Submitted:
12 June 2024
Posted:
21 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- The inflationary epoch, although solving many cosmological puzzles, like the horizon, flatness problems etc. and also providing a mechanism for primordial density perturbations, cannot address the initial singularity problem;
- In this model there is no reason for the existence of two (or more, like three if we want to incorporate early dark energy and late dark energy, in addition to inflation) scenarios of exponential expansion with such wildly different scales the inflationary epoch and the current era of slowly accelerated expansion of the universe.
- There is no explanation for the existence of the Dark Matter, that represents an invisible part and most of the dust in the universe that must be different from the baryonic matter, the visible part of the dust component of our universe.
2. Modified Theory: Two Independent Non-Riemannian Volume-Forms
- The functions and are two densities and these are independent non-metric volume-forms given in terms of the curl of the anti-symmetric 3-index tensor gauge fields defined as
- The quantity corresponds to the scalar curvature and denotes the Ricci tensor and these are defined in the first-order (Palatini) formalism, in which the affine connection is a priori independent of the metric .
-
The two Lagrangians use two scalar matter fields and and these Lagrangians are defined aswhere the potentials and are given byHere the quantities and are positive parameters, whereas and are dimensionless and their ranges are to be determined. Here and have dimensions of , instead the quantities , , and have units of . Also, the parameter has units of .
- The function corresponds to the dual field strength of a third auxiliary 3-index antisymmetric tensor defined as
3. Three flat regions from the Effective Scalar Potential
4. Evolution of the Universe in the Situation in Which , and and Spontaneous Scale Symmetry Breaking
4.1. Flat Regions of the Effective Scalar Potential
4.2. Inflation: Slow Roll approximation and Perturbations
4.3. Introducing dust matter, including dark matter
5. Evolution of the Universe in the Situation in Which , and , with a Spontaneously Broken Scale Symmetry
5.1. Inflation: Slow Roll Approximation and Perturbations
5.2. Early dark energy: First region with the generation of DM and stiff matter from non linear terms
5.3. Late Dark Energy: Second Region with the Generation of DM and Stiff Matter from Non Linear Terms
6. Summary and Discussion of Possible Future Lines of Research
Acknowledgments
References
- Alan, H. Guth, Phys.Rev.D 23 (1981) 347-356; Adv.Ser.Astrophys.Cosmol. 3 (1987) 139-148 (reprint).
- A. Starobinsky, Phys.Lett. B 91, 99-102 (1980).
- E.W. Kolb and M.S. Turner, “The Early Universe”, Addison Wesley (1990);A. Linde, “Particle Physics and Inflationary Cosmology”, Harwood, Chur, Switzerland (1990);
- V. Mukhanov, “Physical Foundations of Cosmology”, Cambridge Univ. Press (2005).
- G.F.R. Ellis and R. Maartens, Class. Quantum Grav. 21 (2004) 223 (gr-qc/0211082).
- G.F.R. Ellis, J. Murugan and C.G. Tsagas,Class. Quantum Grav. 21 (2004) 233 (arxiv:gr-qc/0307112);D.J. Mulryne, R. Tavakol, J.E. Lidsey and G.F.R. Ellis, Phys. Rev. D71 (2005) 123512 (arxiv:astro-ph/0502589);
- M.S. Turner, in Third Stromle Symposium “The Galactic Halo”, ASP Conference Series Vol.666, B.K. Gibson, T.S. Axelrod and M.E. Putman (eds.), (1999);N. Bahcall, J.P. Ostriker, S.J. Perlmutter and P.J. Steinhardt, Science 284, (1999) 1481;
- A. Riess, et al., Astronomical Journal 116 (1998) 1009-1038;S. Perlmutter et al., Astrophysical Journal 517 (1999) 565-586.
- A New cosmological paradigm: The Cosmological constant and dark matter Lawrence M. Krauss, AIP Conf.Proc. 444 (1998) 1, 59-69 • Contribution to: SILAFAE 98, 59-69, 5th International WEIN Symposium: A Conference on Physics Beyond the Standard Model (WEIN 98), Tropical Workshop on Particle Physics and Cosmology, PASCOS 1998 • e-Print: hep-ph/9807376 [hep-ph]; Ren-Yue Cen, Jeremiah P. Ostriker, Astrophys.J. 429 (1994) 4 • e-Print: astro-ph/9404012 [astro-ph].
