Submitted:
20 June 2024
Posted:
21 June 2024
You are already at the latest version
Abstract
Keywords:
1. Cystic Fibrosis and Related Bacterial Infections
2. An Overview on Main Pathogens of Patients with CF
3. Phage Therapy Overall
4. Phage Therapy in Patients with Cystic Fibrosis
5. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Morrison, C. B.; Markovetz, M. R.; Ehre, C. Mucus, mucins, and cystic fibrosis. Pediatr Pulmonol 2019, 54 (Suppl 3), S84–S96. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ilanga, M.; Simbassa, S. B.; Chirra, B.; Shah, K. N.; Cannon, C. L. Synergistic antimicrobial effects of ibuprofen combined with standard-of-care antibiotics against cystic fibrosis pathogens. Biomedicines 2023, 11, 2936. [Google Scholar] [CrossRef]
- Hallouch, O.; Marinos, J.; Thibault, F.; Vu, K. N.; Chalaoui, J.; Bourgouin, P.; Péloquin, L.; Freire, V.; Tremblay, F.; Chartrand-Lefebvre, C. Cystic fibrosis in the 21st century: what every radiologist should know. Clin Imaging 2022, 84, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Assael, B. M. Cystic fibrosis: a clinical view. Cell Mol Life Sci 2017, 74, 129–140. [Google Scholar] [CrossRef]
- www.genet.sickkids.on.ca. (Accessed 3 June, 2024).
- Lopes-Pacheco, M. CFTR modulators: the changing face of cystic fibrosis in the era of precision medicine. Front Pharmacol 2019, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- O'Sullivan, B. P.; Freedman, S. D. Cystic fibrosis. Lancet 2009, 373, 1891–1904. [Google Scholar] [CrossRef]
- Shanthikumar, S.; Neeland, M. N.; Saffery, R.; Ranganathan, S. Gene modifiers of cystic fibrosis lung disease: A systematic review. Pediatr Pulmonol 2019, 54, 1356–1366. [Google Scholar] [CrossRef]
- Graeber, S. Y.; Renz, D. M.; Stahl, M.; Pallenberg, S. T.; Sommerburg, O.; Naehrlich, L.; Berges, J.; Dohna, M.; Ringshausen, F. C.; Doellinger, F.; et al. Effects of Elexacaftor/Tezacaftor/Ivacaftor therapy on lung clearance index and magnetic resonance imaging in patients with cystic fibrosis and one or two F508del alleles. Am J Respir Crit Care Med 2022, 206, 311–320. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M. CFTR Modulators: The changing face of cystic fibrosis in the era of precision medicine. Front. Pharmacol. 2020, 10, 1662. [Google Scholar] [CrossRef]
- Lopes-Pacheco, M., Sabirzhanova, I., Rapino, D., Morales, M. M., Guggino, W. B., Cebotaru, L. Correctors rescue CFTR mutations in nucleotide-binding domain 1 (NBD1) by modulating proteostasis. Chembiochem 2016, 17((6)), 493–505. [CrossRef] [PubMed]
- Heifets, L. Mycobacterial infections caused by nontuberculous mycobacteria. Semin Respir Crit Care Med 2004, 25, 283–295. [Google Scholar] [CrossRef]
- Schmalstig, A. A.; Wiggins, A.; Badillo, D.; Wetzel, K. S.; Hatfull, G. F.; Braunstein, M. Bacteriophage infection and killing of intracellular. mBio 2024, 15, e0292423. [Google Scholar] [CrossRef]
- Cocorullo, M.; Chiarelli, L. R.; Stelitano, G. Improving protection to prevent bacterial infections: preliminary applications of reverse vaccinology against the main cystic fibrosis pathogens. Vaccines (Basel) 2023, 11, 1221. [Google Scholar] [CrossRef] [PubMed]
- Recchia, D.; Stelitano, G.; Stamilla, A.; Gutierrez, D. L.; Degiacomi, G.; Chiarelli, L. R.; Pasca, M. R. Infections in cystic fibrosis individuals: a review on therapeutic options. Int J Mol Sci 2023, 24, 4635. [Google Scholar] [CrossRef]
