Submitted:
14 June 2024
Posted:
17 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Nador is at a high risk of earthquakes due to its location on the Mediterranean coast and proximity to fault lines;
- Existing earthquake monitoring systems in Nador are inadequate to effectively
- assess and mitigate earthquake risks;
- The vulnerabilities of Nador, as a coastal city, are exacerbated by potential earthquake risks, leading to a greater threat of damage and casualties;
- Lessons learned from monitoring earthquake risks in Nador can be applied to improve preparedness in other vulnerable urban area.
2. Materials and Methods
2.1. Study Area
2.2. Seismic Data
2.3. Geomorphologic, Stratigraphic and Geologic Data
2.4. Topography Data
2.5. Land Cover Data
2.6. Method for Estimating Seismic Risks Intensity
2.7. Method to Evaluate Vulnerability Index
3. Results
3.1. Seismic Intensity
3.2. Landslides Risks
3.3. Spatial Vulnerability Index
- Earthquake Preparedness: Implementing robust earthquake preparedness measures, including building codes designed for seismic zones, public awareness campaigns, and emergency response plans;
- Landslide Mitigation: Identifying and addressing areas prone to landslides through slope stabilization techniques, land-use planning that avoids high-risk zones, and early warning systems;
- Vulnerability Assessment: Continuously evaluating the vulnerability of buildings and infrastructure based on their materials, construction types, and location within the identified vulnerability zones.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CLC | Corine Land Cover |
| SVI | Socioeconomic Vulnerability Index |
| Vi | Vulnerability Index |
References
- Chaaraoui, A.; Chourak, M.; Hamdache, M.; Peláez, J. A.; Henares, J. Amplification analysis at Nador city and surrounding area (NE of Morocco). Journal of African Earth Sciences. 2022, 196, 3–13. [CrossRef]
- Marsh, M. L. Application of accelerated bridge construction connections in moderate-to-high seismic regions. Transportation 415 Research Board: Washington, USA. 2011, 698, 3–13.
- Tsushima, H.; Ohta, Y. Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. Journal of Disaster Research. 2014, 9, 339–357. [CrossRef]
- Nicholls, RJ.; Hanson, SE.; Lowe, JA.; Slangen, AB.; Wahl. T.; Hinkel, J.; Long, AJ. Integrating new sea-level scenarios into coastal risk and adaptation assessments: An ongoing process. Wiley Interdisciplinary Reviews: Climate Change. 2021, 12, 1–27. [CrossRef]
- Yariyan, P.; Zabihi, H.; Wolf, ID.; Karami, M.; Amiriyan, S. Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction. 2020, 50, 1–17. [CrossRef]
- Mao, Y.; Li, Y.; Teng, F.; Sabonchi, A.K.S.; Azarafza, M.; Zhang, M. Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water. 2024, 16, 1–28. [CrossRef]
- Brückl, E.; Peter, C.; Stefan, M.; Rita, M. Seismological Data Acquisition and Analysis within the Scope of Citizen Science. In Earthquakes - From Tectonics to Buildings, 2nd ed.; Walter S.; IntechOpen: Catholic University of El Salvador, El Salvador. 2021, 2—21. [CrossRef]
- Haldon, J.; Rosen, A. Society and environment in the East Mediterranean ca 300–1800 CE. Problems of resilience, adaptation and transformation. Introductory essay. Human Ecology 2018, 46, 275–290. [CrossRef]
- Bankoff, G.; Frerks, G.; Hilhorst, T.; Hilhorst, D. Mapping vulnerability: disasters, development, and people. Earthscan: Sterling, USA 2004, 128—183.
- Fekete, A.; Asadzadeh, A.; Ghafory-Ashtiany, M.; Amini-Hosseini, K.; Hetkämper, C.; Moghadas, M.; Ostadtaghizadeh, A.; Rohr, A.; and Kötter, T. Pathways for advancing integrative disaster risk and resilience management in Iran: Needs, challenges and opportunities. International Journal of Disaster Risk Reduction. 2020, 49, 1–12. [CrossRef]
- Breaking the cycle of risk. Available online: https://www.undrr.org/building-risk-knowledge/ (accessed on 4h: 41 min pm, 4th, March 2024).
- Cohen, A.V. Overview and definition of risk: Its assessment and management. Environment International. 1984, 10, 359–366. [CrossRef]
- Gibbs, M. T.; Browman, H. I. Risk assessment and risk management: a primer for marine scientists. Journal of Marine Science. 2015, 72, 992—996. [CrossRef]
- Varnes, DJ. Landslide hazard zonation: a review of principles and practice. UNESCO: Paris, French. 1984, 63 p.
- Hantz, D.; Corominas, J.; Crosta, G. B.; Jaboyedoff, M. Definitions and concepts for quantitative rockfall hazard and risk analysis. Geosciences. 2021, 11, 2–16. [CrossRef]
- Smith, K. Environmental hazards: assessing risk and reducing disaster. Routledge: London, UK. 2013, 504 p. [CrossRef]
- Alexander, D. Natural Disasters. Routledge: London, UK. 1993, 654 p.