- Jose Luis Bernal, Licia Verde, Adam G. Riess, JCAP 10 (2016)019 DOI: 10.1088/1475-7516/2016/10/019, arXiv:1607.05617 [astro-ph.CO]; José Luis Bernal, Licia Verde, Raul Jimenez, Marc Kamionkowski, David Valcin et al., Phys.Rev.D 103 (2021) 10, 103533 • e-Print: 2102.05066 [astro-ph.CO]; Leila L. Graef, Micol Benetti, Jailson S. Alcaniz, Phys.Rev.D 99 (2019) 4, 043519 • e-Print: 1809.04501 [astro-ph.CO]. [CrossRef]
- R. E. Keeley, S. Joudaki, M. Kaplinghat and D. Kirkby, JCAP 12 (2019), 035; K. L. Pandey, T. Karwal and S. Das, JCAP 07 (2020), 026; A. Quelle and A. L. Maroto, Eur. Phys. J. C 80 (2020) no.5, 369; A. Bhattacharyya, U. Alam, K. L. Pandey, S. Das, and S. Pal, Astrophys. J. 876, 143 (2019), arXiv:1805.04716 [astro-ph.CO]; G. Lambiase, S. Mohanty, A. Narang, and P. Parashari, Eur. Phys. J. C 79, 141 (2019), arXiv:1804.07154 [astroph.CO]; W. Lin, K. J. Mack and L. Hou, Astrophys. J. Lett. 904 (2020) no.2, L22, arXiv:1910.02978 [astro-ph.CO]; M. Berbig, S. Jana and A. Trautner, Phys. Rev. D 102 (2020) no.11, 115008; Quantifying the Sigma 8 tension with the Redshift Space Distortion data set, David Benisty, Phys.Dark Univ. 31 (2021) 100766 • e-Print: 2005.03751 [astro-ph.CO]. arXiv:1910.02978.
- A. Linde, Phys. Lett. 108B (1982) 389-393;A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220-1223.
- A.R. Liddle and D.H. Lyth, Phys. Lett. 291B (1992) 391-398 (arxiv:astro-ph/9208007);A.R. Liddle and D.H. Lyth, Phys. Reports 231 (1993) 1-105 (arxiv:astro-ph/9303019). arxiv:astro-ph/9303019.
- P.J.E. Peebles and A.Vilenkin, Phys. Rev. D59 (1999) 063505.
- R. Saitou and S. Nojiri, Eur. Phys. J. C71 (2011) 1712 (arxiv:1104.0558 [hep-th]).
- C. Wetterich, Phys. Rev. D89 (2014) 024005 (arxiv:1308.1019 [astro-ph]).
- Md. Wali Hossain, R. Md. Wali Hossain, R. Myrzakulov, M. Sami and E.N. Saridakis, Phys. Rev. D90 (2014) 023512 (arxiv:1402.6661 [gr-qc]).
- Konstantinos Dimopoulos, Charlotte Owen, JCAP 06 (2017) 027 • e-Print: 1703.00305 [gr-qc]; Konstantinos Dimopoulos, Leonora Donaldson Wood, Charlotte, Phys.Rev.D 97 (2018) 6, 063525 • e-Print: 1712.01760 [astro-ph.CO];R. Herrera, Eur. Phys. J. C 78, no.3, 245 (2018); R. Herrera, Phys. Rev. D 98, no.2, 023542 (2018);R. Herrera, Phys. Rev. D 99, no.10, 103510 (2019); R. Herrera, Phys. Rev. D 102, no.12, 123508 (2020); Llibert Aresté Saló, David Benisty, Eduardo I. Guendelman, Jaime d. Haro, JCAP 07 (2021) 007 • e-Print: 2102.09514 [astro-ph.CO];M. Gonzalez-Espinoza, R. Herrera, G. Otalora and J. Saavedra, Eur. Phys. J. C 81, no.8, 731 (2021);R. Herrera and C. Rios, [arXiv:2210.10080 [gr-qc]]; Llibert Aresté Saló, David Benisty, Eduardo I. Guendelman, Jaime d. Haro, Phys.Rev.D 103 (2021) 12, 123535 • e-Print: 2103.07892 [astro-ph.CO]. arXiv:2210.10080.
- David Benisty, Eduardo I. Guendelman, Eur.Phys.J.C 80 (2020) 6, 577 • e-Print: 2006.04129 [astro-ph.CO]; Lorentzian Quintessential Inflation, awarded 2nd prize in the 2020 Gravity Research Foundation Essays Competition, David Benisty, Eduardo I. Guendelman, Int.J.Mod.Phys.D 29 (2020) 14, 2042002 • e-Print: 2004.00339 [astro-ph.CO].
