Submitted:
26 June 2024
Posted:
27 June 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Survey of Related Literature
2. Materials, Tools and Methods
- must be scalable for multidimensional format.
- must be with heterogeneous landscape.
- Griewank test is global [43]. Optimal value is 0.
- Michalewicz test is global test with unknown optimum [44]. Optimal value depends on dimensions number.
- Norwegian test is global test with unknown optimum [45]. Optimal value depends on dimensions number.
- Rastrigin test is global [46]. Optimal value is 0.
- Rosenbrock test is smooth flat test with single solution [47]. Optimal value is 0.
- Schwefel test is global [48]. Optimal value is 0.
- Step test introduces plateaus to the topology and the search process cannot rely on local correlation [49]. Optimal value depends on the dimensions number and for variety of dimension is unknown.
- Particle Swarm Optimisation (PSO) [50] – representing the group of swarm algorithms applied to real coded tasks over continues space.
- Differential Evolution (DE) [51] - heuristic approach for optimising nonlinear and non-differentiable continuous space functions.
- Free Search (FS) [52] - adaptive heuristic algorithm for search and optimisation within continuous space.
Methodology
- Duration min
- Number of iterations integer
- Mean system power W
- System Energy Wℎ
- CPU usage %
- CPU power W
- CPU cores - 1 core – 1 thread
3. Results
- Time of objective function evaluation in other words this is time for apprehension of the space.
- Time for algorithm execution in other words this is time for interpretation and assessment of the search space.
- Time for algorithm decision making in other word this is time for selection and further action.
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Paul, S.G.; Saha, A.; Arefin, M.S.; Bhuiyan, T.; Biswas, A.A.; Reza, A.W.; Alotaibi, N.M.; Alyami, S.A.; Moni, M.A. A Comprehensive Review of Green Computing: Past, Present, and Future Research. IEEE Access 2023, 11, 87445–87494. [Google Scholar] [CrossRef]
- Cheng, L. , Varshney, K. R., Liu, H. Socially responsible AI algorithms: Issues, purposes, and challenges. Journal of Artificial Intelligence Research 2021, 71, 1137–1181. [Google Scholar] [CrossRef]
- Lee, S.U.; Fernando, N.; Lee, K.; Schneider, J.-G. A survey of energy concerns for software engineering. J. Syst. Softw. 2024, 210. [Google Scholar] [CrossRef]
- Naumann, S.; Dick, M.; Kern, E.; Johann, T. The GREENSOFT Model: A reference model for green and sustainable software and its engineering. Sustain. Comput. Informatics Syst. 2011, 1, 294–304. [Google Scholar] [CrossRef]
- Raimi, D.; Zhu, Y.; Newell, R.G.; Prest, B.C. Global Energy Outlook 2024: Peaks or Plateaus? 2024. Available online: https://www.rff.org/publications/reports/global-energy-outlook-2024/ (accessed on 10.06.2024).
- IEA, GlobalEnergyReview2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 10.06.2024).
- Bremermann, H.J. , “Optimization through Evolution and Recombination,” in Self-organizing Systems, M.C. Yovits, G.T. Jacobi and G.D. Goldstein, Eds. Washington, DC: Spartan Books, 1962, pp. 93-106.
- Bremermann, H.J. , 1967, January. In Quantum noise and information. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 4; pp. 15–20.
- Gorelik, G. , 2009. Bremermann’s Limit and cGh-physics. arXiv:0910.3424.
- Top500A 2024, FRONTIER - HPE CRAY EX235A, AMD OPTIMIZED 3RD GENERATION EPYC 64C 2GHZ, AMD INSTINCT MI250X, SLINGSHOT-11. https://top500.org/system/180047/ Accessed 15.05.2024.
- Top500B, 2024, BLUEGENE/L - ESERVER BLUE GENE SOLUTION. https://top500.org/system/174210/, Accessed 15.05.2024.
- Top500C, 2024, JEDI - BULLSEQUANA XH3000, GRACE HOPPER SUPERCHIP 72C 3GHZ, NVIDIA GH200 SUPERCHIP, QUAD-RAIL NVIDIA INFINIBAND NDR200 https://top500.org/system/180269/ Accessed 15.05.2024.
