Submitted:
16 June 2024
Posted:
17 June 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Background of the Study
Data and Methodology
Research Design
Specification of the Model
Empirical Results and Discussion
Healthcare Expenditure Scenario in SAARC Region
| Healthcare Expenditure Indicators | World | SAARC |
| Current health expenditure(CHE) as percent of GDP | 10.89 | 3.05 |
| Current health expenditure per capita USD | 1535 | 189 |
| Current health expenditure per capita USD | 1177 | 56 |
| OOP payments for health as percent of CHE | 16.36 | 53.37 |
| OOP payments for health per capita USD | 193 | 101 |
| Domestic general government health expenditure as percent of current health expenditure | 63.42 | 34.55 |
| Domestic general government health expenditure per capita in USD | 956 | 66 |
Panel Unit Root Test Results
Descriptive Statistics
Appropriate Model Section Test
Estimated Result of Panel Regression Model
Estimated Result of Fixed Effect Model
Estimated Result of Random Effect Model
Conclusion and Recommendations
References
- Adams, R. H., Jr (2011). Evaluating the economic impact of international remittances on developing countries using household surveys: A literature review. Journal of Development Studies, 47, 809–828. [CrossRef]
- Antonakis, J., Bastardoz, N., & Rönkkö, M. (2021). On ignoring the random effects assumption in multilevel models: Review, critique, and recommendations. Organizational Research Methods, 24(2), 443-483.
- Asante, A., Price, J., Hayen, A., Jan, S., & Wiseman, V. (2016). Equity in health care financing in low-and middle-income countries: a systematic review of evidence from studies using benefit and financing incidence analyses. PloS one, 11(4), e0152866.
- Baltagi, B. H. (2013). Econometrics of Panel Data. Chichester.
- Beck, N. (2001). Time-series–cross-section data: What have we learned in the past few years? Annual review of political science, 4(1), 271-293.
- Berloffa, G., & Giunti, S. (2019). Remittances and healthcare expenditure: Human capital investment or responses to shocks? Evidence from Peru. Review of Development Economics, 23(4), 1540-1561.
- Bhattarai, K., & Budd, D. (2019). Effects of rapid urbanization on the quality of life. Multidimensional Approach to Quality of Life Issues: A Spatial Analysis, 327-341.
- Bliese, P. D., Schepker, D. J., Essman, S. M., & Ployhart, R. E. (2020). Bridging methodological divides between macro-and microresearch: Endogeneity and methods for panel data. Journal of Management, 46(1), 70-99. [CrossRef]
- Chaudhuri, A., & Roy, K. (2008). Changes in out-of-pocket payments for healthcare in Vietnam and its impact on equity in payments, 1992–2002. Health Policy, 88(1), 38-48.
- Clemente, J., Marcuello, C., Montañés, A., & Pueyo, F. (2004). On the international stability of health care expenditure functions: are government and private functions similar? Journal of health economics, 23(3), 589-613.
- Diaz-Castro, L., Cabello-Rangel, H., Pineda-Antúnez, C., & de León, A. P. (2021). Incidence of catastrophic healthcare expenditure and its main determinants in Mexican households caring for a person with a mental disorder. Global Mental Health, 8, e2.
- Ebaidalla, E. M., & Ali, M. E. M. (2021). Explaining Out-of-Pocket Health care Expenditure in Sub-Saharan Africa: Evidence from Panel Data Analysis. Journal of Economic Cooperation & Development, 42(1), 1-24.
- Epskamp, S. (2020). Psychometric network models from time-series and panel data. Psychometrika, 85(1), 206-231.
- Eze, P., Lawani, L. O., Agu, U. J., Amara, L. U., Okorie, C. A., & Acharya, Y. (2022). Factors associated with catastrophic health expenditure in sub-Saharan Africa: A systematic review. Plos one, 17(10), e0276266.
- Fan, V. Y., & Savedoff, W. D. (2014). The health financing transition: a conceptual framework and empirical evidence. Social science & medicine, 105, 112-121.
- García-Díaz, R., Sosa-Rubi, S. G., Serván-Mori, E., & Nigenda, G. (2018). Welfare effects of health insurance in Mexico: The case of Seguro Popular de Salud. PLoS One, 13(7), e0199876.
- Grigorakis, N., Floros, C., Tsangari, H., & Tsoukatos, E. (2018). Macroeconomic and financing determinants of out of pocket payments in health care: Evidence from selected OECD countries. Journal of Policy Modeling, 40(6), 1290-1312.
- Guida, C., & Carpentieri, G. (2021). Quality of life in the urban environment and primary health services for the elderly during the Covid-19 pandemic: An application to the city of Milan (Italy). Cities, 110, 103038.
- Gujarati, D. N. (2021). Essentials of econometrics. Sage Publications.
- Habib, Nawaz, Khan., Muhammad, Arshad, Khan., Radzuan, B., Razli., Afz’a, Binti, Sahfie., Gulap, Shehzada., Katrina, Lane, Krebs., Nasrin, Sarvghad. (2016). Health Care Expenditure and Economic Growth in SAARC Countries (1995–2012): A Panel Causality Analysis. Applied Research in Quality of Life, 11(3):639-661. [CrossRef]
- Hsiao, C. (2022). Analysis of panel data (No. 64). Cambridge university press.
- Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics, 115(1), 53-74.
- Kanmiki, E. W., Bawah, A. A., Phillips, J. F., Awoonor-Williams, J. K., Kachur, S. P., Asuming, P. O., ... & Akazili, J. (2019). Out-of-pocket payment for primary healthcare in the era of national health insurance: evidence from northern Ghana. PloS one, 14(8), e0221146.
- Kumar, A. S., Chen, L. C., Choudhury, M., Ganju, S., Mahajan, V., Sinha, A., & Sen, A. (2011). Financing health care for all: challenges and opportunities. The Lancet, 377(9766), 668-679.
- Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1-24.
- Lorenzoni, L., Marino, A., Morgan, D., & James, C. (2019). Health Spending Projections to 2030: New results based on a revised OECD methodology.
- Mbau, R., Musiega, A., Nyawira, L., Tsofa, B., Mulwa, A., Molyneux, S., ... & Barasa, E. (2023). Analysing the efficiency of health systems: a systematic review of the literature. Applied health economics and health policy, 21(2), 205-224.
- Meng, Q., Xu, L., Zhang, Y., Qian, J., Cai, M., Xin, Y., ... & Barber, S. L. (2012). Trends in access to health services and financial protection in China between 2003 and 2011: a cross-sectional study. The Lancet, 379(9818), 805-814.
- Mohapatra, S. (2022). Health Expenditures, Health Infrastructure and Health Status in SAARC Countries: A Panel Data Analysis. Vikalpa, 47(3), 205-216.
- Mossialos, E., Dixon, A., Figueras, J., Kutzin, J., & World Health Organization. (2002). Funding health care: options for Europe (No. WHO/EURO: 2002-617-40352-54036). World Health Organization. Regional Office for Europe.
- Musgrove, P., Zeramdini, R., & Carrin, G. (2002). Basic patterns in national health expenditure. Bulletin of the World Health Organization, 80, 134-146.
- O’Donnell, O. (2019). Financial protection against medical expense. Tinbergen Institute Discussion Papers, 10.
- Paris, V., Devaux, M., & Wei, L. (2010). Health systems institutional characteristics: a survey of 29 OECD countries.
- Radmehr, M., & Adebayo, T. S. (2022). Does health expenditure matter for life expectancy in Mediterranean countries? Environmental Science and Pollution Research, 29(40), 60314-60326.
- Rahman, A., & Tiwari, N. (2021). Development, Governance and Gender in South Asia. Springer Singapore.
- Rahman, M. M., Khanam, R., & Rahman, M. (2018). Health care expenditure and health outcome nexus: new evidence from the SAARC-ASEAN region. Globalization and health, 14(1), 1-11.
- Shaikh, I., & Singh, S. (2017). On the examination of out-of-pocket health expenditures in India, Pakistan, Sri Lanka, Maldives, Bhutan, Bangladesh and Nepal. Business: Theory and Practice, 18, 25.
- Sirag, A., & Mohamed Nor, N. (2021, May). Out-of-pocket health expenditure and poverty: evidence from a dynamic panel threshold analysis. In Healthcare (Vol. 9, No. 5, p. 536). MDPI.
- Sriram, S. (2019). Health Insurance Program for the Poor, Out-Of-Pocket Costs, and Catastrophic Health Expenditures in India (Doctoral dissertation, University of South Carolina).
- Subedi, K.R.(2016). Impact evaluation of remittance in Nepal: A case study of Kailali District. The Journal of University Grants Commission of Nepal, 5(4), 17-34. [CrossRef]
- Thomson, S., Cylus, J., & Evetovits, T. (2019). Can people afford to pay for health care? New evidence on financial protection in Europe. World Health Organization. Regional Office for Europe.
- Tzenios, N. (2019). The Determinants of Access to Healthcare: A Review of Individual, Structural, and Systemic Factors. Journal of Humanities and Applied Science Research, 2(1), 1-14.
- Wagstaff, A., Flores, G., Smitz, M. F., Hsu, J., Chepynoga, K., & Eozenou, P. (2018). Progress on impoverishing health spending in 122 countries: a retrospective observational study. The Lancet Global Health, 6(2), e180-e192.
- Wang, J., Zhu, H., Liu, H., Wu, K., Zhang, X., Zhao, M., ... & Shan, L. (2020). Can the reform of integrating health insurance reduce inequity in catastrophic health expenditure? Evidence from China. International Journal for Equity in Health, 19, 1-15.
- Welfens, P. J. (2020). Macroeconomic and health care aspects of the coronavirus epidemic: EU, US and global perspectives. International Economics and Economic Policy, 17, 295-362.
- White-Williams, C., Rossi, L. P., Bittner, V. A., Driscoll, A., Durant, R. W., Granger, B. B., ... & American Heart Association Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Council on Epidemiology and Prevention. (2020). Addressing social determinants of health in the care of patients with heart failure: a scientific statement from the American Heart Association. Circulation, 141(22), e841-e863.
- World Health Organization. (2016). Global strategy on human resources for health: workforce 2030.
- