Submitted:
25 June 2024
Posted:
25 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. A Review of Published Studies
2.1. Studies on Functional Brain Networks
| Reference | Sample | Neuroimaging methods | Main findings on sex differences in brain networks |
| [15] | 10 males and 10 females (aged 21-25 years) | rs-fMRI | No significant difference in Eglob and Eloc between males and females (greater Eglob in male and greater Eloc in female) |
| [64] | 49 older adults (age mean= 67.25y ,29 women). | rs-fMRI | More regularization in females (Increased Eloc and lower Eglob in females; higher Eglob in males) |
| [65] | 10 males and 17 females (aged 5-18years) | high-density rs-EEG |
Alpha frequency band: no differences (low samples) but seems more regularization in males (higher Lp, Cp, σ); beta frequency band: more regularization in females (higher Cp, Lp, σ, Eglob) |
| [66] | 24 boys and 36 girls (5.7–18.4 years) | rs-fMRI | More regularization in females (higher Lp, λ, Cp and Eloc but lower Eglob) |
| [67] | 24 females (mean age 39) and 21 males (mean age 45) | EEG | More regularization in females’ right-hemispheric (greater right-hemispheric Eloc and lower Eglob) |
| [69] | 220 healthy volunteers (aged 7-84 years) | rs-MEG | Similar efficiencies between both males and females |
| [68] | 35 females and 35 males (mean age± SD = 22.4 ± 2.3 years) | EEG | More regularization in females (higher Eloc in delta band when focusing on the search task) |
2.2. Studies on Structural Brain Networks
| Reference | Sample | Neuroimaging methods | Main findings on sex differences in brain networks |
| [10] | 47 males and 48 females (aged 19–85 years) | DTI | Stronger small-worldization in females (higher Eglob and Eloc) |
| [1] | A healthy sample of 28,821 from UKBB (15,073 females,13,748 males) | (based on cortical thickness) T1WI | More randomization in males (higher Eglob) |
| [9] | Baseline:28 females (aged 18-25 years) and43 males (aged 22-53y) Longitudinal:15 females (aged 26-61 years) and 13 males (aged 29-53y) |
DTI | Stronger small-worldization in males (greater Eglob, lower Lp and increased Cp); weaker small-worldization in females (higher Lp and decreased Cp) |
| [62] | 264 males and 391 females (aged 18-35 years) | DWI | More regularization in males (higher Cp) |
| [60] | 150 females and 135 males (aged 22-36 years) | (based on cortical thickness) T1WI | More regularization in males (greater Eloc and lower Eglob in the left hemispheric network); more randomized in females (greater Eglob and lower Eloc in the left hemispheric network) |
| [8] | 111 females and 61 males (aged 20-65 years) | (based on cortical volume) T1WI | More randomization in females (higher Eglob of structural covariance networks) |
| [72] | 99 children (54% boys, aged 6-11 years) | DTI | No significant differences in the structural connectivity and global network properties between male and female children |
| [11] | 38 females (aged 18-24 years) and 35 males (aged 18-27y) | DTI | More regularization in females (greater Eloc) |
| [71] | 310 twins and their older siblings (158 boys and 172 girls but 20 of them with poor quality DTI scan); mean ages: 10, 13, and 18 years | DTI | No significant sex differences |
3. Discussion
3.1. Sex Differences in Functional Brain Network
3.2. Sex Differences in Structural Brain Network
3.3. Possible Reasons for Inconsistent Findings
3.4. Future Perspectives
3.5. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.C.; Totzek, J.F.; Lepage, M.; Lavigne, K.M. Sex Differences in Cognition and Structural Covariance-Based Morphometric Connectivity: Evidence from 28,000+ UK Biobank Participants. Cerebral Cortex 2023, 33, 10341–10354. [Google Scholar] [CrossRef] [PubMed]
