258–2277. [Google Scholar] [CrossRef]
- Kim, J.; Scarcelli, R.; Som, S.; Shah, A.; Biruduganti, M.S.; Longman, D.E. Evaluation of Combustion Models for CFD Simulation of Pre-Chamber Ignition in a Natural Gas Engine. In Proceedings of the 11th U.S. National Combustion Meeting, Pasadena, CA, 2019., March 24-27.
- Ferziger, J.H.; Pericć, M. Computational Methods for Fluid Dynamics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1st ed.; CRC Press: Boca Raton, FL, USA, 1980; ISBN 9781315275130. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd ed. Springer, Berlin, Heidelberg, 2009, ISBN 978-3-540-25202-3. [CrossRef]
- Ikegaya, N.; Okaze, T.; Kikumoto, H.; Imano, M.; Ono, H.; Tominaga, Y. Effect of the numerical viscosity on reproduction of mean and turbulent flow fields in the case of a 1:1:2 single block model. J. Wind. Eng. Ind. Aerodyn. 2019, 191, 279–296. [Google Scholar] [CrossRef]
- GAMMA Technologies. GT-SUITE, 2024. Available online: https://www.gtisoft.
- Benson, R.S.; Horlock, J.H.; Winterbone, D.E. The Thermodynamics and Gas Dynamics of Internal-Combustion Engines, Vol. I, II, Clarendon Press, Oxford, England, 1982.
- Bozza, F.; De Bellis, V.; Tufano, D.; Malfi, E.; Müller, C.; Habermann, K. A Quasi-Dimensional Model of Pre-Chamber Spark-Ignition Engines. WCX SAE World Congress Experience. [CrossRef]
- De Bellis, V.; Bozza, F.; Fontanesi, S.; Severi, E.; Berni, F. Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine. SAE Int. J. Engines 2016, 9, 506–519. [Google Scholar] [CrossRef]
- Hlaing, P.; Marquez, M.E.; Cenker, E.; Im, H.G.; Johansson, B.; Turner, J.W. Effects of volume and nozzle area in narrow-throat spark-ignited pre-chamber combustion engines. Fuel 2021, 313, 123029. [Google Scholar] [CrossRef]
- Reitz, R.D. Assessment of Wall Heat Transfer Models for Premixed-Charge Engine Combustion Computations. International Congress & Exposition. [CrossRef]
- Jayatilleke, C.L.V. The influence of Prandtl number and surface roughness on the resistance of the laminar sublayer to momentum and heat transfer. Progress in Heat and Mass Transfer 1969, 1, Pergamon Press. [Google Scholar]
- Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer, 3rd ed. McGraw-Hill, New York, 1994.
- Angelberger, C.; Poinsot, T.; Delhay, B. Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. International Fuels & Lubricants Meeting & Exposition. [CrossRef]
- Han, Z.; Reitz, R.D. A temperature wall function formulation for variable-density turbulent flows with application to engine convective heat transfer modeling. Int. J. Heat Mass Transf. 1997, 40, 613–625. [Google Scholar] [CrossRef]
- Berni, F.; Cicalese, G.; Fontanesi, S. A modified thermal wall function for the estimation of gas-to-wall heat fluxes in CFD in-cylinder simulations of high performance spark-ignition engines. Appl. Therm. Eng. 2017, 115, 1045–1062. [Google Scholar] [CrossRef]
- Dou, X.; Yosri, M.; Talei, M.; Yang, Y. Impact of wall heat transfer modelling in large-eddy simulation of hydrogen knocking combustion. Int. J. Hydrogen Energy 2024, 62, 405–417. [Google Scholar] [CrossRef]
- Rakopoulos, C.; Kosmadakis, G.; Pariotis, E. Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation. Appl. Energy 2010, 87, 1612–1630. [Google Scholar] [CrossRef]
- Torregrosa, A.; Broatch, A.; Gil, A.; Gomez-Soriano, J. Numerical approach for assessing combustion noise in compression-ignited Diesel engines. Appl. Acoust. 2018, 135, 91–100. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals, 2nd Ed. McGraw-Hill, 2018.
- Hiraoka, K.; Nomura, K.; Yuuki, A.; Oda, Y.; Kameyama, T. Phenomenological 0-Dimensional Combustion Model for Spark-Ignition Natural Gas Engine Equipped with Pre-Chamber. SAE 2016 World Congress and Exhibition. [CrossRef]
- Le Guen, S.; Maiboom, A.; Bougrine, S.; Tauzia, X. Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map. WCX World Congress Experience. [CrossRef]
- Silva, M.; Sanal, S.; Hlaing, P.; Cenker, E.; Johansson, B.; Im, H.G. A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge. SAE WCX Digital Summit. [CrossRef]
















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
