Submitted:
20 June 2024
Posted:
21 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Aerosol-Cloud Interactions
2.1. Warm Clouds
2.2. Mixed Phase Stratiform Clouds
2.3. Deep Convective Clouds
2.4. Cirrus Clouds
3. Lidar Techniques for Studying Aerosol-Cloud Interactions
3.1. Lidar Fundamentals
3.2. Aerosol Characterization
3.2.1. Aerosol Classification

3.2.2. Aerosol quantitative specification
3.2.3. Aerosol Hygroscopicity
3.3. Cloud Characterization
3.3.1. Semitransparent Clouds
3.3.2. Opaque Clouds
4. Observational Results
4.1. Detection of CCN and INP

4.2. Impact of Aerosol on Mixed and Cirrus Clouds
4.3. Impact of Aerosol on Warm Clouds
5. Challenges and Future Directions
6. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Gordon, H.; Glassmeier, F.; T. McCoy, D. An Overview of Aerosol-Cloud Interactions. Clouds and Their Climatic Impacts: Radiation, Circulation, and Precipitation 2023, pp. 13–45.
- Michibata, T. Aerosol–cloud interactions in the climate system. Handbook of Air Quality and Climate Change 2022, pp. 1–42.
- Kreidenweis, S.M.; Petters, M.; Lohmann, U. 100 years of progress in cloud physics, aerosols, and aerosol chemistry research. Meteorol. Monogr. 2019, 59, 11–1. [Google Scholar]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; others. Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Tao, W.K.; Chen, J.P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Reviews of Geophysics 2012, 50. [Google Scholar] [CrossRef]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.L.; others. Bounding global aerosol radiative forcing of climate change. Reviews of Geophysics 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed]
- Tegen, I.; Schepanski, K. Climate feedback on aerosol emission and atmospheric concentrations. Current Climate Change Reports 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Storelvmo, T. Aerosol effects on climate via mixed-phase and ice clouds. Annual Review of Earth and Planetary Sciences 2017, 45, 199–222. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; others. Improving our fundamental understanding of the role of aerosol- cloud interactions in the climate system. Proceedings of the National Academy of Sciences 2016, 113, 5781–5790. [Google Scholar] [CrossRef]
- Carslaw, K.; Boucher, O.; Spracklen, D.; Mann, G.; Rae, J.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef]
- Twomey, S. The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pura Appl 1959, 43, 243–249. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.; Hales, J.; Cess, R.D.; Coakley Jr, J.; Hansen, J.; Hofmann, D. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lensky, I.M. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bulletin of the American Meteorological Society 1998, 79, 2457–2476. [Google Scholar] [CrossRef]
- Feingold, G.; Remer, L.A.; Ramaprasad, J.; Kaufman, Y.J. Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey’s approach. Journal of Geophysical Research: Atmospheres 2001, 106, 22907–22922. [Google Scholar] [CrossRef]
- Garrett, T.; Zhao, C.; Dong, X.; Mace, G.; Hobbs, P. Effects of varying aerosol regimes on low-level Arctic stratus. Geophysical Research Letters 2004, 31. [Google Scholar] [CrossRef]
- McComiskey, A.; Feingold, G. Quantifying error in the radiative forcing of the first aerosol indirect effect. Geophysical Research Letters 2008, 35. [Google Scholar] [CrossRef]
- McComiskey, A.; Feingold, G.; Frisch, A.S.; Turner, D.D.; Miller, M.A.; Chiu, J.C.; Min, Q.; Ogren, J.A. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. Journal of Geophysical Research: Atmospheres 2009, 114. [Google Scholar] [CrossRef]
- Stephens, G.; Slingo, T. An air-conditioned greenhouse. Nature 1992, 358, 369–370. [Google Scholar] [CrossRef]
- Wood, R. Stratocumulus clouds. Monthly Weather Review 2012, 140, 2373–2423. [Google Scholar] [CrossRef]
- Ghan, S.J.; Abdul-Razzak, H.; Nenes, A.; Ming, Y.; Liu, X.; Ovchinnikov, M.; Shipway, B.; Meskhidze, N.; Xu, J.; Shi, X. Droplet nucleation: Physically-based parameterizations and comparative evaluation. Journal of Advances in Modeling Earth Systems 2011, 3. [Google Scholar] [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S.; Wernli, H.; Andreae, M.; Pöschl, U. Aerosol-and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmospheric Chemistry and Physics 2009, 9, 7067–7080. [Google Scholar] [CrossRef]
- Bougiatioti, A.; Nenes, A.; Lin, J.J.; Brock, C.A.; de Gouw, J.A.; Liao, J.; Middlebrook, A.M.; Welti, A. Drivers of cloud droplet number variability in the summertime in the southeastern United States. Atmospheric Chemistry and Physics 2020, 20, 12163–12176. [Google Scholar] [CrossRef]
- Reid, J.S.; Hobbs, P.V.; Rangno, A.L.; Hegg, D.A. Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res. 1999, 104, 6145–6153. [Google Scholar] [CrossRef]
- Lu, X.; Mao, F.; Rosenfeld, D.; Zhu, Y.; Zang, L.; Pan, Z.; Gong, W. The temperature control of cloud adiabatic fraction and coverage. Geophys. Res. Lett. 2023, 50, e2023GL105831. [Google Scholar] [CrossRef]
- Eytan, E.; Koren, I.; Altaratz, O.; Pinsky, M.; Khain, A. Revisiting adiabatic fraction estimations in cumulus clouds: High-resolution simulations with a passive tracer. Atmos. Chem. Phys. 2021, 21. [Google Scholar] [CrossRef]
- Braun, R.A.; Dadashazar, H.; MacDonald, A.B.; Crosbie, E.; Jonsson, H.H.; Woods, R.K.; Flagan, R.C.; Seinfeld, J.H.; Sorooshian, A. Cloud adiabaticity and its relationship to marine stratocumulus characteristics over the northeast Pacific Ocean. J. Geophys. Res. Atmospheres 2018, 123, 13–790. [Google Scholar] [CrossRef]
- Lacis, A.A.; Hansen, J. A parameterization for the absorption of solar radiation in the earth’s atmosphere. Journal of Atmospheric Sciences 1974, 31, 118–133. [Google Scholar] [CrossRef]