- Wnorowska, U.; Łysik, D.; Piktel, E.; Zakrzewska, M.; Okła, S.; Lesiak, A.; Spałek, J.; Mystkowska, J.; Savage, P. B.; Janmey, P.; et al. Ceragenin-mediated disruption of Pseudomonas aeruginosa biofilms. PLoS One 2024, 19, e0298112. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M. D.; Herrmann, J. L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020, 18, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Catherinot, E.; Roux, A. L.; Macheras, E.; Hubert, D.; Matmar, M.; Dannhoffer, L.; Chinet, T.; Morand, P.; Poyart, C.; Heym, B.; et al. Acute respiratory failure involving an R variant of Mycobacterium abscessus. J Clin Microbiol 2009, 47, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Degiacomi, G.; Sammartino, J. C.; Chiarelli, L. R.; Riabova, O.; Makarov, V.; Pasca, M. R. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int J Mol Sci 2019, 20, 5868. [Google Scholar] [CrossRef] [PubMed]
- Gilljam, M.; Scherstén, H.; Silverborn, M.; Jönsson, B.; Ericsson Hollsing, A. Lung transplantation in patients with cystic fibrosis and Mycobacterium abscessus infection. J Cyst Fibros 2010, 9, 272–276. [Google Scholar] [CrossRef]
- Gutiérrez, A. V.; Viljoen, A.; Ghigo, E.; Herrmann, J. L.; Kremer, L. Glycopeptidolipids, a double-edged sword of the Mycobacterium abscessus complex. Front Microbiol 2018, 9, 1145. [Google Scholar] [CrossRef]
- Howard, S. T.; Rhoades, E.; Recht, J.; Pang, X.; Alsup, A.; Kolter, R.; Lyons, C. R.; Byrd, T. F. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology (Reading) 2006, 152 Pt 6, 1581–1590. [Google Scholar] [CrossRef]
- Catherinot, E.; Clarissou, J.; Etienne, G.; Ripoll, F.; Emile, J. F.; Daffé, M.; Perronne, C.; Soudais, C.; Gaillard, J. L.; Rottman, M. Hypervirulence of a rough variant of the Mycobacterium abscessus type strain. Infect Immun 2007, 75, 1055–1058. [Google Scholar] [CrossRef]
- Cocorullo, M.; Bettoni, C.; Foiadelli, S.; Stelitano, G. Moles of Molecules against Mycobacterium abscessus. Future Pharmacol. 2023, 3, 637–663. [Google Scholar] [CrossRef]
- Floto, R. A., Olivier, K. N., Saiman, L., Daley, C. L., Herrmann, J. L., Nick, J. A., Noone, P. G., Bilton, D., Corris, P., Gibson, R. L., Hempstead, S. E., Koetz, K., Sabadosa, K. A., Sermet-Gaudelus, I., Smyth, A. R., van Ingen, J., Wallace, R. J., Winthrop, K. L., Marshall, B. C., Haworth, C. S., US Cystic Fibrosis Foundation and European Cystic Fibrosis Society. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016, 71 Suppl 1:i1–i22. [CrossRef]
- Neff, S. L.; Doing, G.; Reiter, T.; Hampton, T. H.; Greene, C. S.; Hogan, D. Pseudomonas aeruginosa transcriptome analysis of metal restriction in ex vivo cystic fibrosis sputum. Microbiol Spectr 2024, 12, e0315723. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Zhu, J.; Xiao, Y. Antibacterial peptide Reg4 ameliorates Pseudomonas aeruginosa-induced pulmonary inflammation and fibrosis. Microbiol Spectr 2024, 12, e0390523. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa - Mechanisms, epidemiology and evolution. Drug Resist Updat 2019, 44, 100640. [Google Scholar] [CrossRef]
- Tigabu, A.; Getaneh, A. Staphylococcus aureus, ESKAPE bacteria challenging current health care and community settings: a literature review. Clin Lab 2021, 67. [Google Scholar] [CrossRef] [PubMed]
- Naorem, R. S.; Pangabam, B. D.; Bora, S. S.; Goswami, G.; Barooah, M.; Hazarika, D. J.; Fekete, C. Identification of putative vaccine and drug targets against the methicillin-resistant Staphylococcus aureus by reverse vaccinology and subtractive genomics Approaches. Molecules 2022, 27, 2083. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R. J.; Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 2008, 46 (Suppl 5), S350–359. [Google Scholar] [CrossRef]
