Submitted:
24 June 2024
Posted:
24 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Metal Specimens
2.2. Ageing Process with Disinfectants Routinely Used in Healthcare Settings
2.3. Bacterial Strains
2.3. Detection of Genes Involved in Bacterial Copper Homeostasis and Resistance
2.4. Antimicrobial Efficacy Testing
2.5. Statistical Analysis
2.6. Data Availability
3. Results
3.1. Detection of Genes Involved in Copper Homeostasis and Resistance in Antibiotic-Resistant strains
3.2. Visual Aspect of Metal Surfaces Post-Ageing Treatment
3.3. Antibacterial Efficacy Post-Ageing with a Single Disinfectant
3.4. Antibacterial Efficacy Post-Ageing with a Combination of Quaternary Ammonium Compound and Peraceticacid/Hydrogen Peroxide Mix
3.5. Comparison of Antibacterial Efficacies Following the Different Ageing Processes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewnard, J.A.; Charani, E.; Gleason, A.; Hsu, L.Y.; Khan, W.A.; Karkey, A.; Chandler, C.I.R.; Mashe, T.; Khan, E.A.; Bulabula, A.N.H.; Donado-Godoy, P.; Laxminarayan, R. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: an evidence review and modelling analysis. Lancet, 2024. [Google Scholar] [CrossRef]
- Carling, P.C. Healthcare environmental hygiene: new insights and centers for disease control and prevention guidance. Infect Dis Clin North Am 2021, 35, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Janc, J.; Łysenko, L.; Leśnik, P.; Słabisz, N.; Oleksy-Wawrzyniak, M.; Uchmanowicz, I. How to defeat multidrug-resistant bacteria in intensive care units. A lesson from the COVID-19 pandemic. Prevention, reservoirs, and implications for clinical practice. Int J Med Sci 2024, 21, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Rutala, W.A.; Sickbert-Bennett, E.E.; Weber, D.J. Role of the contaminated environment in transmission of multidrug-resistant organisms in nursing homes and infection prevention. Am J Infect Control 2023, 51, A151–A157. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.T.; Pailhoriès, H.; Aviat, F.; Lepelletier, D.; Le Pape, P.; Dubreil, L.; Irle, M.; Buchner, J.; Eveillard, M.; Federighi, M.; Belloncle, C. Hygienic perspectives of wood in healthcare buildings. Hygiene 2021, 1, 12–23. [Google Scholar] [CrossRef]
- Dauvergne, E.; Mullié, C. Brass alloys: Copper-bottomed solutions against hospital-acquired infections? Antibiotics 2021, 10, 286. [Google Scholar] [CrossRef]
- Dawson, W.R. The Egyptian medical papyri. In Diseases in Antiquity; Brothwell, D., Sandison, A.T., Eds.; Thomas, C.C.: Springfield, IL, USA, 1967; pp. 98–114. [Google Scholar]
- EPA Registration Copper Stewardship Site. Available online: https://www.copperalloystewardship.com/ (accessed on 8 April 2024).