- S. Nojiri and S. Odintsov, Phys. Rev. D68 (2003) 123512 (arxiv:hep-th/0307288);G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani and S. Zerbini, Phys. Rev. D77 (2008) 046009 (0712.4017 [hep-th]), and references therein;
- f(R) Theories Of Gravity, Thomas P. Sotiriou, Valerio Faraoni, Rev.Mod.Phys. 82 (2010) 451-497 • e-Print: 0805.1726 [gr-qc] ; S.Nojiri and S.D.Odintsov, Phys. Rept. 505, 59-144 (2011) https://doi.org/10.1016/j.physrep.2011.04.001 [arXiv:1011.0544 [gr-qc]]; S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167-321 (2011) https://doi.org/10.1016/j.physrep.2011.09.003 [arXiv:1108.6266 [gr-qc]]; R. Herrera and N. Videla, Int. J. Mod. Phys. D 23, no.08, 1450071 (2014) https://doi.org/10.1142/S0218271814500710 [arXiv:1406.6305 [gr-qc]]. [CrossRef]
- T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Phys. Rept. 513, 1-189 (2012) https://doi.org/10.1016/j.physrep.2012.01.001 [arXiv:1106.2476 [astro-ph.CO]]; S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept. 692, 1-104 (2017) https://doi.org/10.1016/j.physrep.2017.06.001 [arXiv:1705.11098 [gr-qc]]; S. D. Odintsov, V. K. Oikonomou, I. Giannakoudi, F. P. Fronimos and E. C. Lymperiadou, Symmetry 15, no.9, 1701 (2023) https://doi.org/10.3390/sym15091701 [arXiv:2307.16308 [gr-qc]]. [CrossRef]
- E.I. Guendelman, Mod. Phys. Lett. A14 (1999) 1043-1052 (arxiv:gr-qc/9901017);E.I. Guendelman, in “Energy Densities in the Universe”, Proc. Rencontres de Moriond, Les Arcs (2000) (arxiv:gr-qc/0004011).
- E.I. Guendelman and A. Kaganovich, Phys. Rev. D60 (1999) 065004 (arxiv:gr-qc/9905029).
- E.I. Guendelman and O. Katz, Class. Quantum Grav. 20 (2003) 1715-1728 (arxiv:gr-qc/0211095).
- S. del Campo. E. Guendelman, R. Herrera and P. Labrana, JCAP 1006 (2010) 026 (arxiv:1006.5734 [astro-ph.CO]).
- S. del Campo. E. Guendelman, A. Kaganovich, R. Herrera and P. Labrana, Phys. Lett. 699B (2011) 211 (arxiv:1105.0651 [astro-ph.CO]).
- E.I. Guendelman and P. Labrana, Int. J. Mod. Phys. D22 (2013) 1330018 (arxiv:1303.7267 [astro-ph.CO]).
- E.I. Guendelman, D. Singleton and N. Yongram, JCAP 1211 (2012) 044 (arxiv:1205.1056 [gr-qc]);E.I. Guendelman, H. Nishino and S. Rajpoot, Phys. Lett. 732B (2014) 156 (arxiv:1403.4199 [hep-th]). arxiv:1403.4199.
- E.I. Guendelman, Class.Quant.Grav. 17 (2000) 3673-3680 • e-Print: hep-th/0005041 [hep-th]; E.I. Guendelman, Phys.Rev.D 63 (2001) 046006 • e-Print: hep-th/0006079 [hep-th]; E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva, Phys. Rev. D66 (2002) 046003 (arxiv:hep-th/0203024). arxiv:hep-th/0203024.
- H. Nishino and S. Rajpoot, Phys. Lett. 736B (2014) 350-355 (arxiv:1411.3805 [hep-th]).
- International Journal of Modern Physics, Implications of the spectrum of dynamically generated string tension theories E. I, e-Print: 2110.09199 [hep-th]. [CrossRef]
- Eduardo Guendelman, Eur.Phys.J.C 81 (2021) 10, 886 • e-Print: 2107.08005 [hep-th]; Eduardo Guendelman, Eur.Phys.J.C 82 (2022) 10, 857. [CrossRef]
- E. Guendelman, E.Nissimov, S. Pacheva and M. Vasihoun, Bulg. J. Phys. 40 (2013) 121-126 (arxiv:1310.2772 [hep-th]);E. Guendelman, E.Nissimov, S. Pacheva and M. Vasihoun, Bulg. J. Phys. 41 (2014) 123-129 (arxiv:1404.4733 [hep-th]). arxiv:1404.4733.