- Slack, M. P. E.; Cripps, A. W.; Grimwood, K.; Mackenzie, G. A.; Ulanova, M. Invasive Haemophilus influenzae Infections after 3 decades of Hib protein conjugate vaccine use. Clin Microbiol Rev 2021, 34, e0002821. [Google Scholar] [CrossRef] [PubMed]
- Matos, G. R.; Feliciano, J. R.; Leitão, J. H. Non-coding regulatory sRNAs from bacteria of the Burkholderia cepacia complex. Appl Microbiol Biotechnol 2024, 108, 280. [Google Scholar] [CrossRef]
- Lord, R.; Jones, A. M.; Horsley, A. Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. Cochrane Database Syst Rev 2020, 4, CD009529. [Google Scholar] [CrossRef] [PubMed]
- Green, S. I.; Clark, J. R.; Santos, H. H.; Weesner, K. E.; Salazar, K. C.; Aslam, S.; Campbell, J. W.; Doernberg, S. B.; Blodget, E.; Morris, M. I.; et al. A retrospective, observational study of 12 cases of expanded-access customized phage therapy: production, characteristics, and clinical outcomes. Clin Infect Dis 2023, 77, 1079–1091. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R. M.; Smith, B. E.; Cristinziano, M.; Freeman, K. G.; Jacobs-Sera, D.; Belessis, Y.; Whitney Brown, A.; Cohen, K. A.; Davidson, R. M.; van Duin, D.; et al. Phage therapy of mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin Infect Dis 2023, 76, 103–112. [Google Scholar] [CrossRef]
- Singh, J.; Yeoh, E.; Fitzgerald, D. A.; Selvadurai, H. A systematic review on the use of bacteriophage in treating Staphylococcus aureus and Pseudomonas aeruginosa infections in cystic fibrosis. Paediatr Respir Rev 2023, 48, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Cos, P.; Maes, L.; Nelis, H. J.; Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011, 55, 2655–2661. [Google Scholar] [CrossRef]
- Moreau-Marquis, S.; O'Toole, G. A.; Stanton, B. A. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Respir Cell Mol Biol 2009, 41, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Nikolich, M. P.; Filippov, A. A. Bacteriophage therapy: developments and directions. Antibiotics (Basel) 2020, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Koutsokera, A.; Csajka, C.; Blanchon, S.; Sauty, A.; Brunet, J. F.; von Garnier, C.; Resch, G.; Guery, B. Phage therapy for pulmonary infections: lessons from clinical experiences and key considerations. Eur Respir Rev 2022, 31, 220121. [Google Scholar] [CrossRef]
- Tamma, P. D.; Souli, M.; Billard, M.; Campbell, J.; Conrad, D.; Ellison, D. W.; Evans, B.; Evans, S. R.; Greenwood-Quaintance, K. E.; Filippov, A. A.; et al. Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials 2022, 23, 1057. [Google Scholar] [CrossRef]
- Hatfull, G. F. Phage Therapy for Nontuberculous Mycobacteria: Challenges and Opportunities. Pulm Ther 2023, 9, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Ling, K. M.; Stick, S. M.; Kicic, A. Pulmonary bacteriophage and cystic fibrosis airway mucus: friends or foes? Front Med (Lausanne) 2023, 10, 1088494. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Le, T.; Korn, A. M.; Peterson, H. N.; Liu, M.; Gonzalez, C. F.; Gill, J. J. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J Virol 2023, 97, e0085023. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gallardo, M. J.; Villicaña, C.; Yocupicio-Monroy, M.; Alcaraz-Estrada, S. L.; León-Félix, J. Current knowledge in the use of bacteriophages to combat infections caused by Pseudomonas aeruginosa in cystic fibrosis. Folia Microbiol (Praha) 2023, 68, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J. S.; Hajama, H.; Akong, K.; Jordan, M.; Stout, D.; Rowe, R. S.; Conrad, D. J.; Hingtgen, S.; Segall, A. M. Bacteriophage therapy of multidrug-resistant achromobacter in an 11-year-old boy with cystic fibrosis assessed by metagenome analysis. Pediatr Infect Dis J 2023, 42, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Chung, K. M.; Liau, X. L.; Tang, S. S. Bacteriophages and their host range in multidrug-resistant bacterial disease treatment. Pharmaceuticals (Basel) 2023, 16, 1467. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, E. A.; Wright, R. C. T.; Shears, R. K.; Wong, J. K. L.; Hassan, A.; Hall, J. P. J.; Kadioglu, A.; Fothergill, J. L. Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo. Nat Commun 2024, 15, 1547. [Google Scholar] [CrossRef] [PubMed]
- Hatfull, G. F.; Dedrick, R. M.; Schooley, R. T. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Lauman P, Dennis JJ. Advances in phage therapy: targeting the Burkholderia cepacia complex. Viruses 2021, 13, 1331. [CrossRef]
- Yao, G., Le, T., Korn, A. M., Peterson, H. N., Liu, M., Gonzalez, C. F., Gill, J. J. Phage Milagro: a platform for engineering a broad host range virulent phage for Burkholderia. J. Virol., 2003, 97(11), e0085023. [CrossRef]
- Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., Sullivan, M.B. Lysogeny in nature: mechanisms, impact and ecology of temperate phage. ISME J 2017, 11, 1511–1520. [CrossRef]
- Lauman, P., Dennis, J. J. Synergistic interactions among Burkholderia cepacia complex-targeting phages reveal a novel therapeutic role for lysogenization-capable phages. Microbiol. Spectr. 2023, 11(3), e0443022. [CrossRef]
- Nordstrom, H. R., Griffith, M. P., Rangachar Srinivasa, V., Wallace, N. R., Li, A., Cooper, V. S., Shields, R. K., Van Tyne, D. Harnessing the Diversity of Burkholderia spp. Prophages for Therapeutic Potential. Cells, 2024,. 13(5), 428. [CrossRef]
- Ipoutcha, T., Racharaks, R., Huttelmaier, S., Wilson, C. J., Ozer, E. A., Hartmann, E. M. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol. Spectr. 2024, 12(3), e0289723. [CrossRef]
- Tortuel, D., Tahrioui, A., David, A., Cambronel, M., Nilly, F., Clamens, T., Maillot, O., Barreau, M., Feuilloley, M. G. J., Lesouhaitier, O., Filloux, A., Bouffartigues, E., Cornelis, P., Chevalier, S. Pf4 Phage Variant Infection Reduces Virulence-Associated Traits in Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10(5), e0154822. [CrossRef]
- Prokopczuk, F. I., Im, H., Campos-Gomez, J., Orihuela, C. J., Martínez, E.. Engineered Superinfective Pf Phage Prevents Dissemination of Pseudomonas aeruginosa in a Mouse Burn Model. mBio, 2023, 14(3), e0047223. [CrossRef]
- Strathdee, S. A.; Hatfull, G. F.; Mutalik, V. K.; Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 2023, 186, 17–31. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F. L.; Barr, J. J. Phage therapy in the postantibiotic era. Clin Microbiol Rev 2019, 32, e00066–18. [Google Scholar] [CrossRef] [PubMed]
- Hibstu, Z.; Belew, H.; Akelew, Y.; Mengist, H. M. Phage therapy: a different approach to fight bacterial infections. Biologics 2022, 16, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Holm, A. E.; Schultz, H. H. L.; Johansen, H. K.; Pressler, T.; Lund, T. K.; Iversen, M.; Perch, M. Bacterial re-colonization occurs early after lung transplantation in cystic fibrosis patients. J Clin Med 2021, 10, 1275. [Google Scholar] [CrossRef]