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J Appl Microbiol 2018, 124, 1032–1046. [Google Scholar] [CrossRef] [PubMed]
- Russel, A.D. Mechanisms of bacterial resistance to antibiotics and biocides. In Progress in medicinal chemistry, vol. 35; Ellis, G.P., Luscombe, D.K., Oxford, A.W., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1998; pp. 133–197. [Google Scholar] [CrossRef]
- McDonald, M.; Wesgate, R.; Rubiano, M.; Holah, J.; Denyer, S.P.; Jermann, C.; Maillard, J.Y. Impact of a dry inoculum deposition on the efficacy of copper-based antimicrobial surfaces. J Hosp Infect 2020, 106, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Dauvergne, E.; Lacquemant, C.; Adjidé, C.; Mullié, C. Validation of a worst-case scenario method adapted to the healthcare environment for testing the antibacterial effect of brass surfaces and implementation on hospital antibiotic-resistant strains. Antibiotics 2020, 9, 245. [Google Scholar] [CrossRef]
- Airey, P.; Verran, J. Potential use of copper as a hygienic surface; problems associated with cumulative soiling and cleaning. J Hosp Infect 2007, 67, 271–277. [Google Scholar] [CrossRef]
- Kawakami, H.; Hayashi, T.; Nishikubo, H.; Morikawa, A.; Suzuki, S.; Sato, Y.; Kikuchi, Y. Effects of surface contamination and cleaning with hypochlorite wipes on the antibacterial activity of copper-alloyed antibacterial stainless steel. Biocontrol Sci 2014, 19, 73–78. [Google Scholar] [CrossRef]
- Kawakami, H.; Nishikubo, H.; Hirayama, K.; Suzuki, S.; Sato, Y.; Kikuchi, Y. Effects of NaOCl aqueous solutions and ethyl alcohol solutions on removing protein surface contaminants and re-establishing antibacterial activities of copper-alloyed stainless steel. Biocontrol Sci 2015, 20, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Bryce, E.A.; Velapatino, B.; Akbari Khorami, H.; Donnelly-Pierce, T.; Wong, T.; Dixon, R.; Asselin, E. In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare. Biointerphases 2020, 15, 011005. [Google Scholar] [CrossRef] [PubMed]
- Charles, M.K.; Williams, T.C.; Nakhaie, D.; Woznow, T.; Velapatino, B.; Lorenzo-Leal, A.C.; Bach, H.; Bryce, E.A.; Asselin, E. In vitro assessment of antibacterial and antiviral activity of three copper products after 200 rounds of simulated use. Biometals 2023. [Google Scholar] [CrossRef] [PubMed]
- Andrei, A.; Öztürk, Y.; Khalfaoui-Hassani, B.; Rauch, J.; Marckmann, D.; Trasnea, P.I.; Daldal, F.; Koch, H.G. Cu homeostasis in bacteria: the ins and outs. Membranes (Basel) 2020, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Fiche technique Surfa’safe Premium Anios. Available online: https://www.robe-materiel-medical.com/fiches-techniques/-Surfa-safe-Premium-Anios-Spray-750-ml--SURFA.pdf (accessed on 8 April 2024).
- Aseptanios, A.D. Available online: https://www.robe-materiel-medical.com/images/files/ft_aseptanios_ad_fr.pdf (accessed on 8 April 2024).
- Hood, M.I.; Skaar, E.P. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012, 10, 525–537. [Google Scholar] [CrossRef] [PubMed]
- International Standard Organization. Évaluation de l’activité bactéricide d’une surface antimicrobienne non poreuse utilisée dans un environnement sec. NF ISO 7581. 2023. Available online: https://norminfo.afnor.org/consultation/nf-iso-7581/evaluation-de-lactivite-bactericide-dune-surface-antimicrobienne-non-poreuse-utilisee-dans-un-environnement-sec/332102 (accessed on 11 April 2024).
- Perron, K.; Caille, O.; Rossier, C.; Van Delden, C.; Dumas, J.L.; Köhler, T. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 2004, 279, 8761–8768. [Google Scholar] [CrossRef]
- Goodman, E.R.; Piatt, R.; Bass, R.; Onderdonk, A.B.; Yokoe, D.S.; Huang, S.S. Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect. Control Hosp. Epidemiol. 2008, 29, 593–599. [Google Scholar] [CrossRef]