- Dongarra, J. , 2007, Frequently Asked Questions on the Linpack Benchmark and Top500, available at https://www.netlib.org/utk/people/JackDongarra/faq-linpack.html, Accessed 19.01.2024.
- JVA Initiative Committee and Iowa State University, 2011, ATANASOFF BERRY COMPUTER, available at https://jva.cs.iastate.edu/operation.php, Accessed 12.06. 2024.
- Freiberger, Paul A. and Swaine, Michael R.. “Atanasoff-Berry Computer”. Encyclopedia Britannica, 20 Mar. 2023. https://www.britannica.com/technology/Atanasoff-Berry-Computer. Accessed 11 June 2024.
- Calero, C.; Mancebo, J.; Garcia, F.; Moraga, M.A.; Berna, J.A.G.; Fernandez-Aleman, J.L.; Toval, A. 5Ws of green and sustainable software. Tsinghua Sci. Technol. 2020, 25, 401–414. [Google Scholar] [CrossRef]
- Gottschalk, M.; Jelschen, J.; Winter, A. Energy-Efficient Code by Refactoring. Available at: https://dl.gi.de/server/api/core/bitstreams/a42bfb61-43dd-4d5c-9b1d-2c8c2b4ca51f/content, Accessed 12.06.2024.
- Şanlıalp, I.; Öztürk, M.M.; Yiğit, T. Energy Efficiency Analysis of Code Refactoring Techniques for Green and Sustainable Software in Portable Devices. Electronics 2022, 11, 442. [Google Scholar] [CrossRef]
- Anwar, H.; Pfahl, D.; Srirama, S.N. Evaluating the impact of code smell refactoring on the energy consumption of Android applications. In Proceedings of the 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Kallithea, Greece, 28–30 August 2019. [Google Scholar]
- Noman, H.; Mahoto, N.; Bhatti, S.; Rajab, A.; Shaikh, A. Towards sustainable software systems: A software sustainability analysis framework. Inf. Softw. Technol. 2024, 169. [Google Scholar] [CrossRef]
- Heldal, R.; Nguyen, N.-T.; Moreira, A.; Lago, P.; Duboc, L.; Betz, S.; Coroamă, V.C.; Penzenstadler, B.; Porras, J.; Capilla, R.; et al. Sustainability competencies and skills in software engineering: An industry perspective. J. Syst. Softw. 2024, 211. [Google Scholar] [CrossRef]
- Venters, C.C.; Capilla, R.; Nakagawa, E.Y.; Betz, S.; Penzenstadler, B.; Crick, T.; Brooks, I. Sustainable software engineering: Reflections on advances in research and practice. Inf. Softw. Technol. 2023, 164. [Google Scholar] [CrossRef]
- Martínez-Fernández, S.; Franch, X.; Durán, F. Towards green AI-based software systems: an architecture-centric approach (GAISSA). 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2023. [CrossRef]
- Penev, K.; Littlefair, G. Free Search—a comparative analysis. Inf. Sci. 2005, 172, 173–193. [Google Scholar] [CrossRef]
- Penev, K. and Gegov, A., 2008. Free Search of real value or how to make computers think. St. Qu.
- Vasileva, V. and Penev, K., 2012, September. Free search of global value. In 2012 6th IEEE International Conference Intelligent Systems (pp. 425-430). IEEE.
- Penev, K. , Free Search in Multidimensional Space M, 2018, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Lirkov, I. & Margenov, S. (eds.). Switzerland: Springer Nature, Vol. 10665. p. 399-407 9 p.
- Penev, K. , 2022, An optimal value for 100 000-dimensional Michalewicz test. Available at: https://pure.solent.ac.uk/files/33733992/100_000_dimensional_Michalewicz_test_2.pdf, Accessed 12.06.2024.
- Washizaki, H.; Khomh, F.; Gueheneuc, Y.-G.; Takeuchi, H.; Natori, N.; Doi, T.; Okuda, S. Software-Engineering Design Patterns for Machine Learning Applications. Computer 2022, 55, 30–39. [Google Scholar] [CrossRef]
- Guldner, A.; Bender, R.; Calero, C.; Fernando, G.S.; Funke, M.; Gröger, J.; Hilty, L.M.; Hörnschemeyer, J.; Hoffmann, G.-D.; Junger, D.; et al. Development and evaluation of a reference measurement model for assessing the resource and energy efficiency of software products and components—Green Software Measurement Model (GSMM). Futur. Gener. Comput. Syst. 2024, 155, 402–418. [Google Scholar] [CrossRef]
- Koedijk, L.; Oprescu, A. Finding Significant Differences in the Energy Consumption when Comparing Programming Languages and Programs. 2022 International Conference on ICT for Sustainability (ICT4S). LOCATION OF CONFERENCE, BulgariaDATE OF CONFERENCE; pp. 1–12.