- Petrovic Fabijan, A.; Lin, R. C. Y.; Ho, J.; Maddocks, S.; Ben Zakour, N. L.; Iredell, J. R.; Team, W. B. T. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol 2020, 5, 465–472. [Google Scholar] [CrossRef]
- Dedrick, R. M.; Abad, L.; Storey, N.; Kaganovsky, A. M.; Smith, B. E.; Aull, H. A.; Cristinziano, M.; Morkowska, A.; Murthy, S.; Loebinger, M. R.; et al. The problem of Mycobacterium abscessus complex: multi-drug resistance, bacteriophage susceptibility and potential healthcare transmission. Clin Microbiol Infect 2023, 29, 1335.e1339–1335e1316. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dąbrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogóż, P.; Kłak, M.; Wojtasik, E.; et al. Clinical aspects of phage therapy. Adv Virus Res 2012, 83, 73–121. [Google Scholar] [CrossRef]
- Maddocks, S.; Fabijan, A. P.; Ho, J.; Lin, R. C. Y.; Ben Zakour, N. L.; Dugan, C.; Kliman, I.; Branston, S.; Morales, S.; Iredell, J. R. Bacteriophage therapy of ventilator-associated pneumonia and empyema caused by. Am J Respir Crit Care Med 2019, 200, 1179–1181. [Google Scholar] [CrossRef]
- Eskenazi, A.; Lood, C.; Wubbolts, J.; Hites, M.; Balarjishvili, N.; Leshkasheli, L.; Askilashvili, L.; Kvachadze, L.; van Noort, V.; Wagemans, J.; et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 2022, 13, 302. [Google Scholar] [CrossRef]
- LaVergne, S.; Hamilton, T.; Biswas, B.; Kumaraswamy, M.; Schooley, R. T.; Wooten, D. Phage therapy for a multidrug-resistant acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 2018, 5, ofy064. [Google Scholar] [CrossRef] [PubMed]
- Law, N.; Logan, C.; Yung, G.; Furr, C. L.; Lehman, S. M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P.; et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Merabishvili, M.; Caudron, E.; Lannoy, D.; Van Simaey, L.; Duyvejonck, H.; Guillemain, R.; Thumerelle, C.; Podglajen, I.; Compain, F.; et al. A case of phage therapy against pandrug-resistant Achromobacter xylosoxidans in a 12-year-old lung-transplanted cystic fibrosis patient. Viruses 2021, 13. [Google Scholar] [CrossRef]
- Gainey, A. B.; Burch, A. K.; Brownstein, M. J.; Brown, D. E.; Fackler, J.; Horne, B.; Biswas, B.; Bivens, B. N.; Malagon, F.; Daniels, R. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr Pulmonol 2020, 55, 2990–2994. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, N.; Zhvaniya, P.; Balarjishvili, N.; Bolkvadze, D.; Nadareishvili, L.; Nizharadze, D.; Wittmann, J.; Rohde, C.; Kutateladze, M. Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Res Microbiol 2018, 169, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Winzig, F.; Gandhi, S.; Lee, A.; Würstle, S.; Stanley, G. L.; Capuano, I.; Neuringer, I.; Koff, J. L.; Turner, P. E.; Chan, B. K. Inhaled bacteriophage therapy for multi-drug resistant Achromobacter. Yale J Biol Med 2022, 95, 413–427. [Google Scholar]
- Haidar, G.; Chan, B. K.; Cho, S. T.; Hughes Kramer, K.; Nordstrom, H. R.; Wallace, N. R.; Stellfox, M. E.; Holland, M.; Kline, E. G.; Kozar, J. M.; et al. Phage therapy in a lung transplant recipient with cystic fibrosis infected with multidrug-resistant Burkholderia multivorans. Transpl Infect Dis 2023, 25, e14041. [Google Scholar] [CrossRef]