- Meador, W.E.; Weaver, W.R. Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement. Journal of Atmospheric Sciences 1980, 37, 630–643. [Google Scholar] [CrossRef]
- Xue, H.; Feingold, G. Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects. Journal of the Atmospheric Sciences 2006, 63, 1605–1622. [Google Scholar] [CrossRef]
- Chen, Y.C.; Christensen, M.; Xue, L.; Sorooshian, A.; Stephens, G.; Rasmussen, R.; Seinfeld, J. Occurrence of lower cloud albedo in ship tracks. Atmospheric Chemistry and Physics 2012, 12, 8223–8235. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Kirkpatrick, M.P.; Stevens, D.E.; Toon, O.B. The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 2004, 432, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Freud, E.; Rosenfeld, D.; Kulkarni, J.R. Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmospheric Chemistry and Physics 2011, 11, 12887–12900. [Google Scholar] [CrossRef]
- Hocking, L.M. The collision efficiency of small drops. Quarterly Journal of the Royal Meteorological Society 1959, 85, 44–50. [Google Scholar] [CrossRef]
- Freud, E.; Rosenfeld, D. Linear relation between convective cloud drop number concentration and depth for rain initiation. Journal of Geophysical Research: Atmospheres 2012, 117. [Google Scholar] [CrossRef]
- Koren, I.; Dagan, G.; Altaratz, O. From aerosol-limited to invigoration of warm convective clouds. Science 2014, 344, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.; L’Ecuyer, T. Global evidence of aerosol-induced invigoration in marine cumulus clouds. Atmospheric Chemistry and Physics 2021, 21, 15103–15114. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Remer, L.; Hirsch, E. Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmospheric Research 2014, 140-141, 38–60. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Kaufman, Y.J.; Koren, I. Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmospheric Chemistry and Physics 2006, 6, 2503–2511. [Google Scholar] [CrossRef]
- Christensen, M.W.; Suzuki, K.; Zambri, B.; Stephens, G.L. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophysical Research Letters 2014, 41, 6970–6977. [Google Scholar] [CrossRef]
- Morrison, H.; De Boer, G.; Feingold, G.; Harrington, J.; Shupe, M.D.; Sulia, K. Resilience of persistent Arctic mixed-phase clouds. Nature Geoscience 2012, 5, 11–17. [Google Scholar] [CrossRef]
- Coopman, Q.; Riedi, J.; Finch, D.; Garrett, T.J. Evidence for changes in arctic cloud phase due to long-range pollution transport. Geophysical Research Letters 2018, 45, 10–709. [Google Scholar] [CrossRef]
- Lance, S.; Shupe, M.; Feingold, G.; Brock, C.; Cozic, J.; Holloway, J.; Moore, R.; Nenes, A.; Schwarz, J.; Spackman, J.R.; others. Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds. Atmospheric Chemistry and Physics 2011, 11, 8003–8015. [Google Scholar] [CrossRef]
- Ovchinnikov, M.; Korolev, A.; Fan, J. Effects of ice number concentration on dynamics of a shallow mixed-phase stratiform cloud. Journal of Geophysical Research: Atmospheres 2011, 116. [Google Scholar] [CrossRef]
- Sheffield, A.M.; Saleeby, S.M.; van den Heever, S.C. Aerosol-induced mechanisms for cumulus congestus growth. Journal of Geophysical Research: Atmospheres 2015, 120, 8941–8952. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Woodley, W.L.; Axisa, D.; Freud, E.; Hudson, J.G.; Givati, A. Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. Journal of Geophysical Research: Atmospheres 2008, 113. [Google Scholar] [CrossRef]
- Williams, E.; Mushtak, V.; Rosenfeld, D.; Goodman, S.; Boccippio, D. Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmospheric Research 2005, 76, 288–306. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Bell, T.L. Why do tornados and hailstorms rest on weekends? Journal of Geophysical Research: Atmospheres 2011, 116. [Google Scholar] [CrossRef]
- Cheng, C.T.; Wang, W.C.; Chen, J.P. Simulation of the effects of increasing cloud condensation nuclei on mixed-phase clouds and precipitation of a front system. Atmospheric Research 2010, 96, 461–476. [Google Scholar] [CrossRef]
- Fan, J.; Leung, L.R.; Rosenfeld, D.; Chen, Q.; Li, Z.; Zhang, J.; Yan, H. Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proceedings of the National Academy of Sciences 2013, 110, E4581–E4590. [Google Scholar] [CrossRef] [PubMed]
- Krämer, M.; Rolf, C.; Luebke, A.; Afchine, A.; Spelten, N.; Costa, A.; Meyer, J.; Zöger, M.; Smith, J.; Herman, R.L.; Buchholz, B.; Ebert, V.; Baumgardner, D.; Borrmann, S.; Klingebiel, M.; Avallone, L. A microphysics guide to cirrus clouds – Part 1: Cirrus types. Atmospheric Chemistry and Physics 2016, 16, 3463–3483. [Google Scholar] [CrossRef]
- Luebke, A.E.; Afchine, A.; Costa, A.; Grooß, J.U.; Meyer, J.; Rolf, C.; Spelten, N.; Avallone, L.M.; Baumgardner, D.; Krämer, M. The origin of midlatitude ice clouds and the resulting influence on their microphysical properties. Atmospheric Chemistry and Physics 2016, 16, 5793–5809. [Google Scholar] [CrossRef]
- Kärcher, B.; Lohmann, U. A Parameterization of cirrus cloud formation: Homogeneous freezing including effects of aerosol size. Journal of Geophysical Research: Atmospheres 2002, 107. [Google Scholar] [CrossRef]
- Kärcher, B.; Lohmann, U. A parameterization of cirrus cloud formation: Heterogeneous freezing. Journal of Geophysical Research: Atmospheres 2003, 108. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Gu, Y.; Liou, K.N.; Jiang, J.H.; Fan, J.; Liu, X.; Huang, L.; Yung, Y.L. Ice nucleation by aerosols from anthropogenic pollution. Nature geoscience 2019, 12, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Mülmenstädt, J.; Feingold, G. The radiative forcing of aerosol–cloud interactions in liquid clouds: Wrestling and embracing uncertainty. Current Climate Change Reports 2018, 4, 23–40. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and scattering of light by small particles; John Wiley & Sons, 2008.
- Mishchenko, M.I.; Hovenier, J.W.; Travis, L.D. Light scattering by nonspherical particles: theory, measurements, and applications. Measurement Science and Technology 2000, 11, 1827–1827. [Google Scholar]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Applied optics 1981, 20, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Fernald, F.G. Analysis of atmospheric lidar observations: some comments. Applied optics 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Sasano, Y.; Browell, E.V.; Ismail, S. Error caused by using a constant extinction/backscattering ratio in the lidar solution. Appl. Opt. 1985, 24, 3929–3932. [Google Scholar] [CrossRef] [PubMed]
- Kovalev, V.A. Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. Appl. Opt. 1995, 34, 3457–3462. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Sassen, K. The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment. Bulletin of the American Meteorological Society 1991, 72, 1848–1866. [Google Scholar] [CrossRef]
- Cairo, F.; Donfrancesco, G.D.; Adriani, A.; Pulvirenti, L.; Fierli, F. Comparison of various linear depolarization parameters measured by lidar. Appl. Opt. 1999, 38, 4425–4432. [Google Scholar] [CrossRef] [PubMed]
- Gimmestad, G.G. Reexamination of depolarization in lidar measurements. Appl. Opt. 2008, 47, 3795–3802. [Google Scholar] [CrossRef]
- Liu, L.; Mishchenko, M.I. Constraints on PSC particle microphysics derived from lidar observations. Journal of Quantitative Spectroscopy and Radiative Transfer 2001, 70, 817–831. [Google Scholar] [CrossRef]
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, P.; Marchese, R.; Whiteman, D.N.; Demoz, B.B. Rotational Raman Lidar measurements of atmospheric temperature in the UV. Geophysical Research Letters 2004, 31. [Google Scholar] [CrossRef]
- Eloranta, E.E. High spectral resolution lidar. In Lidar: Range-resolved optical remote sensing of the atmosphere; Springer, 2005; pp. 143–163.
- Müller, H.; Quenzel, H. Information content of multispectral lidar measurements with respect to the aerosol size distribution. Appl. Opt. 1985, 24, 648–654. [Google Scholar] [CrossRef]
- Hutt, D.L.; Bissonnette, L.R.; Durand, L. Multiple field of view lidar returns from atmospheric aerosols. Appl. Opt. 1994, 33, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Measures, R. Laser Remote Sensing: Fundamentals and Applications; Krieger Publishing Company, 1992.
- Weitkamp, C.; others. Range-resolved optical remote sensing of the Atmosphere. Springer-Verlag New York 2005, 102, 241–303. [Google Scholar]
- Papagiannopoulos, N.; Mona, L.; Amodeo, A.; D’Amico, G.; Gumà Claramunt, P.; Pappalardo, G.; Alados-Arboledas, L.; Guerrero-Rascado, J.L.; Amiridis, V.; Kokkalis, P.; Apituley, A.; Baars, H.; Schwarz, A.; Wandinger, U.; Binietoglou, I.; Nicolae, D.; Bortoli, D.; Comerón, A.; Rodríguez-Gómez, A.; Sicard, M.; Papayannis, A.; Wiegner, M. An automatic observation-based aerosol typing method for EARLINET. Atmospheric Chemistry and Physics 2018, 18, 15879–15901. [Google Scholar] [CrossRef]
- Floutsi, A.A.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Bohlmann, S.; Heese, B.; Hofer, J.; Kanitz, T.; Haarig, M.; Ohneiser, K.; Radenz, M.; Seifert, P.; Skupin, A.; Yin, Z.; Abdullaev, S.F.; Komppula, M.; Filioglou, M.; Giannakaki, E.; Stachlewska, I.S.; Janicka, L.; Bortoli, D.; Marinou, E.; Amiridis, V.; Gialitaki, A.; Mamouri, R.E.; Barja, B.; Wandinger, U. DeLiAn – a growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations. Atmospheric Measurement Techniques 2023, 16, 2353–2379. [Google Scholar] [CrossRef]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmospheric Chemistry & Physics Discussions 2012, 12. [Google Scholar]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; Kuehn, R.E.; Liu, Z. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Journal of Atmospheric and Oceanic Technology 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; Kar, J.; Magill, B.E. The CALIPSO Version 4 Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Atmospheric measurement techniques 2018, 11 11, 6107–6135. [Google Scholar] [CrossRef]
- Gobbi, G.P. Lidar estimation of stratospheric aerosol properties: Surface, volume, and extinction to backscatter ratio. Journal of Geophysical Research: Atmospheres 1995, 100, 11219–11235. [Google Scholar] [CrossRef]
- Barnaba, F.; Gobbi, G.P. Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases. Journal of Geophysical Research: Atmospheres 2001, 106, 3005–3018. [Google Scholar] [CrossRef]
- Dionisi, D.; Barnaba, F.; Diémoz, H.; Di Liberto, L.; Gobbi, G.P. A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation. Atmospheric Measurement Techniques 2018, 11, 6013–6042. [Google Scholar] [CrossRef]
- Jäger, H.; Hofmann, D. Midlatitude lidar backscatter to mass, area, and extinction conversion model based on in situ aerosol measurements from 1980 to 1987. Appl. Opt. 1991, 30, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Mona, L.; Marenco, F. Lidar Observations of Volcanic Particles. In Volcanic Ash; Elsevier, 2016; pp. 161–173.