- Wu, C.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Behram, F.A.; Huang, J.; Bai, C.; Gschwind, M.; Gupta, A.; Ott, M.; Melnikov, A.; Candido, S.; Brooks, D.; Chauhan, G.; Lee, B.; Lee, H.S.; Akyildiz, B.; Balandat, M.; Spisak, J.; Jain, R.; Rabbat, M.; Hazelwood, K.; Ai, F. Sustainable AI: Environmental Implications, Challenges and Opportunities. Available at: https://www.semanticscholar.org/reader/2c6df83795cd5baf3b8c6e2639b85e2df0cee1d0, Accessed 13.06.2024.
- Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon Emissions and Large Neural Network Training. arXiv:2104.10350, 2021.
- EU, “Regulation (EU) 2020/852 of the european parliament and of the council of 18 june 2020 on the establishment of a framework to facilitate sustainable investment, and amending regulation (EU) 2019/2088 (Text with EEA relevance),” Official Journal of the European Communities, vol. 198, pp. 13–43, 2020. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0852&from=EN, Accessed 13.06.2024.
- EU, AI Act, 2024. Available at: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai, Accessed 13.06.2024.
- Darwin, C. On the Origin of Species by Means of Natural Selection. New York: D. Appleton and Company, 443 & 445 Broadway. MDCCCLXI. Available at: https://darwin-online.org.uk/converted/pdf/1861_OriginNY_F382.pdf, Accessed 13.06.202.
- Pinto, P.; Bispo, J.; Cardoso, J.M.P.; Barbosa, J.G.; Gadioli, D.; Palermo, G.; Martinovic, J.; Golasowski, M.; Slaninova, K.; Cmar, R.; et al. Pegasus: Performance Engineering for Software Applications Targeting HPC Systems. IEEE Trans. Softw. Eng. 2020, 48, 732–754. [Google Scholar] [CrossRef]
- GG, 2024, Sorting Algorithms, available at: https://www.geeksforgeeks.org/sorting-algorithms/, Accessed 13.06.2024.
- Penev, K. (2018). Free Search in Multidimensional Space M. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. [CrossRef]
- Jain, S.; Saha, A. Improving and comparing performance of machine learning classifiers optimized by swarm intelligent algorithms for code smell detection. Sci. Comput. Program. 2024. [Google Scholar] [CrossRef]
- Deng, L. Artificial Intelligence in the Rising Wave of Deep Learning: The Historical Path and Future Outlook [Perspectives]. IEEE Signal Process. Mag. 2018, 35, 180–177. [Google Scholar] [CrossRef]
- Hutter, M.; Legg, S. A. 2007. A Collection of Definitions of Intelligence. In Proceedings of the 2007 conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006.. IOS Press, NLD, 17–24. arXiv:0706.3639.
- Griewank, A. O. , 1981, “Generalized Decent for Global Optimization.” Journal of Optimization Theory and Applications, 34, pp. 11-39.
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin, Heidelberg, New York: Springer-Verlag, 1992.
- Penev, K. (2015). Free Search in Multidimensional Space II. In: Dimov, I., Fidanova, S., Lirkov, I. (eds) Numerical Methods and Applications. NMA 2014. Lecture Notes in Computer Science(), vol 8962. Springer, Cham. [CrossRef]
- Mühlenbein, H.; Schomisch, M.; Born, J. The Parallel Genetic Algorithm as Function Optimizer. Parallel Comput. 1991, 17, 619–632. [Google Scholar] [CrossRef]
- Rosenbrock, H.H. , 1960, An automate method for finding the greatest or least value of a function. Comput. J. 3 (1960), pp.175-184.
- Schwefel, H. P. , 1981, Numerical Optimization of Computer Models. John Wiley & Sons, English translation of Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, 1977.