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge: London, UK. 2004, 496 p.
- Aksha, S.K.; Juran, L.; Resler, L.M.; Zhang, Y. An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index. International Journal of Disaster Risk 2019, 10, 103–116. [CrossRef]
- Aven, T. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Analysis: An International Journal 2011, 31, 515–522. [CrossRef]
- Wolf, S.; Hinkel, J.; Hallier, M.; Bisaro, A.; Lincke, D.; Ionescu, C.; Klein, R.J.T. Clarifying vulnerability definitions and assessments using formalisation. International Journal of Climate Change Strategies and Management 2013, 5, 54–70. [CrossRef]
- Kreimer, A.; Arnold, M.; Carlin, A. Building safer cities: the future of disaster risk. World Bank: Washington, USA. 2003, 293 p.
- Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience. Routledge: London, UK. 2003, 224 p.
- Kelman, I. Lost for words amongst disaster risk science vocabulary? International Journal of Climate Change Strategies and Management 2018, 9, 281–291. [CrossRef]
- Maskrey, A. Disaster mitigation: a community-based approach. Oxfam: Oxford, GB. 1989, 100 p.
- Neria, Y.; Nandi, A.; Galea, S. Post-traumatic stress disorder following disasters: a systematic review. Psychological medicine 2008, 38, 467—480. [CrossRef]
- Norris, F. H.; Stevens, S. P.; Pfefferbaum, B.; Wyche, K. F.; Pfefferbaum, R. L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American journal of community psychology 2008, 41, 127—150. [CrossRef]
- Kellenberg, D.; Mobarak, A. M. The economics of natural disasters. Annual Review of Resource Economics 2011, 3, 297–312. [CrossRef]
- World Bank. World Bank Annual Report 2020. The World Bank: Paris, French 2020, 80 p.
- Sharma, B.; and Sandhu, M. Earthquake Response and Its Implications Towards the Structural Design Codes for Himalayan Range and Adjoining Regions of India. Geohazards: Analysis, Modelling and Forecasting. 2023, 53, 89–101.
- Green, H. K.; Lysaght, O.; Saulnier, D. D.; Blanchard, K.; Humphrey, A.; Fakhruddin, B.; and Murray, V. Challenges with disaster mortality data and measuring progress towards the implementation of the Sendai framework. International Journal of Disaster Risk Science. 2019, 10, 449–461. [CrossRef]
- Meerow, S.; Newell, J. P.; and Stults, M. Defining urban resilience: A review. Landscape and Urban Planning. 2016, 147, 38–49. [CrossRef]
- Kreibich, H.; Van Loon, A. F.; Schröter, K.; et al. The challenge of unprecedented floods and droughts in risk management. Nature. 2022, 608, 80–86. [CrossRef]
- Scheidel, A.; Del Bene, D.; Liu, J.; Navas, G.; Mingorría, S.; Demaria, F.; et al. Environmental conflicts and defenders: A global overview. Global Environmental Change. 2020, 63, 1–12. [CrossRef]
- Poujol, A.; Ritz, JF.; Tahayt, A.; Vernant, P.; Condomines, M.; Blard, PH.; Billant, J.; Vacher, L.; Tibari B.; Hni L.; Idrissi, AK. Active tectonics of the Northern Rif (Morocco) from geomorphic and geochronological data. Journal of Geodynamics. 2014, 77, 70–88. [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 2006, 111, 163–205. [CrossRef]
- Benzaggagh, M.; Mokhtari, A.; Rossi, P.; Michard, A.; Maz, A.E.; Chalouan, A.; Saddiqi, O.; Rjimati, E.C. Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants? Journal of Geodynamics. 2014, 77, 4–21. [CrossRef]
- Nocquet, JM.; Calais, E. Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and applied geophysics. 2004, 161, 661—681. [CrossRef]
- Nocquet, JM. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics. 2012, 579, 220–242. [CrossRef]
- Benamrane, M.; Németh, K.; Jadid, M.; Talbi, E.H. Geomorphological Classification of Monogenetic Volcanoes and Its Implication to Tectonic Stress Orientation in the Middle Atlas Volcanic Field (Morocco). Land. 2022, 11, 1–35. [CrossRef]
- Huggett, R.; Shuttleworth, E.; Fundamentals of geomorphology. Routledge: London, UK 682 p.