- Snels, M.; Cairo, F.; Di Liberto, L.; Scoccione, A.; Bracaglia, M.; Deshler, T. Comparison of Coincident Optical Particle Counter and Lidar Measurements of Polar Stratospheric Clouds Above McMurdo (77.85°S, 166.67°E) From 1994 to 1999. Journal of Geophysical Research: Atmospheres 2021, 126, e2020JD033572. [Google Scholar] [CrossRef]
- Müller, D.; Wandinger, U.; Ansmann, A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation. Appl. Opt. 1999, 38, 2358–2368. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Müller, D.; Wandinger, U.; Whiteman, D.N. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Applied optics 2002, 41, 3685–3699. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Kolgotin, A.; Griaznov, V.; Müller, D.; Franke, K.; Whiteman, D.N. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution. Applied optics 2004, 43 5, 1180–95. [Google Scholar] [CrossRef]
- Müller, D.; Mattis, I.; Ansmann, A.; Wehner, B.; Althausen, D.; Wandinger, U.; Dubovik, O. Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photometer. Journal of Geophysical Research: Atmospheres 2004, 109. [Google Scholar] [CrossRef]
- Veselovskii, I.; Dubovik, O.; Kolgotin, A.; Lapyonok, T.; Di Girolamo, P.; Summa, D.; Whiteman, D.N.; Mishchenko, M.; Tanré, D. Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements. Journal of Geophysical Research: Atmospheres 2010, 115. [Google Scholar] [CrossRef]
- Alados-Arboledas, L.; Müller, D.; Guerrero-Rascado, J.L.; Navas-Guzmán, F.; Pérez-Ramírez, D.; Olmo, F.J. Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry. Geophysical Research Letters 2011, 38. [Google Scholar] [CrossRef]
- Di Girolamo, P.; De Rosa, B.; Summa, D.; Franco, N.; Veselovskii, I. Measurements of Aerosol Size and Microphysical Properties: A Comparison Between Raman Lidar and Airborne Sensors. Journal of Geophysical Research: Atmospheres 2022, 127, e2021JD036086. [Google Scholar] [CrossRef]
- Sannino, A.; Amoruso, S.; Damiano, R.; Scollo, S.; Sellitto, P.; Boselli, A. Optical and microphysical characterization of atmospheric aerosol in the Central Mediterranean during simultaneous volcanic ash and desert dust transport events. Atmospheric Research 2022, 271, 106099. [Google Scholar] [CrossRef]
- Sorrentino, A.; Sannino, A.; Spinelli, N.; Piana, M.; Boselli, A.; Tontodonato, V.; Castellano, P.; Wang, X. A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data. Atmospheric Measurement Techniques 2022, 15, 149–164. [Google Scholar] [CrossRef]
- Ferrare, R.A.; Melfi, S.H.; Whiteman, D.N.; Evans, K.D.; Poellot, M.; Kaufman, Y.J. Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single-scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements. Journal of Geophysical Research: Atmospheres 1998, 103, 19673–19689. [Google Scholar] [CrossRef]
- Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J.A.; Wang, J.; Lee, Y.N.; Ferrare, R.A.; Turner, D.D. Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement site. Journal of Geophysical Research: Atmospheres 2006, 111. [Google Scholar] [CrossRef]
- Fernández, A.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli. Atmospheric Environment 2015, 120, 484–498. [Google Scholar] [CrossRef]
- Navas-Guzmán, F.; Martucci, G.; Collaud Coen, M.; Granados-Muñoz, M.J.; Hervo, M.; Sicard, M.; Haefele, A. Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne. Atmospheric Chemistry and Physics 2019, 19, 11651–11668. [Google Scholar] [CrossRef]
- Lv, M.; Liu, D.; Li, Z.; Mao, J.; Sun, Y.; Wang, Z.; Wang, Y.; Xie, C. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 188, 60–70, Advances in Atmospheric Light Scattering: Theory and Remote Sensing Techniques. [Google Scholar] [CrossRef]
- KASTEN, F. Visibility forecast in the phase of pre-condensation. Tellus 1969, 21, 631–635. [Google Scholar] [CrossRef]
- Feingold, G.; Morley, B. Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements. Journal of Geophysical Research: Atmospheres 2003, 108. [Google Scholar] [CrossRef]
- Bedoya-Velásquez, A.E.; Navas-Guzmán, F.; Granados-Muñoz, M.J.; Titos, G.; Román, R.; Casquero-Vera, J.A.; Ortiz-Amezcua, P.; Benavent-Oltra, J.A.; de Arruda Moreira, G.; Montilla-Rosero, E.; Hoyos, C.D.; Artiñano, B.; Coz, E.; Olmo-Reyes, F.J.; Alados-Arboledas, L.; Guerrero-Rascado, J.L. Hygroscopic growth study in the framework of EARLINET during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation. Atmospheric Chemistry and Physics 2018, 18, 7001–7017. [Google Scholar] [CrossRef]
- Dawson, K.W.; Ferrare, R.A.; Moore, R.H.; Clayton, M.B.; Thorsen, T.J.; Eloranta, E.W. Ambient Aerosol Hygroscopic Growth From Combined Raman Lidar and HSRL. Journal of Geophysical Research: Atmospheres 2020, 125, e2019JD031708. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Cai, Y.; Pan, J.; Yue, W.; Xu, H.; Wang, J. Measurements of atmospheric aerosol hygroscopic growth based on multi-channel Raman-Mie lidar. Atmospheric Environment 2021, 246, 118076. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Feingold, G. On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar. Journal of Geophysical Research: Atmospheres 2000, 105, 4729–4741. [Google Scholar] [CrossRef]
- Jefferson, A.; Hageman, D.; Morrow, H.; Mei, F.; Watson, T. Seven years of aerosol scattering hygroscopic growth measurements from SGP: Factors influencing water uptake. Journal of Geophysical Research: Atmospheres 2017, 122, 9451–9466. [Google Scholar] [CrossRef]
- Lynch, D.; Sassen, K.; Starr, D.; Stephens, G.; Bailey, M.; Hallett, J.; Heymsfield, A.; Mcfarquhar, G.; DeMott, P.; Wylie, D.; Minnis, P.; Mace, G.; Ansmann, A.; Platt, C.; Schumann, U.; Liou, K.; Gu, Y.; Sundqvist, H.; Delgenio, A.; Khvorostyanov, V. Cirrus 2002. [CrossRef]
- Giannakaki, E.; Balis, D.S.; Amiridis, V.; Kazadzis, S. Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station. Atmospheric Chemistry and Physics 2007, 7, 5519–5530. [Google Scholar] [CrossRef]
- Gouveia, D.A.; Barja, B.; Barbosa, H.M.J.; Seifert, P.; Baars, H.; Pauliquevis, T.; Artaxo, P. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements. Atmospheric Chemistry and Physics 2017, 17, 3619–3636. [Google Scholar] [CrossRef]