- Ingalhalikar, M.; Smith, A.; Parker, D.; Satterthwaite, T.D.; Elliott, M.A.; Ruparel, K.; Hakonarson, H.; Gur, R.E.; Gur, R.C.; Verma, R. Sex Differences in the Structural Connectome of the Human Brain. Proc Natl Acad Sci U S A 2014, 111, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Schmithorst, V.J.; Holland, S.K.; Dardzinski, B.J. Developmental Differences in White Matter Architecture between Boys and Girls. Hum Brain Mapp 2008, 29, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, T.D.; Wolf, D.H.; Roalf, D.R.; Ruparel, K.; Erus, G.; Vandekar, S.; Gennatas, E.D.; Elliott, M.A.; Smith, A.; Hakonarson, H.; et al. Linked Sex Differences in Cognition and Functional Connectivity in Youth. Cerebral Cortex 2015, 25, 2383–2394. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. Evolving Knowledge of Sex Differences in Brain Structure, Function, and Chemistry. Biol Psychiatry 2007, 62, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.M. Normal Sexual Dimorphism of the Adult Human Brain Assessed by In Vivo Magnetic Resonance Imaging. Cerebral Cortex 2001, 11, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Gur, R.C.; Gur, R.E. Complementarity of Sex Differences in Brain and Behavior: From Laterality to Multimodal Neuroimaging. J Neurosci Res 2017, 95, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cui, D.; Niu, J.; Zhang, X.; Sun, F.; Liu, H.; Dou, R.; Qiu, J.; Jiao, Q.; Cao, W.; et al. Sex Differences in Structural Covariance Network Based on MRI Cortical Morphometry: Effects on Episodic Memory. Cerebral Cortex 2023, 33, 8645–8653. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lee, R.; Chen, Y.; Collinson, S.; Thakor, N.; Bezerianos, A.; Sim, K. Progressive Gender Differences of Structural Brain Networks in Healthy Adults: A Longitudinal, Diffusion Tensor Imaging Study. PLoS ONE 2015, 10, e0118857. [Google Scholar] [CrossRef]
- Gong, G.; Rosa-Neto, P.; Carbonell, F.; Chen, Z.J.; He, Y.; Evans, A.C. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of Neuroscience 2009, 29, 15684–15693. [Google Scholar] [CrossRef]
- Yan, C.; Gong, G.; Wang, J.; Wang, D.; Liu, D.; Zhu, C.; Chen, Z.J.; Evans, A.; Zang, Y.; He, Y. Sex- and Brain Size–Related Small-World Structural Cortical Networks in Young Adults: A DTI Tractography Study. Cerebral Cortex 2011, 21, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; He, Y.; Concha, L.; Lebel, C.; Gross, D.W.; Evans, A.C.; Beaulieu, C. Mapping Anatomical Connectivity Patterns of Human Cerebral Cortex Using In Vivo Diffusion Tensor Imaging Tractography. Cerebral Cortex 2009, 19, 524–536. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.L.; Jahanshad, N.; McMahon, K.L.; de Zubicaray, G.I.; Martin, N.G.; Hickie, I.B.; Toga, A.W.; Wright, M.J.; Thompson, P.M. Development of Brain Structural Connectivity between Ages 12 and 30: A 4-Tesla Diffusion Imaging Study in 439 Adolescents and Adults. Neuroimage 2013, 64, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Tunç, B.; Solmaz, B.; Parker, D.; Satterthwaite, T.D.; Elliott, M.A.; Calkins, M.E.; Ruparel, K.; Gur, R.E.; Gur, R.C.; Verma, R. Establishing a Link between Sex-Related Differences in the Structural Connectome and Behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 2016, 371, 20150111. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, C.; He, Y.; Zhong, Q.; Zang, Y. Gender Effect on Functional Networks in Resting Brain. Medical Imaging and Informatics 2008, 4987, 160–168. [Google Scholar] [CrossRef]
- Halpern, D.F.; Benbow, C.P.; Geary, D.C.; Gur, R.C.; Hyde, J.S.; Gernsbacher, M.A. The Science of Sex Differences in Science and Mathematics. Psychological Science in the Public Interest 2007, 8, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Hines, M. Sex-Related Variation in Human Behavior and the Brain. Trends Cogn Sci 2010, 14, 448–456. [Google Scholar] [CrossRef]