- Eduardo Guendelman, Ramón Herrera, Pedro Labrana, Emil Nissimov, Svetlana Pacheva, Gen.Rel.Grav. 47 (2015) 2, 10 • e-Print: 1408.5344 [gr-qc].
- E. Guendelman, E. Nissimov and S. Pacheva, arxiv:1407.6281 [hep-th].
- Eduardo, I. Guendelman, Ramon Herrera, Gen.Rel.Grav. 48 (2016) 1, 3 • e-Print: 1511.08645 [gr-qc].
- Eduardo, I. Guendelman, Ramon Herrera, Pedro Labrana, Phys.Rev.D 103 (2021) 123515 • e-Print: 2005.14151 [gr-qc] and references there.
- Eduardo Guendelman, Ramón Herrera, David Benisty, Phys.Rev.D 105 (2022) 12, 124035 • e-Print: 2201.06470 [gr-qc].
- A. R. Liddle and D. H. Lyth, Phys. Lett. B 291, 391-398 (1992). arXiv:astro-ph/9208007. [CrossRef]
- Eduardo Guendelman, Emil Nissimov, Svetlana Pacheva, Int.J.Mod.Phys.D 25 (2016) 12, 1644008 • e-Print: 1603.06231 [hep-th].
- D. I. Kaiser and E. I. Sfakianakis, Phys. Rev. Lett. 112, no.1, 011302 (2014). arXiv:1304.0363. [CrossRef]
- X. Chen, M. X. Huang, S. Kachru and G. Shiu, JCAP 0701 (2007) 002; B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, (2006) 537-589.
- P. A. R. Ade et al. [BICEP and Keck], Phys. Rev. Lett. 127 (2021) no.15, 151301. arXiv:2110.00483. [CrossRef]
- R. J. Scherrer, Phys. Rev. Lett. 93, 011301 (2004). arXiv:astro-ph/0402316. [CrossRef]
- Eduardo Guendelman, Emil Nissimov, Svetlana Pacheva, Eur.Phys.J.C 76 (2016) 2, 90 • e-Print: 1511.07071 [gr-qc].
- J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385-432 (2008).
- M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing (Dover, New York, 1972).
- B. A. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78, 537-589 (2006). arXiv:astro-ph/0507632. [CrossRef]
- I. Zlatev, L.-M. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).
- P. J. Steinhardt, L.-M. Wang, and I. Zlatev, Phys. Rev. D 59, 123504 (1999); I. Zlatev and P. J. Steinhardt, Phys. Lett. B 459, 570 (1999).
- P. H. Chavanis, Phys. Rev. D 92, no.10, 103004 (2015).
- S. Nojiri, S. D. Odintsov and H. Stefancic, Phys. Rev. D 74, 086009 (2006). arXiv:hep-th/0608168. [CrossRef]
- Florian Niedermann, Martin S. Sloth. Phys.Lett.B 835 (2022) 137555 • e-Print: 2112.00759 [hep-ph].
- Juan, S. Cruz, Florian Niedermann, Martin S. Sloth • e-Print: 2209.02708 [astro-ph.CO].
- A Stiff Pre-CMB Era with a Mildly Blue-tilted Tensor Inflationary Era can Explain, the 2023 NANOGrav Signal, V.K. arXiv:2309.04850.
- X. Chen, M. x. Huang, S. Kachru and G. Shiu, JCAP 01, 002 (2007). arXiv:hep-th/0605045. [CrossRef]
- arXiv:arXiv:2301.10274. [CrossRef]
- L. Surhone, M. Timplendon and S. Marseken, “Wright Omega Function: Mathematics, Lambert W Function, Continuous Function, Analytic Function, Differential Equation, Separation or Variables", Betascript Publishing (2010).
- E. I. Guendelman, R. Herrera and P. Labrana, Phys. Rev. D 103, 123515 (2021). arXiv:2005.14151. [CrossRef]
- E. I. Guendelman and A. B. Kaganovich, Annals Phys. 323, 866-882 (2008). arXiv:0704.1998. [CrossRef]
- Nima Arkani-Hamed, Lawrence J. Hall, Christopher Kolda, Hitoshi Murayama, A New Perspective on Cosmic Coincidence Problems. doi 10.1103/Phys Rev Lett.85.4434 (2000) arXiv:astro-ph/0005111 [pdf, ps, other] astro-ph hep-ph hep-th.
- From early DE to late DE by diluting matter potential, Eduardo Guendelman, Ramon Herrera and Pedro Labraña, in preparation.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).