- Cairo, F.; De Muro, M.; Snels, M.; Di Liberto, L.; Bucci, S.; Legras, B.; Kottayil, A.; Scoccione, A.; Ghisu, S. Lidar observations of cirrus clouds in Palau. Atmospheric Chemistry and Physics 2021, 21, 7947–7961. [Google Scholar] [CrossRef]
- Noel, V.; Chepfer, H.; Ledanois, G.; Delaval, A.; Flamant, P.H. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio. Appl. Opt. 2002, 41, 4245–4257. [Google Scholar] [CrossRef] [PubMed]
- Cairo, F.; Deshler, T.; Di Liberto, L.; Scoccione, A.; Snels, M. A study of optical scattering modelling for mixed-phase polar stratospheric clouds. Atmospheric Measurement Techniques 2023, 16, 419–431. [Google Scholar] [CrossRef]
- Kaul, B.V.; Samokhvalov, I.V.; Volkov, S.N. Investigating particle orientation in cirrus clouds by measuring backscattering phase matrices with lidar. Applied optics 2004, 43, 6620–6628. [Google Scholar] [CrossRef] [PubMed]
- Noel, V.; Chepfer, H. A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). Journal of Geophysical Research: Atmospheres 2010, 115. [Google Scholar] [CrossRef]
- Qi, S.; Huang, Z.; Ma, X.; Huang, J.; Zhou, T.; Zhang, S.; Dong, Q.; Bi, J.; Shi, J. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements. Opt. Express 2021, 29, 23461–23476. [Google Scholar] [CrossRef]
- Beyerle, G.; Schäfer, H.J.; Neuber, R.; Schrems, O.; McDermid, I.S. Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 1996 Campaign. Geophysical Research Letters 1998, 25, 919–922. [Google Scholar] [CrossRef]
- Immler, F.; Schrems, O. Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements. Geophysical Research Letters 2002, 29, 5–1–5–4. [Google Scholar] [CrossRef]
- Dionisi, D.; Keckhut, P.; Liberti, G.L.; Cardillo, F.; Congeduti, F. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman–Mie–Rayleigh lidar. Atmospheric Chemistry and Physics 2013, 13, 11853–11868. [Google Scholar] [CrossRef]
- Voudouri, K.A.; Giannakaki, E.; Komppula, M.; Balis, D. Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. Atmospheric Chemistry and Physics 2020, 20, 4427–4444. [Google Scholar] [CrossRef]
- Sun, X.; Ritter, C.; Müller, K.; Palm, M.; Ji, D.; Ruhe, W.; Beninga, I.; Patris, S.; Notholt, J. Properties of Cirrus Cloud Observed over Koror, Palau (7.3° N, 134.5° E), in Tropical Western Pacific Region. Remote Sensing 2024, 16, 1448. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Winker, D.; van Zadelhoff, G.J. Extinction-ice water content-effective radius algorithms for CALIPSO. Geophysical Research Letters 2005, 32. [Google Scholar] [CrossRef]
- Avery, M.; Winker, D.; Heymsfield, A.; Vaughan, M.; Young, S.; Hu, Y.; Trepte, C. Cloud ice water content retrieved from the CALIOP space-based lidar. Geophysical Research Letters 2012, 39. [Google Scholar] [CrossRef]
- Heymsfield, A.; Winker, D.; Avery, M.; Vaughan, M.; Diskin, G.; Deng, M.; Mitev, V.; Matthey, R. Relationships between ice water content and volume extinction coefficient from in situ observations for temperatures from 0° to- 86° C: Implications for spaceborne lidar retrievals. Journal of Applied Meteorology and Climatology 2014, 53, 479–505. [Google Scholar] [CrossRef]
- Thornberry, T.D.; Rollins, A.W.; Avery, M.A.; Woods, S.; Lawson, R.P.; Bui, T.V.; Gao, R.S. Ice water content-extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014. Journal of Geophysical Research: Atmospheres 2017, 122, 4494–4507. [Google Scholar] [CrossRef]
- Cairo, F.; Krämer, M.; Afchine, A.; Di Donfrancesco, G.; Di Liberto, L.; Khaykin, S.; Lucaferri, L.; Mitev, V.; Port, M.; Rolf, C.; Snels, M.; Spelten, N.; Weigel, R.; Borrmann, S. A comparative analysis of in situ measurements of high-altitude cirrus in the tropics. Atmospheric Measurement Techniques 2023, 16, 4899–4925. [Google Scholar] [CrossRef]
- Groß, S.; Wirth, M.; Schäfler, A.; Fix, A.; Kaufmann, S.; Voigt, C. Potential of airborne lidar measurements for cirrus cloud studies. Atmospheric Measurement Techniques 2014, 7, 2745–2755. [Google Scholar] [CrossRef]
- Kumar Das, S.; Nee, J.B.; Chiang, C.W. A LiDAR study of the effective size of cirrus ice crystals over Chung-Li, Taiwan. Journal of Atmospheric and Solar-Terrestrial Physics 2010, 72, 781–788. [Google Scholar] [CrossRef]
- Dionisi, D.; Keckhut, P.; Hoareau, C.; Montoux, N.; Congeduti, F. Cirrus crystal fall velocity estimates using the Match method with ground-based lidars: first investigation through a case study. Atmospheric Measurement Techniques 2013, 6, 457–470. [Google Scholar] [CrossRef]
- Bissonnette, L.R.; Roy, G.; Poutier, L.; Cober, S.G.; Isaac, G.A. Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements. Appl. Opt. 2002, 41, 6307–6324. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, L.R.; Roy, G.; Tremblay, G. Lidar-Based Characterization of the Geometry and Structure of Water Clouds. Journal of Atmospheric and Oceanic Technology 2007, 24, 1364–1376. [Google Scholar] [CrossRef]
- Schmidt, J.; Wandinger, U.; Malinka, A. Dual-field-of-view Raman lidar measurements for the retrieval of cloud microphysical properties. Applied optics 2013, 52, 2235–2247. [Google Scholar] [CrossRef] [PubMed]
- Veselovskii, I.; Korenskii, M.; Griaznov, V.; Whiteman, D.N.; McGill, M.; Roy, G.; Bissonnette, L. Information content of data measured with a multiple-field-of-view lidar. Appl. Opt. 2006, 45, 6839–6848. [Google Scholar] [CrossRef] [PubMed]
- Roy, G.; Tremblay, G. A Polarimetric multiple scattering LiDAR model based on Poisson distribution. Applied Optics 2022, 61. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, C.; Ansmann, A.; Engelmann, R.; Donovan, D.; Malinka, A.; Schmidt, J.; Seifert, P.; Wandinger, U. The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – theoretical framework. Atmospheric Chemistry and Physics 2020, 20, 15247–15263. [Google Scholar] [CrossRef]
- Donovan, D.; Klein Baltink, H.; Henzing, J.; De Roode, S.; Siebesma, A. A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties. Atmospheric Measurement Techniques 2015, 8, 237–266. [Google Scholar] [CrossRef]
- Eloranta, E.; Kuehn, R.; Holz, R. Measurements of backscatter phase function and depolarization in cirrus clouds made with the University of Wisconsin High Spectral Resolution Lidar 2001.