- Moreno-Briseño, P.; Díaz, R.; Campos-Romo, A.; Fernandez-Ruiz, J. Sex-Related Differences in Motor Learning and Performance. Behavioral and Brain Functions 2010, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M.; Mathersul, D.; Palmer, D.M.; Gur, R.C.; Gur, R.E.; Gordon, E. Explicit Identification and Implicit Recognition of Facial Emotions: I. Age Effects in Males and Females across 10 Decades. J Clin Exp Neuropsychol 2009, 31, 257–277. [Google Scholar] [CrossRef]
- Asperholm, M.; Högman, N.; Rafi, J.; Herlitz, A. What Did You Do Yesterday? A Meta-Analysis of Sex Differences in Episodic Memory. Psychol Bull 2019, 145, 785–821. [Google Scholar] [CrossRef]
- Zell, E.; Krizan, Z.; Teeter, S.R. Evaluating Gender Similarities and Differences Using Metasynthesis. American Psychologist 2015, 70, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Hirnstein, M.; Stuebs, J.; Moè, A.; Hausmann, M. Sex/Gender Differences in Verbal Fluency and Verbal-Episodic Memory: A Meta-Analysis. Perspectives on Psychological Science 2023, 18, 67–90. [Google Scholar] [CrossRef] [PubMed]
- Barel, E.; Tzischinsky, O. Age and Sex Differences in Verbal and Visuospatial Abilities. Adv Cogn Psychol 2018, 14, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Sommer, W.; Hildebrandt, A.; Kunina-Habenicht, O.; Schacht, A.; Wilhelm, O. Sex Differences in Face Cognition. Acta Psychol (Amst) 2013, 142, 62–73. [Google Scholar] [CrossRef]
- Sokołowski, A.; Tyburski, E.; Sołtys, A.; Karabanowicz, E. Sex Differences in Verbal Fluency Among Young Adults. Adv Cogn Psychol 2020, 16, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L.M.; van Beurden, E.; Morgan, P.J.; Brooks, L.O.; Beard, J.R. Gender Differences in Motor Skill Proficiency From Childhood to Adolescence. Res Q Exerc Sport 2010, 81, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Cornelson, K. Gender-Based Occupational Segregation and Sex Differences in Sensory, Motor, and Spatial Aptitudes. Demography 2018, 55, 1749–1775. [Google Scholar] [CrossRef]
- Cartier, L.; Guérin, M.; Saulnier, F.; Cotocea, I.; Mohammedi, A.; Moussaoui, F.; Kheloui, S.; Juster, R.-P. Sex and Gender Correlates of Sexually Polymorphic Cognition. Biol Sex Differ 2024, 15, 3. [Google Scholar] [CrossRef]
- Bartlett, K.A.; Camba, J.D. Gender Differences in Spatial Ability: A Critical Review. Educ Psychol Rev 2023, 35, 8. [Google Scholar] [CrossRef]
- Reilly, D.; Neumann, D.L.; Andrews, G. Sex and Sex-Role Differences in Specific Cognitive Abilities. Intelligence 2016, 54, 147–158. [Google Scholar] [CrossRef]
- Cao, H.; Plichta, M.M.; Schäfer, A.; Haddad, L.; Grimm, O.; Schneider, M.; Esslinger, C.; Kirsch, P.; Meyer-Lindenberg, A.; Tost, H. Test–Retest Reliability of FMRI-Based Graph Theoretical Properties during Working Memory, Emotion Processing, and Resting State. Neuroimage 2014, 84, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Lei, D.; Li, L.; Li, W.; Dai, J.; Wang, S.; He, M.; Zhu, H.; Kemp, G.J.; Gong, Q. Psychoradiological Patterns of Small-World Properties and a Systematic Review of Connectome Studies of Patients with 6 Major Psychiatric Disorders. Journal of Psychiatry and Neuroscience 2018, 43, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, H.; Yan, C.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.; Bo, Q.; Chen, G.; Chen, N.; et al. Altered Resting-State Dynamic Functional Brain Networks in Major Depressive Disorder: Findings from the REST-Meta-MDD Consortium. Neuroimage Clin 2020, 26. [Google Scholar] [CrossRef]