- De Jung K., A. , 1975, An Analysis of the Behaviour of a Class of Genetic Adaptive Systems, PhD Thesis, University of Michigan.
- Eberhart, R. , and Kennedy J., 1995, Particle Swarm Optimisation, Proceedings of the 1995 IEEE International Conference on Neural Networks., vol. 4, p.p. (1942-1948). IEEE Press.
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Penev, K. (2008). Adaptive Heuristic Applied to Large Constraint Optimisation Problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2007. Lecture Notes in Computer Science, vol 4818. Springer, Berlin, Heidelberg. [CrossRef]
- GMM-DDS108 (KWE-PM01) Digital Power Consumption Energy Meter UK Plug Socket, 2024, Available at: https://testmeter.sg/webshaper/pcm/files/Data%20Sheet/GMM-DDS108-KWE-PM01-UK.pdf, Accessed 17.06.2024.
- CUPID, 2024, CPU-Z for Windows® x86/x64, available at: https://www.cpuid.com/softwares/cpu-z.html, Accessed 17.06.2024.
- CoreTemp, 2024, Core Temp 1.18.1, available at: https://www.alcpu.com/CoreTemp/, Accessed 17.06.2024.
- Stroll, Avrum and Martinich, A.P.. “epistemology”. Encyclopedia Britannica, 19 Apr. 2024, available at: https://www.britannica.com/topic/epistemology. Accessed 18.06.2024.
- Steup, Matthias and Ram Neta, “Epistemology”, The Stanford Encyclopedia of Philosophy (Spring 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), available at: URL = https://plato.stanford.edu/archives/spr2024/entries/epistemology/. Accessed 18.06.2024.
- Zins, C. Conceptual approaches for defining data, information, and knowledge. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 479–493. [Google Scholar] [CrossRef]
- Rowley, J. The wisdom hierarchy: representations of the DIKW hierarchy. J. Inf. Sci. 2007, 33, 163–180. [Google Scholar] [CrossRef]
- Locke, J. , 1689, An Essay Concerning Human Understanding, 1689, ISBN 0-87220-217-8.
- Nonaka, I and Takeuchi, H., 1995, The Knowledge – Creating Company How Japanese Companies Create the Dynamics of Information, ISBN 0-19-509269-4.
- Davenport, T. , & Prusak, L., 2000, Working Knowledge: how organisations manage what they know, ISBN 0-87584-655-6.
- Tommaso Campanella (1568-1639), Encyclopaedia of Philosophy, Macmillan, New York, Vol.2, p. 12.
- William of Ockham (1285 – 1349), Encyclopaedia of Philosophy, Macmillan, New York, Vol.8, p. 308.


| Test | PSO | DE | FS |
|---|---|---|---|
| Time | Time | Time | |
| Griewank | 01:45:00 | 00:41:00 | 00:14:00 |
| Michalewicz | 02:44:00 | 01:46:00 | 01:02:00 |
| Norwegian | 01:50:00 | 00:47:00 | 00:12:00 |
| Rastrigin | 01:46:00 | 00:45:00 | 00:11:00 |
| Rosenbrock | 01:39:00 | 00:40:00 | 00:05:00 |
| Schwefel | 02:44:00 | 01:03:00 | 00:27:00 |
| Step | 02:37:00 | 00:42:00 | 00:06:00 |
| Test | PSO | DE | FS |
|---|---|---|---|
| Wh | Wh | Wh | |
| Griewank | 33.25 | 12.98 | 4.43 |
| Michalewicz | 51.93 | 33.57 | 19.63 |
| Norwegian | 34.83 | 14.88 | 3.80 |
| Rastrigin | 33.57 | 14.25 | 3.48 |
| Rosenbrock | 31.35 | 12.67 | 1.58 |
| Schwefel | 51.93 | 19.95 | 8.55 |
| Step | 49.72 | 13.30 | 1.90 |
| Test | DE/PSO | FS/PSO | FS/DE |
|---|---|---|---|
| % | % | % | |
| Griewank | 39% | 13% | 34% |
| Michalewicz | 65% | 38% | 58% |
| Norwegian | 43% | 11% | 26% |
| Rastrigin | 42% | 10% | 24% |
| Rosenbrock | 40% | 5% | 13% |
| Schwefel | 38% | 16% | 43% |
| Step | 27% | 4% | 14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