- Pinsky, M.; Khain, A.; Mazin, I.; Korolev, A. Analytical estimation of droplet concentration at cloud base. Journal of Geophysical Research: Atmospheres 2012, 117. [Google Scholar] [CrossRef]
- Kollias, P.; Albrecht, B.; Lhermitte, R.; Savtchenko, A. Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. Journal of the atmospheric sciences 2001, 58, 1750–1766. [Google Scholar] [CrossRef]
- Rosenkranz, P. Rapid radiative transfer model for AMSU/HSB channels. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 362–368. [Google Scholar] [CrossRef]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. Journal of Applied Meteorology and Climatology 2008, 47, 1175–1198. [Google Scholar] [CrossRef]
- Nakajima, T.Y.; Nakajma, T. Wide-area determination of cloud microphysical properties from NOAA AVHRR measurements for FIRE and ASTEX regions. Journal of the Atmospheric Sciences 1995, 52, 4043–4059. [Google Scholar] [CrossRef]
- Grosvenor, D.P.; Sourdeval, O.; Zuidema, P.; Ackerman, A.; Alexandrov, M.D.; Bennartz, R.; Boers, R.; Cairns, B.; Chiu, J.C.; Christensen, M.; others. Remote sensing of droplet number concentration in warm clouds: A review of the current state of knowledge and perspectives. Reviews of Geophysics 2018, 56, 409–453. [Google Scholar] [CrossRef] [PubMed]
- Schumann, U.; Mayer, B.; Gierens, K.; Unterstrasser, S.; Jessberger, P.; Petzold, A.; Voigt, C.; Gayet, J.F. Effective Radius of Ice Particles in Cirrus and Contrails. Journal of the Atmospheric Sciences 2011, 68, 300–321. [Google Scholar] [CrossRef]
- Zhang, D.; Vogelmann, A.M.; Yang, F.; Luke, E.; Kollias, P.; Wang, Z.; Wu, P.; Gustafson Jr, W.I.; Mei, F.; Glienke, S.; others. Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements. Atmospheric Measurement Techniques 2023, 16, 5827–5846. [Google Scholar] [CrossRef]
- Brenguier, J.L.; Burnet, F.; Geoffroy, O. Cloud optical thickness and liquid water path–does the k coefficient vary with droplet concentration? Atmospheric Chemistry and Physics 2011, 11, 9771–9786. [Google Scholar] [CrossRef]
- Andreae, M.O. Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmospheric Chemistry and Physics 2009, 9, 543–556. [Google Scholar] [CrossRef]
- Ghan, S.J.; Collins, D.R. Use of In Situ Data to Test a Raman Lidar–Based Cloud Condensation Nuclei Remote Sensing Method. Journal of Atmospheric and Oceanic Technology 2004, 21, 387–394. [Google Scholar] [CrossRef]
- Ghan, S.J.; Rissman, T.A.; Elleman, R.; Ferrare, R.A.; Turner, D.; Flynn, C.; Wang, J.; Ogren, J.; Hudson, J.; Jonsson, H.H.; VanReken, T.; Flagan, R.C.; Seinfeld, J.H. Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements. Journal of Geophysical Research: Atmospheres 2006, 111. [Google Scholar] [CrossRef]
- Dusek, U.; Frank, G.P.; Hildebrandt, L.; Curtius, J.; Schneider, J.; Walter, S.; Chand, D.; Drewnick, F.; Hings, S.; Jung, D.; Borrmann, S.; Andreae, M.O. Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles. Science 2006, 312, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Wang, Z.; Li, Z.; Luo, T.; Ferrare, R.; Liu, D.; Wu, D.; Mao, J.; Wan, B.; Zhang, F.; Wang, Y. Retrieval of Cloud Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data. Journal of Geophysical Research: Atmospheres 2018, 123, 6082–6098. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research: Atmospheres 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Liu, P.F.; Zhao, C.S.; Göbel, T.; Hallbauer, E.; Nowak, A.; Ran, L.; Xu, W.Y.; Deng, Z.Z.; Ma, N.; Mildenberger, K.; Henning, S.; Stratmann, F.; Wiedensohler, A. Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain. Atmospheric Chemistry and Physics 2011, 11, 3479–3494. [Google Scholar] [CrossRef]
- Petters, M.D.; Carrico, C.M.; Kreidenweis, S.M.; Prenni, A.J.; DeMott, P.J.; Collett Jr., J. L.; Moosmüller, H. Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research: Atmospheres 2009, 114, https. [Google Scholar] [CrossRef]
- Koehler, K.A.; Kreidenweis, S.M.; DeMott, P.J.; Petters, M.D.; Prenni, A.J.; Carrico, C.M. Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophysical Research Letters 2009, 36. [Google Scholar] [CrossRef]
- Tan, W.; Zhao, G.; Yu, Y.; Li, C.; Li, J.; Kang, L.; Zhu, T.; Zhao, C. Method to retrieve cloud condensation nuclei number concentrations using lidar measurements. Atmospheric Measurement Techniques 2019, 12, 3825–3839. [Google Scholar] [CrossRef]
- Lenhardt, E.D.; Gao, L.; Redemann, J.; Xu, F.; Burton, S.P.; Cairns, B.; Chang, I.; Ferrare, R.A.; Hostetler, C.A.; Saide, P.E.; Howes, C.; Shinozuka, Y.; Stamnes, S.; Kacarab, M.; Dobracki, A.; Wong, J.; Freitag, S.; Nenes, A. Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic. Atmospheric Measurement Techniques 2023, 16, 2037–2054. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters. Atmospheric Chemistry and Physics 2016, 16, 5905–5931. [Google Scholar] [CrossRef]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. Journal of Geophysical Research: Atmospheres 2009, 114. [Google Scholar] [CrossRef]
- Shinozuka, Y.; Clarke, A.D.; Nenes, A.; Jefferson, A.; Wood, R.; McNaughton, C.S.; Ström, J.; Tunved, P.; Redemann, J.; Thornhill, K.L.; Moore, R.H.; Lathem, T.L.; Lin, J.J.; Yoon, Y.J. The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates. Atmospheric Chemistry and Physics 2015, 15, 7585–7604. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Weingartner, E.; Baltensperger, U. Effects of relative humidity on aerosol light scattering: results from different European sites. Atmospheric Chemistry and Physics 2013, 13, 10609–10631. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Marinou, E.; Tsekeri, A.; Proestakis, E.; Akritidis, D.; Alexandri, G.; Zanis, P.; Balis, D.; Marenco, F.; Tesche, M.; Amiridis, V. A First Case Study of CCN Concentrations from Spaceborne Lidar Observations. Remote Sensing 2020, 12. [Google Scholar] [CrossRef]