- Long, Y.; Li, X.; Cao, H.; Zhang, M.; Lu, B.; Huang, Y.; Liu, M.; Xu, M.; Liu, Z.; Yan, C.; et al. Common and Distinct Functional Brain Network Abnormalities in Adolescent, Early-Middle Adult, and Late Adult Major Depressive Disorders. Psychol Med 2024, 54, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex Network Measures of Brain Connectivity: Uses and Interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, S.; Xin, H.; Feng, M.; Zhang, Q.; Sui, C.; Guo, L.; Liang, C.; Wen, H. Disrupted Gray Matter Networks Associated with Cognitive Dysfunction in Cerebral Small Vessel Disease. Brain Sci 2023, 13, 1359. [Google Scholar] [CrossRef] [PubMed]
- Soman, S.M.; Vijayakumar, N.; Thomson, P.; Ball, G.; Hyde, C.; Silk, T.J. Functional and Structural Brain Network Development in Children with Attention Deficit Hyperactivity Disorder. Hum Brain Mapp 2023, 44, 3394–3409. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, S.; Wu, Z.; Yang, J.; Liu, Z.; Wu, G.; Sariah, A.; Ouyang, X.; Long, Y. Changes in Brain Network Properties in Major Depressive Disorder Following Electroconvulsive Therapy: A Combined Static and Dynamic Functional Magnetic Resonance Imaging Study. Ann Palliat Med 2022, 11, 1969–1980. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, T.; Black, M.H.; Girdler, S.; Bölte, S.; Tan, T.; Guan, C. Altered Task Induced Functional Brain Networks and Small-World Properties in Autism. Front Psychiatry 2023, 13. [Google Scholar] [CrossRef]
- Liu, L.; Ren, J.; Li, Z.; Yang, C. A Review of MEG Dynamic Brain Network Research. Proc Inst Mech Eng H 2022, 236, 763–774. [Google Scholar] [CrossRef]
- Liu, D.; Liu, X.; Long, Y.; Xiang, Z.; Wu, Z.; Liu, Z.; Bian, D.; Tang, S. Problematic Smartphone Use Is Associated with Differences in Static and Dynamic Brain Functional Connectivity in Young Adults. Front Neurosci 2022, 16. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Lei, D.; Li, L.; Li, W.; Dai, J.; Wang, S.; He, M.; Zhu, H.; Kemp, G.J.; Gong, Q. Psychoradiological Patterns of Small-World Properties and a Systematic Review of Connectome Studies of Patients with 6 Major Psychiatric Disorders. Journal of Psychiatry and Neuroscience 2018, 43, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Network Attributes for Segregation and Integration in the Human Brain. Curr Opin Neurobiol 2013, 23, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Onoda, K.; Yamaguchi, S. Small-Worldness and Modularity of the Resting-State Functional Brain Network Decrease with Aging. Neurosci Lett 2013, 556, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Kukla, B.; Anthony, M.; Chen, S.; Turnbull, A.; Baran, T.M.; Lin, F. V Brain Small-Worldness Properties and Perceived Fatigue in Mild Cognitive Impairment. The Journals of Gerontology: Series A 2022, 77, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Colon-Perez, L.M.; Couret, M.; Triplett, W.; Price, C.C.; Mareci, T.H. Small Worldness in Dense and Weighted Connectomes. Front Phys 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems. Nat Rev Neurosci 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Calhoun, V.D.; Eichele, T.; Du, W.; Adalı, T. Modulations of Functional Connectivity in the Healthy and Schizophrenia Groups during Task and Rest. Neuroimage 2012, 62, 1694–1704. [Google Scholar] [CrossRef]
- He, H.; Sui, J.; Yu, Q.; Turner, J.A.; Ho, B.-C.; Sponheim, S.R.; Manoach, D.S.; Clark, V.P.; Calhoun, V.D. Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance. PLoS ONE 2012, 7, e38195. [Google Scholar] [CrossRef]
- Zhu, J.; Zhuo, C.; Liu, F.; Qin, W.; Xu, L.; Yu, C. Distinct Disruptions of Resting-State Functional Brain Networks in Familial and Sporadic Schizophrenia. Sci Rep 2016, 6, 23577. [Google Scholar] [CrossRef]
- Yu, Q. Altered Small-World Brain Networks in Temporal Lobe in Patients with Schizophrenia Performing an Auditory Oddball Task. Front Syst Neurosci 2011. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhuo, C.; Yu, C. Altered Cerebral Blood Flow Covariance Network in Schizophrenia. Front Neurosci 2016, 10. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-Y.Z.; Su, T.-W.; Huang, C.-C.; Hung, C.-C.; Chen, W.-L.; Lan, T.-H.; Lin, C.-P.; Bullmore, E.T. Randomization and Resilience of Brain Functional Networks as Systems-Level Endophenotypes of Schizophrenia. Proceedings of the National Academy of Sciences 2015, 112, 9123–9128. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, D.; Volkow, N.D. Mapping Small-World Properties through Development in the Human Brain: Disruption in Schizophrenia. PLoS ONE 2014, 9, e96176. [Google Scholar] [CrossRef] [PubMed]
- Spielberg, J.M.; Beall, E.B.; Hulvershorn, L.A.; Altinay, M.; Karne, H.; Anand, A. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder. Neuropsychopharmacology 2016, 41, 3016–3024. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, X.; Chen, Z.-B.; Li, L.; Li, X.-Y.; Castellanos, F.X.; Bai, T.-J.; Bo, Q.-J.; Cao, J.; Chang, Z.-K.; et al. Disrupted Intrinsic Functional Brain Topology in Patients with Major Depressive Disorder. Mol Psychiatry 2021, 26, 7363–7371. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Ouyang, X.; Huang, D.; Wu, Z.; Liu, Z.; He, Z.; Long, Y. Disrupted Intrinsic Functional Brain Network in Patients with Late-Life Depression: Evidence from a Multi-Site Dataset. J Affect Disord 2023, 323, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Liu, Z.; Xi, C.; Deng, M.; Long, Y.; Palaniyappan, L.; Yang, J. Decreased Integration of the Frontoparietal Network during a Working Memory Task in Major Depressive Disorder. Australian & New Zealand Journal of Psychiatry 2021, 55, 577–587. [Google Scholar] [CrossRef]
- Chen, V.C.-H.; Shen, C.-Y.; Liang, S.H.-Y.; Li, Z.-H.; Tyan, Y.-S.; Liao, Y.-T.; Huang, Y.-C.; Lee, Y.; McIntyre, R.S.; Weng, J.-C. Assessment of Abnormal Brain Structures and Networks in Major Depressive Disorder Using Morphometric and Connectome Analyses. J Affect Disord 2016, 205, 103–111. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Yun, J.-Y.; Kim, B.-H.; Lee, M.-H.; Song, S.-K.; Lee, J.-M. Gender-Related and Hemispheric Effects in Cortical Thickness-Based Hemispheric Brain Morphological Network. Biomed Res Int 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Gur, R.C.; Turetsky, B.I.; Matsui, M.; Yan, M.; Bilker, W.; Hughett, P.; Gur, R.E. Sex Differences in Brain Gray and White Matter in Healthy Young Adults: Correlations with Cognitive Performance. The Journal of Neuroscience 1999, 19, 4065–4072. [Google Scholar] [CrossRef] [PubMed]
- Spalek, K.; Coynel, D.; de Quervain, D.; Milnik, A. Sex-Dependent Differences in Connectivity Patterns Are Related to Episodic Memory Recall. Hum Brain Mapp 2023, 44, 5612–5623. [Google Scholar] [CrossRef]
- Ritchey, M.; Cooper, R.A. Deconstructing the Posterior Medial Episodic Network. Trends Cogn Sci 2020, 24, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Dimech, C.J.; Anderson, J.A.E.; Lockrow, A.W.; Spreng, R.N.; Turner, G.R. Sex Differences in the Relationship between Cardiorespiratory Fitness and Brain Function in Older Adulthood. J Appl Physiol 2019, 126, 1032–1041. [Google Scholar] [CrossRef]
- Kavčič, A.; Demšar, J.; Georgiev, D.; Bon, J.; Soltirovska-Šalamon, A. Age Related Changes and Sex Related Differences of Functional Brain Networks in Childhood: A High-Density EEG Study. Clinical Neurophysiology 2023, 150, 216–226. [Google Scholar] [CrossRef]