- Naimi, M.N.; Cherif, A. Sedimentology and ichnology of the mid-Cretaceous succession of the Ouled Nail Mounts (Eastern Saharan Atlas, Algeria). Geologia Croatica. 2021, 74, 209–223. [CrossRef]
- Raji, O.; Dezileau, L.; Tessier, B.; Niazi, S.; Snoussi, M.; Von Grafenstein, U.; Poujol, A. Climate and tectonic-driven sedimentary infill of a lagoon as revealed by high resolution seismic and core data (the Nador lagoon, NE Morocco). Marine Geology. 2018, 398, 99–111. [CrossRef]
- Egenhofer, M.J. Reasoning about binary topological relations. Marine Geology. 1991, 525, 141–160. [CrossRef]
- Guo, Y.; Liu, S.; Qiu, L.; Zhang, C.; Shan, W. Spatial stratified heterogeneity analysis of field scale permafrost in Northeast China based on optimal parameters-based geographical detector. PLOS ONE. 2024, 19, 1–22. [CrossRef]
- Petrişor, A.I.; Sirodoev, I.; Ianoş; I. Trends in the national and regional transitional dynamics of land cover and use changes in Romania. Remote Sensing. 2020, 12, 1–23. [CrossRef]
- Li, SQ. Comparison of RC girder bridge and building vulnerability considering empirical seismic damage. Ain Shams engineering journal. 2024, 15, 1–13. [CrossRef]
- Flanagan, B. E.; Gregory, E. W.; Hallisey, E. J.; Heitgerd, J. L.; and Lewis, B. A social vulnerability index for disaster management. Journal of homeland security and emergency management. 2011, 8, 1–22. [CrossRef]
- Iervolino, I.; Baraschino, R.; Belleri, A.; Cardone, D.; Corte, GD.; Franchin, P.; Lagomarsino, S.; Magliulo, G.; Marchi, A.; Penna, A.; Viggiani, LR. Seismic fragility of Italian code-conforming buildings by multi-stripe dynamic analysis of three-dimensional structural models. Journal of Earthquake Engineering. 2023, 27, 4415–4448. [CrossRef]
- Milutinovic, Z.V.; Trendafiloski, G.S. Risk-UE An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014, WP4: Vulnerability of current buildings. 2003, 1–111.
- Romero-Andrade, R.; Trejo-Soto, ME.; Nayak, K.; Hernández-Andrade, D.; Bojorquez-Pacheco N. Lineament analysis as a seismic precursor: the El Mayor Cucapah earthquake of April 4, 2010 (MW7.2), Baja California, Mexico. Geodesy and Geodynamics. 2023, 14, 121–129. [CrossRef]
- Lungu, E.; ksendal, B. Optimal harvesting from interacting populations in a stochastic environment. Geodesy and Geodynamics. 2001, 7, 527–539. [CrossRef]
- Meng, Q.; Smith, SA.; Rodgers, J. Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA. GeoHazards. 2024, 5, 364–373. [CrossRef]













| Typology | Description | min VI, BTM | VI-, BTM | VI*, BTM | VI+, BTM | VImax, BTM |
|---|---|---|---|---|---|---|
| M1.1 | Rubble stone, fieldstone | 0.62 | 0.81 | 0.873 | 0.98 | 1.02 |
| M1.2 | Simple stone | 0.46 | 0.65 | 0.74 | 0.83 | 1.02 |
| M1.3 | Massive stone | 0.3 | 0.49 | 0.616 | 0.793 | 0.86 |
| M2 | Adobe | 0.62 | 0.687 | 0.84 | 0.98 | 1.02 |
| M3.1 | Wooden slabs | 0.46 | 0.65 | 0.74 | 0.83 | 1.02 |
| M3.2 | Masonry vaults | 0.46 | 0.65 | 0.776 | 0.953 | 1.02 |
| M3.3 | Composite steel and masonry slabs | 0.46 | 0.527 | 0.704 | 0.83 | 1.02 |
| M3.4 | Reinforced concrete slabs | 0.3 | 0.49 | 0.616 | 0.793 | 0.86 |
| M4 | Reinforced or confined masonry walls | 0.14 | 0.33 | 0.451 | 0.633 | 0.7 |
| M5 | Overall strengthened | 0.3 | 0.49 | 0.694 | 0.953 | 1.02 |
| RC1 | Concrete Moment Frames | -0.02 | 0.047 | 0.442 | 0.8 | 1.02 |
| RC2 | Concrete shear walls | -0.02 | 0.047 | 0.386 | 0.67 | 0.86 |
| RC3.1 | Regularly infilled walls | -0.02 | 0.007 | 0.402 | 0.76 | 0.98 |
| RC3.2 | Irregular frames | 0.06 | 0.127 | 0.522 | 0.88 | 1.02 |
| RC4 | RC Dual systems (RC frame and wall) | -0.02 | 0.047 | 0.386 | 0.67 | 0.86 |
| RC5 | Precast Concrete Tilt-Up Walls | 0.14 | 0.207 | 0.384 | 0.51 | 0.7 |
| RC6 | Precast C. Frames, C. shear walls | 0.3 | 0.367 | 0.544 | 0.67 | 0.86 |
| S1 | Steel Moment Frames | -0.02 | 0.467 | 0.363 | 0.64 | 0.86 |
| S2 | Steel braced Frames | -0.02 | 0.467 | 0.287 | 0.48 | 0.7 |
| S3 | Steel frame+unreinf. mas. infill walls | 0.14 | 0.33 | 0.484 | 0.64 | 0.86 |
| S4 | Steel frame+cast-in-place shear walls | -0.02 | 0.047 | 0.224 | 0.35 | 0.54 |
| S5 | Steel and RC composite system | -0.02 | 0.257 | 0.402 | 0.72 | 1.02 |
| W | Wood structures | 0.14 | 0.207 | 0.447 | 0.64 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