- Choudhury, G.; Tesche, M. A first global height-resolved cloud condensation nuclei data set derived from spaceborne lidar measurements. Earth System Science Data 2023, 15, 3747–3760. [Google Scholar] [CrossRef]
- Niemand, M.; Möhler, O.; Vogel, B.; Vogel, H.; Hoose, C.; Connolly, P.; Klein, H.; Bingemer, H.; DeMott, P.; Skrotzki, J.; Leisner, T. A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles. Journal of the Atmospheric Sciences 2012, 69, 3077–3092. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; McMeeking, G.R.; Sullivan, R.C.; Petters, M.D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J.R.; Wang, Z.; Kreidenweis, S.M. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles. Atmospheric Chemistry and Physics 2015, 15, 393–409. [Google Scholar] [CrossRef]
- Ullrich, R.; Hoose, C.; Möhler, O.; Niemand, M.; Wagner, R.; Höhler, K.; Hiranuma, N.; Saathoff, H.; Leisner, T. A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot. Journal of the Atmospheric Sciences 2017, 74, 699–717. [Google Scholar] [CrossRef]
- Harrison, A.D.; Lever, K.; Sanchez-Marroquin, A.; Holden, M.A.; Whale, T.F.; Tarn, M.D.; McQuaid, J.B.; Murray, B.J. The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar. Atmospheric Chemistry and Physics 2019, 19, 11343–11361. [Google Scholar] [CrossRef]
- McCluskey, C.S.; Ovadnevaite, J.; Rinaldi, M.; Atkinson, J.; Belosi, F.; Ceburnis, D.; Marullo, S.; Hill, T.C.J.; Lohmann, U.; Kanji, Z.A.; O’Dowd, C.; Kreidenweis, S.M.; DeMott, P.J. Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses. Journal of Geophysical Research: Atmospheres 2018, 123, 6196–6212. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Haarig, M.; Walser, A.; Ansmann, A.; Dollner, M.; Althausen, D.; Sauer, D.; Farrell, D.; Weinzierl, B. Profiles of cloud condensation nuclei, dust mass concentration, and ice-nucleating-particle-relevant aerosol properties in the Saharan Air Layer over Barbados from polarization lidar and airborne in situ measurements. Atmospheric Chemistry and Physics 2019, 19, 13773–13788. [Google Scholar] [CrossRef]
- Ansmann, A.; Mamouri, R.E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F. Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis. Atmospheric Measurement Techniques 2019, 12, 4849–4865. [Google Scholar] [CrossRef]
- Marinou, E.; Tesche, M.; Nenes, A.; Ansmann, A.; Schrod, J.; Mamali, D.; Tsekeri, A.; Pikridas, M.; Baars, H.; Engelmann, R.; Voudouri, K.A.; Solomos, S.; Sciare, J.; Groß, S.; Ewald, F.; Amiridis, V. Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmospheric Chemistry and Physics 2019, 19, 11315–11342. [Google Scholar] [CrossRef]
- Schrod, J.; Weber, D.; Drücke, J.; Keleshis, C.; Pikridas, M.; Ebert, M.; Cvetković, B.; Nickovic, S.; Marinou, E.; Baars, H.; Ansmann, A.; Vrekoussis, M.; Mihalopoulos, N.; Sciare, J.; Curtius, J.; Bingemer, H.G. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems. Atmospheric Chemistry and Physics 2017, 17, 4817–4835. [Google Scholar] [CrossRef]
- Wieder, J.; Ihn, N.; Mignani, C.; Haarig, M.; Bühl, J.; Seifert, P.; Engelmann, R.; Ramelli, F.; Kanji, Z.A.; Lohmann, U.; Henneberger, J. Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations. Atmospheric Chemistry and Physics 2022, 22, 9767–9797. [Google Scholar] [CrossRef]
- Choi, Y.S.; Lindzen, R.S.; Ho, C.H.; Kim, J. Space observations of cold-cloud phase change. Proceedings of the National Academy of Sciences 2010, 107, 11211–11216. [Google Scholar] [CrossRef]
- Tan, I.; Storelvmo, T.; Choi, Y.S. Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds. Journal of Geophysical Research: Atmospheres 2014, 119, 6653–6665. [Google Scholar] [CrossRef]
- Pan, H.; Wang, M.; Kumar, K.R.; Lu, H.; Mamtimin, A.; Huo, W.; Yang, X.; Yang, F.; Zhou, C. Seasonal and vertical distributions of aerosol type extinction coefficients with an emphasis on the impact of dust aerosol on the microphysical properties of cirrus over the Taklimakan Desert in Northwest China. Atmospheric Environment 2019, 203, 216–227. [Google Scholar] [CrossRef]
- Mamouri, R.E.; Ansmann, A.; Ohneiser, K.; Knopf, D.A.; Nisantzi, A.; Bühl, J.; Engelmann, R.; Skupin, A.; Seifert, P.; Baars, H.; Ene, D.; Wandinger, U.; Hadjimitsis, D. Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean. Atmospheric Chemistry and Physics 2023, 23, 14097–14114. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, D.; Luo, T.; Wang, Z.; Yin, Y. Aerosol impacts on cloud thermodynamic phase change over East Asia observed with CALIPSO and CloudSat measurements. Journal of Geophysical Research: Atmospheres 2015, 120, 1490–1501. [Google Scholar] [CrossRef]
- Hofer, J.; Seifert, P.; Liley, J.B.; Radenz, M.; Uchino, O.; Morino, I.; Sakai, T.; Nagai, T.; Ansmann, A. Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand, Aotearoa. Atmospheric Chemistry and Physics 2024, 24, 1265–1280. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Zhao, Y.; Li, Y.; Zhao, Y.; Wu, X. Distinct Diurnal Cycle of Supercooled Water Cloud Fraction Dominated by Dust Extinction Coefficient. Geophysical Research Letters 2022, 49, e2021GL097006. [Google Scholar] [CrossRef]
- Schmidt, J.; Ansmann, A.; Bühl, J.; Baars, H.; Wandinger, U.; Müller, D.; Malinka, A.V. Dual-FOV Raman and Doppler lidar studies of aerosol-cloud interactions: Simultaneous profiling of aerosols, warm-cloud properties, and vertical wind. Journal of Geophysical Research: Atmospheres 2014, 119, 5512–5527. [Google Scholar] [CrossRef]
- Kim, B.G.; Miller, M.A.; Schwartz, S.E.; Liu, Y.; Min, Q. The role of adiabaticity in the aerosol first indirect effect. Journal of Geophysical Research: Atmospheres 2008, 113. [Google Scholar] [CrossRef]
- Schmidt, J.; Ansmann, A.; Bühl, J.; Wandinger, U. Strong aerosol–cloud interaction in altocumulus during updraft periods: lidar observations over central Europe. Atmospheric Chemistry and Physics 2015, 15, 10687–10700. [Google Scholar] [CrossRef]