- Boyce, J.M.; Havill, N.L.; Havill, H.L.; Mangione, E.; Dumigan, D.G.; Moore, B.A. Comparison of fluorescent marker systems with 2 quantitative methods of assessing terminal cleaning practices. Infect. Control Hosp. Epidemiol. 2011, 32, 1187–1193. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Chen, Y.-C.; Chen, M.-L.; Cheng, A.; Hung, I.-C.; Wang, J.-T.; Sheng, W.-H.; Chang, S.-C. Comparing visual inspection, aerobic colony counts, and adenosine triphosphate bioluminescence assay for evaluating surface cleanliness at a medical center. Am. J. Infect. Control 2015, 43, 882–886. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef]
- Hans, M.; Mathews, S.; Mücklich, F.; Solioz, M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2015, 11, 018902. [Google Scholar] [CrossRef] [PubMed]
- Alkhalifa, S.; Jennings, M.C.; Granata, D.; Klein, M.; Wuest, W.M.; Minbiole, K.P.C.; Carnevale, V. Analysis of the destabilization of bacterial membranes by quaternary ammonium compounds: a combined experimental and computational study. ChemBioChem 2020, 21, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ogle, K. 2018. The corrosion of copper and copper alloy. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 6, pp. 478–489. [Google Scholar] [CrossRef]
- Harrison, J.J.; Turner, R.J.; Joo, D.A.; Stan, M.A.; Chan, C.S.; Allan, N.D.; Vrionis, H.A.; Olson, M.E.; Ceri, H. Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2008, 52, 2870–2881. [Google Scholar] [CrossRef]
- Bondarczuk, K.; Piotrowska-Seget, Z. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell. Biol. Toxicol. 2013, 29, 397–405. [Google Scholar] [CrossRef]
- Serra, C.; Bouharkat, B.; Tir Touil-Meddah, A.; Guénin, S.; Mullié, C. MexXY multidrug efflux system is more frequently overexpressed in ciprofloxacin resistant French clinical isolates compared to hospital environment ones. Front. Microbiol. 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed]
- Caille, O.; Rossier, C.; Perron, K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J. Bacteriol. 2007, 189, 4561–4568. [Google Scholar] [CrossRef]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.G.J.; Hobman, J.L. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 2017, 70, 261–313. [Google Scholar] [CrossRef]

|
Strain reference |
Bacterial species | Antibiotic resistance profile1 |
Sample origin (isolation year) |
| ABAM41 | Acinetobacter baumannii | Oxa-23, AmpC, ArmA | Environment (2017) |
| AM85 | Pseudomonas aeruginosa | EPO | Rectal swab (2009) |
| ECLOAM1 | Enterobacter cloacae | Oxa-48, ESBL | External quality control (2019) |
| EFUMAM2 | Enterococcus faecium | vanA | Sputum (2008) |
| KPNAM2 | Klebsiella pneumoniae | KPC | Rectal swab (2017) |
| SAAM33 | Staphylococcus aureus | mecA, EPO | Tracheal (2012) |
| Gene | Function | ABAM41 | AM85 | ECLOAM1 | KPNAM2 | EFUMAM2 | SAAM33 |
|---|---|---|---|---|---|---|---|
| copA | ATPase pump | -/+a | +/+ | -/- | -/- | -/- | -/- |
| tcrB | ATPase pump | +/+ | -/- | -/- | -/- | -/- | +/- |
| cusA | RND1 pump | -/- | -/- | -/- | +/+ | -/- | -/- |
| pcoD | Inner membrane pump | -/- | -/- | +/+ | +/+ | -/- | -/- |
| czcA | Zn2+ pump | +/+ | +/+ | -/- | +/+ | +/- | +/- |
| cueO | Multicopper oxidase | -/- | -/- | -/- | -/- | -/- | -/- |
| pcoE | Chaperone | -/- | -/- | +/+ | +/+ | -/- | -/- |
| copZ | Chaperone | -/- | -/- | -/- | -/- | -/- | +/- |
| Bacterial strain | Copper | AB+® Brass | ||||||
|---|---|---|---|---|---|---|---|---|
| Untreated | QA | QA & PA/HP | Untreated | QA | QA & PA/HP | |||
| ABAM 41 | 93.15±11.517* | 99.99±0.019* | 100±0* | 99.95±0.051* | 99.27±0.420*$ | 99.91±0.137*† | ||
| AM85 | 99.95±0.068* | 99.99±0.008* | 100±0* | 100±0* | 99.86±0.087* | 99.99±0.017*† | ||
| ECLOAM1 | 99.73±0.342* | 99.93±0.059* | 100±0* | 99.44±0.913* | 99.63±0.072*$ | 99.99±0.001*† | ||
| KPNAM2 | 98.03±2.343* | 99.54±0.200* | 96.75±5.622* | 99.16±0.582* | 99.20±0.255*$ | 99.77±0.398*† | ||
| EFUMAM2 | 76.15±27.228** | 99.03±0.587* | 96.45±3.133* | 99.94±0.050* | 97.96±0.046* | 99.38±0.936* | ||
| SAAM33 | 99.97±0.053* | 100±0* | 99.89±0.175* | 99.85±0.129* | 100±0* | 99.81±0.090* | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