- Wu, K.; Taki, Y.; Sato, K.; Hashizume, H.; Sassa, Y.; Takeuchi, H.; Thyreau, B.; He, Y.; Evans, A.C.; Li, X.; et al. Topological Organization of Functional Brain Networks in Healthy Children: Differences in Relation to Age, Sex, and Intelligence. PLoS ONE 2013, 8, e55347. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M. EEG-Based Functional Brain Networks: Hemispheric Differences in Males and Females. Networks and Heterogeneous Media 2015, 10, 223–232. [Google Scholar] [CrossRef]
- Qian, L.; Ge, X.; Feng, Z.; Wang, S.; Yuan, J.; Pan, Y.; Shi, H.; Xu, J.; Sun, Y. Brain Network Reorganization During Visual Search Task Revealed by a Network Analysis of Fixation-Related Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2023, 31, 1219–1229. [Google Scholar] [CrossRef]
- Shumbayawonda, E.; Fernández, A.; Hughes, M.P.; Abásolo, D. Investigation of Changes in Causality Throughout Life—A Magnetoencephalogram Study Using Granger Causality and Transfer Entropy. 2019, 233–236. [Google Scholar] [CrossRef]
- Cieri, F.; Yang, Z.; Cordes, D.; Caldwell, J.Z.K. Sex Differences of Brain Functional Topography Revealed in Normal Aging and Alzheimer’s Disease Cohort. Journal of Alzheimer’s Disease 2021, 80, 979–984. [Google Scholar] [CrossRef]
- Koenis, M.M.G.; Brouwer, R.M.; Swagerman, S.C.; van Soelen, I.L.C.; Boomsma, D.I.; Hulshoff Pol, H.E. Association between Structural Brain Network Efficiency and Intelligence Increases during Adolescence. Hum Brain Mapp 2018, 39, 822–836. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-J.; Davis, E.P.; Sandman, C.A.; Sporns, O.; O’Donnell, B.F.; Buss, C.; Hetrick, W.P. Children’s Intellectual Ability Is Associated with Structural Network Integrity. Neuroimage 2016, 124, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shi, F.; Smith, J.K.; Lin, W.; Gilmore, J.H.; Shen, D. Brain Anatomical Networks in Early Human Brain Development. Neuroimage 2011, 54, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Latora, V.; Marchiori, M. Efficient Behavior of Small-World Networks. Phys Rev Lett 2001, 87, 198701. [Google Scholar] [CrossRef] [PubMed]
- Leonard, C.M.; Towler, S.; Welcome, S.; Halderman, L.K.; Otto, R.; Eckert, M.A.; Chiarello, C. Size Matters: Cerebral Volume Influences Sex Differences in Neuroanatomy. Cerebral Cortex 2008, 18, 2920–2931. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E. V.; Rosenbloom, M.J.; Desmond, J.E.; Pfefferbaum, A. Sex Differences in Corpus Callosum Size: Relationship to Age and Intracranial Size. Neurobiol Aging 2001, 22, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Cross, A.M.; Peters, L.; Ansari, D.; Joanisse, M.F. Rich-Club Structure Contributes to Individual Variance of Reading Skills via Feeder Connections in Children with Reading Disabilities. Dev Cogn Neurosci 2021, 49, 100957. [Google Scholar] [CrossRef]
- Richmond, S.; Johnson, K.A.; Seal, M.L.; Allen, N.B.; Whittle, S. Development of Brain Networks and Relevance of Environmental and Genetic Factors: A Systematic Review. Neurosci Biobehav Rev 2016, 71, 215–239. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Sporns, O. Complex Network Measures of Brain Connectivity: Uses and Interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Zhao, T.; Cao, M.; Niu, H.; Zuo, X.; Evans, A.; He, Y.; Dong, Q.; Shu, N. Age-related Changes in the Topological Organization of the White Matter Structural Connectome across the Human Lifespan. Hum Brain Mapp 2015, 36, 3777–3792. [Google Scholar] [CrossRef]
- Achard, S.; Bullmore, E. Efficiency and Cost of Economical Brain Functional Networks. PLoS Comput Biol 2007, 3, e17. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.R.; Dichter, G.S.; Gates, K. Age and Gender Effects on Intrinsic Connectivity in Autism Using Functional Integration and Segregation. Biol Psychiatry Cogn Neurosci Neuroimaging 2018, 3, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Johansen-Berg, H.; Thiebaut de Schotten, M. The Role of Diffusion MRI in Neuroscience. NMR Biomed 2019, 32. [Google Scholar] [CrossRef] [PubMed]
- Le Bihan, D.; Iima, M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS Biol 2015, 13, e1002203. [Google Scholar] [CrossRef]
- Wang, B.; Fan, Y.; Lu, M.; Li, S.; Song, Z.; Peng, X.; Zhang, R.; Lin, Q.; He, Y.; Wang, J.; et al. Brain Anatomical Networks in World Class Gymnasts: A DTI Tractography Study. Neuroimage 2013, 65, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, H.; Yan, C.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.; Bo, Q.; Chen, G.; Chen, N.; et al. Altered Resting-State Dynamic Functional Brain Networks in Major Depressive Disorder: Findings from the REST-Meta-MDD Consortium. Neuroimage Clin 2020, 26, 102163. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Liu, X.; Liu, Z. Temporal Stability of the Dynamic Resting-State Functional Brain Network: Current Measures, Clinical Research Progress, and Future Perspectives. Brain Sci 2023, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, Y.; Liu, M.; Zhang, M.; Liu, Y.; Teng, T.; Liu, X.; Yu, Y.; Jiang, Y.; Ouyang, X.; et al. Childhood Trauma Is Linked to Abnormal Static-Dynamic Brain Topology in Adolescents with Major Depressive Disorder. International Journal of Clinical and Health Psychology 2023, 23, 100401. [Google Scholar] [CrossRef] [PubMed]
- Sizemore, A.E.; Bassett, D.S. Dynamic Graph Metrics: Tutorial, Toolbox, and Tale. Neuroimage 2018, 180, 417–427. [Google Scholar] [CrossRef]
- Long, Y.; Ouyang, X.; Yan, C.; Wu, Z.; Huang, X.; Pu, W.; Cao, H.; Liu, Z.; Palaniyappan, L. Evaluating Test–Retest Reliability and Sex-/Age-Related Effects on Temporal Clustering Coefficient of Dynamic Functional Brain Networks. Hum Brain Mapp 2023, 44, 2191–2208. [Google Scholar] [CrossRef]
- Rossi, A.; Deslauriers-Gauthier, S.; Natale, E. On Null Models for Temporal Small-Worldness in Brain Dynamics. Network Neuroscience 2024, 8, 377–394. [Google Scholar] [CrossRef] [PubMed]
| Measure | Full name | Definition | |
| Measure of segregation | Cp | clustering coefficient | The probability that neighboring nodes that are also interconnected with other neighboring nodes. |
| γ | normalized clustering coefficient | The normalized Cp, which is calculated for the average Cp of 100 matched random networks that preserve the same number of nodes and edges as the real network. | |
| Eloc | local efficiency | Eloc ensures functionally segregated processing, and measures how efficiently information is exchanged at the local level. | |
| Measure of integration | Lp | characteristic path length | The average distance from one node to any other node in the network, expressed as the number of links that must be travelled. |
| λ | normalized characteristic path length | The normalized Lp, which is calculated for the mean Lp of 100 matched random networks that preserve the same number of nodes and edges as the real network. | |
| Eglob | global efficiency | Eglob is a network statistic that is proportional to the average length of the shortest paths, characterizing long-range integration of the overall network. |
| Pattern | Topological properties | ||||||
| Cp | γ | Eloc | Lp | λ | Eglob | ||
| Randomization | ↓ | ↓ | ↓ | And/or | ↓ | ↓ | ↑ |
| Regularization | ↑ | ↑ | ↑ | And/or | ↑ | ↑ | ↓ |
| Stronger small-worldization | ↑ | ↑ | ↑ | And | ↓ | ↓ | ↑ |
| Weaker small-worldization | ↓ | ↓ | ↓ | And | ↑ | ↑ | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).