- Jimenez, C.; Ansmann, A.; Engelmann, R.; Donovan, D.; Malinka, A.; Seifert, P.; Wiesen, R.; Radenz, M.; Yin, Z.; Bühl, J.; Schmidt, J.; Barja, B.; Wandinger, U. The dual-field-of-view polarization lidar technique: a new concept in monitoring aerosol effects in liquid-water clouds – case studies. Atmospheric Chemistry and Physics 2020, 20, 15265–15284. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, K.; Shen, X.; Wang, Y.; Li, J.; Li, C.; Mao, J.; Malinka, A.; Zhao, C.; Russell, L.M.; Guo, J.; Gross, S.; Liu, C.; Yang, J.; Chen, F.; Wu, L.; Chen, S.; Ke, J.; Xiao, D.; Zhou, Y.; Fang, J.; Liu, D. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol–cloud interaction. Proceedings of the National Academy of Sciences 2022, 119, e2110756119. [Google Scholar] [CrossRef] [PubMed]
- Burnet, F.; Brenguier, J.L. Observational study of the entrainment-mixing process in warm convective clouds. Journal of the atmospheric sciences 2007, 64, 1995–2011. [Google Scholar] [CrossRef]
- Braga, R.C.; Rosenfeld, D.; Weigel, R.; Jurkat, T.; Andreae, M.O.; Wendisch, M.; Pöschl, U.; Voigt, C.; Mahnke, C.; Borrmann, S.; others. Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin. Atmospheric Chemistry and Physics 2017, 17, 14433–14456. [Google Scholar] [CrossRef]
- Gettelman, A.; Hannay, C.; Bacmeister, J.T.; Neale, R.B.; Pendergrass, A.G.; Danabasoglu, G.; Lamarque, J.F.; Fasullo, J.T.; Bailey, D.A.; Lawrence, D.M.; Mills, M.J. High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters 2019, 46, 8329–8337. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Mulcahy, J.; Andrews, T.; Williams, K.; Ringer, M.; Field, P.; Elsaesser, G. Strong dependence of atmospheric feedbacks on mixed-phase microphysics and aerosol-cloud interactions in HadGEM3. Journal of Advances in Modeling Earth Systems 2019, 11, 1735–1758. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters 2020, 47, e2019GL085782. [Google Scholar] [CrossRef]
- Yang, F.; Kostinski, A.B.; Zhu, Z.; Lamer, K.; Luke, E.; Kollias, P.; Sua, Y.M.; Hou, P.; Shaw, R.A.; Vogelmann, A.M. A single-photon lidar observes atmospheric clouds at decimeter scales: resolving droplet activation within cloud base. npj Climate and Atmospheric Science 2024, 7, 92. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Ghate, V.P.; Jensen, J.B.; Ellis, S.M.; Schwartz, M.C. A technique for estimating liquid droplet diameter and liquid water content in stratocumulus clouds using radar and lidar measurements. Journal of Atmospheric and Oceanic Technology 2020, 37, 2145–2161. [Google Scholar] [CrossRef]
- Lin, W.; He, Q.; Cheng, T.; Chen, H.; Liu, C.; Liu, J.; Hong, Z.; Hu, X.; Guo, Y. A Method for Retrieving Cloud Microphysical Properties Using Combined Measurement of Millimeter-Wave Radar and Lidar. Remote Sensing 2024, 16, 586. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. Journal of Geophysical Research: Atmospheres 2008, 113. [Google Scholar] [CrossRef]
- Fielding, M.D.; Chiu, J.C.; Hogan, R.J.; Feingold, G.; Eloranta, E.; O’Connor, E.J.; Cadeddu, M.P. Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances. Atmospheric Measurement Techniques 2015, 8, 2663–2683. [Google Scholar] [CrossRef]
- Di, H.; Yuan, Y.; Yan, Q.; Xin, W.; Li, S.; Wang, J.; Wang, Y.; Zhang, L.; Hua, D. Determination of atmospheric column condensate using active and passive remote sensing technology. Atmospheric Measurement Techniques 2022, 15, 3555–3567. [Google Scholar] [CrossRef]
- Haywood, J.M.; Abel, S.J.; Barrett, P.A.; Bellouin, N.; Blyth, A.; Bower, K.N.; Brooks, M.; Carslaw, K.; Che, H.; Coe, H.; Cotterell, M.I.; Crawford, I.; Cui, Z.; Davies, N.; Dingley, B.; Field, P.; Formenti, P.; Gordon, H.; de Graaf, M.; Herbert, R.; Johnson, B.; Jones, A.C.; Langridge, J.M.; Malavelle, F.; Partridge, D.G.; Peers, F.; Redemann, J.; Stier, P.; Szpek, K.; Taylor, J.W.; Watson-Parris, D.; Wood, R.; Wu, H.; Zuidema, P. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmospheric Chemistry and Physics 2021, 21, 1049–1084. [Google Scholar] [CrossRef]
- Zanatta, M.; Mertes, S.; Jourdan, O.; Dupuy, R.; Järvinen, E.; Schnaiter, M.; Eppers, O.; Schneider, J.; Jurányi, Z.; Herber, A. Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer. Atmospheric Chemistry and Physics 2023, 23, 7955–7973. [Google Scholar] [CrossRef]
- Foskinis, R.; Motos, G.; Gini, M.I.; Zografou, O.; Gao, K.; Vratolis, S.; Granakis, K.; Vakkari, V.; Violaki, K.; Aktypis, A.; others. Drivers of Droplet Formation in East Mediterranean Orographic Clouds. EGUsphere 2024, 2024, 1–21. [Google Scholar]
- Li, J.; Jian, B.; Huang, J.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sensing of Environment 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Lorenzoni, L.; Hu, Y.; Bisson, K.M.; Hostetler, C.A.; Di Girolamo, P.; Dionisi, D.; Longo, F.; Zoffoli, S. Satellite Lidar Measurements as a Critical New Global Ocean Climate Record. Remote Sensing 2023, 15. [Google Scholar] [CrossRef]




| Cloud type | aerosol | impact |
|---|---|---|
| Warm Clouds | CCN | Higher albedo, rain delay or suppression, increased lifetime. Possible evaporation-entrainment enhancement.1 |
| Mixed phase clouds | CCN | Higher albedo, enhanced WFP, riming suppression., reduced glaciation and riming, reduced precipitation, increased lifetime. |
| IN | Enhanced glaciation, lower albedo, rain enhancement, reduced lifetime. | |
| Deep convective clouds | CCN | Higher albedo, Convective invigoration, warm rain suppression, cold rain enhancement, hail enhancement, more electrification. |
| IN | Enhanced glaciation, reduced albedo. Ice-ice pathway to precipitation favoured. | |
| Cirrus clouds | CCN | Increased albedo and lifetime. |
| IN | Reduced albedo and lifetime (hom. nucl. prevailing); Increased albedo and lifetime (het.nucl.prevailing). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