- Aslam, S.; Courtwright, A. M.; Koval, C.; Lehman, S. M.; Morales, S.; Furr, C. L.; Rosas, F.; Brownstein, M. J.; Fackler, J. R.; Sisson, B. M.; et al. Early clinical experience of bacteriophage therapy in 3 lung transplant recipients. Am J Transplant 2019, 19, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Dedrick, R. M.; Guerrero-Bustamante, C. A.; Garlena, R. A.; Russell, D. A.; Ford, K.; Harris, K.; Gilmour, K. C.; Soothill, J.; Jacobs-Sera, D.; Schooley, R. T.; et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 2019, 25, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Nick, J. A., Dedrick, R. M., Gray, A. L., Vladar, E. K., Smith, B. E., Freeman, K. G., Malcolm, K. C., Epperson, L. E., Hasan, N. A., Hendrix, J., Callahan, K., Walton, K., Vestal, B., Wheeler, E., Rysavy, N. M., Poch, K., Caceres, S., Lovell, V. K., Hisert, K. B., de Moura, V. C., et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell. 2022, 185(11), 1860–18740.e12. [CrossRef]
- Rossi, E., La Rosa, R., Bartell, J.A. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [CrossRef]
- Menon, N. D., Penziner, S., Montaño, E. T., Zurich, R., Pride, D. T., Nair, B. G., et al. Increased innate immune susceptibility in hyperpigmented bacteriophage-resistant mutants of Pseudomonas aeruginosa. Antimicrob. Agents. Chemother. 2022, 66(8):e0023922. [CrossRef]
- Hahn, A., Sami, I., Chaney, H., Koumbourlis, A. C., Del Valle Mojica, C., Cochrane, C., Chan, B. K., Koff, J. L. Bacteriophage therapy for pan-drug-resistant Pseudomonas aeruginosa in two persons with cystic fibrosis. J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231188243. [CrossRef]
- Law, N., Logan, C., Yung, G., Furr, C. L., Lehman, S. M., Morales, S., Rosas, F., Gaidamaka, A., Bilinsky, I., Grint, P., Schooley, R. T., Aslam, S. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019, 47, 665–668. [CrossRef]
- Bradley, J. S., Hajama, H., Akong, K., Jordan, M., Stout, D., Rowe, R. S., Conrad, D. J., Hingtgen, S., Segall, A. M. Bacteriophage Therapy of Multidrug-resistant Achromobacter in an 11-Year-old Boy With Cystic Fibrosis Assessed by Metagenome Analysis. Pediatr. Infect. Dis. J. 2023, 42, 754–759. [CrossRef]
- Khosravi, A.; Chen, Q.; Echterhof, A.; Koff, J. L.; Bollyky, P. L. Phage therapy for respiratory infections: opportunities and challenges. Lung 2024. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Suntres, Z. E.; Omri, A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother 2009, 64, 317–325. [Google Scholar] [CrossRef]
- Leal, J.; Smyth, H. D. C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm 2017, 532, 555–572. [Google Scholar] [CrossRef]
- Pires, D. P.; Oliveira, H.; Melo, L. D.; Sillankorva, S.; Azeredo, J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 2016, 100, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Kunz Coyne, A. J.; Stamper, K.; Bleick, C.; Kebriaei, R.; Lehman, S. M.; Rybak, M. J. Synergistic bactericidal effects of phage-enhanced antibiotic therapy against MRSA biofilms. Microbiol Spectr 2024, 12, e0321223. [Google Scholar] [CrossRef] [PubMed]
- Loganathan, A.; Bozdogan, B.; Manohar, P.; Nachimuthu, R. Phage-antibiotic combinations in various treatment modalities to manage MRSA infections. Front Pharmacol 2024, 15, 1356179. [Google Scholar] [CrossRef]
- Azam, A. H.; Sato, K.; Miyanaga, K.; Nakamura, T.; Ojima, S.; Kondo, K.; Tamura, A.; Yamashita, W.; Tanji, Y.; Kiga, K. Selective bacteriophages reduce the emergence of resistant bacteria in bacteriophage-antibiotic combination therapy. Microbiol Spectr 2024, e0042723. [Google Scholar] [CrossRef]
- Luo, J.; Liu, M.; Ai, W.; Zheng, X.; Liu, S.; Huang, K.; Zhang, C.; Li, Q.; Luo, C. Synergy of lytic phage pB23 and meropenem combination against carbapenem-resistant. Antimicrob Agents Chemother 2024, e0044824. [Google Scholar] [CrossRef]
- Wang, W. X.; Wu, J. Z.; Zhang, B. L.; Yu, J. Y.; Han, L. M.; Lu, X. L.; Li, H.; Fu, S. Y.; Ren, Y. Y.; Dong, H.; et al. Phage therapy combats pandrug-resistant Acinetobacter baumannii infection safely and efficiently. Int J Antimicrob Agents 2024, 107220. [Google Scholar] [CrossRef]
- Krut, O.; Bekeredjian-Ding, I. Contribution of the immune response to phage therapy. J Immunol 2018, 200, 3037–3044. [Google Scholar] [CrossRef] [PubMed]
- Bichet, M. C.; Chin, W. H.; Richards, W.; Lin, Y. W.; Avellaneda-Franco, L.; Hernandez, C. A.; Oddo, A.; Chernyavskiy, O.; Hilsenstein, V.; Neild, A.; et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 2021, 24, 102287. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Baker, K.; Padman, B. S.; Patwa, R.; Dunstan, R. A.; Weston, T. A.; Schlosser, K.; Bailey, B.; Lithgow, T.; Lazarou, M.; et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Du, F.; Long, M.; Li, P. Limitations of phage therapy and corresponding optimization strategies: a review. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- www.clinicaltrials.gov/study/NCT04596319?cond=Cystic%20Fibrosis&aggFilters=status:com&term=AP-PA02&rank=1&tab=results. (Accessed 3 June, 2024).
- www.clinicaltrials.gov/search?cond=Cystic%20Fibrosis&term=Bacteriophage%20Therapy&limit=25&page=1. (Accessed 3 June, 2024).
| ClinicalTrials.gov ID | Official title | Pathogen | Type of phage(s) | Current Status | Last update posted |
|---|---|---|---|---|---|
| NCT04684641 | CYstic Fibrosis bacterioPHage Study at Yale (CYPHY): A Single-site, Randomized, Double-blind, Placebo-controlled Study of Bacteriophage Therapy YPT-01 for Pseudomonas Aeruginosa Infections in Adults With Cystic Fibrosis | P. aeruginosa | single phage | Completed | 2023-11-18 |
| NCT01818206 | Bacteriophages Effects on Pseudomonas Aeruginosa Presents in Sputum of Cystic Fibrosis (CF) Patients | P. aeruginosa | cocktail of 10 phages | Completed | 2013-09-05 |
| NCT05453578 | A Phase 1b/2, Multi-Centered, Randomized, Double-Blind, Placebo-Controlled Trial of the Safety and Microbiological Activity of a Single Dose of Bacteriophage Therapy in Cystic Fibrosis Subjects Colonized With Pseudomonas Aeruginosa | P. aeruginosa | cocktail of 4 phages | Recruiting | 2024-06-03 |
| NCT05010577 | A Phase 1b/2a, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate Nebulized Bacteriophage Treatment in Outpatient Adult Cystic Fibrosis (CF) Subjects With Chronic Pseudomonas Aeruginosa (PsA) Pulmonary Infection | P. Aeruginosa | single phage | Active, not recruiting | 2023-10-18 |
| NCT06262282 | A Prospective Standardized Assessment of People With Cystic Fibrosis and Non-tuberculosis Mycobacteria Pulmonary Disease Undergoing Treatment With Mycobacteriophage (POSTSTAMP) | Non-tuberculous mycobacteria (NTM) | Enrolling by invitation | 2024-02-16 | |
| NCT04596319 | A Phase 1b/2a, Multi-Center, Double-Blind, Randomized, Placebo-Controlled, Single and Multiple Ascending Dose Study to Evaluate the Safety and Tolerability of AP-PA02 Multi-Phage Therapeutic Candidate for Inhalation in Subjects With Cystic Fibrosis and Chronic Pulmonary Pseudomonas Aeruginosa (Pa) Infection | P. Aeruginosa | multi-phage cocktail | Completed | 2024-01-31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
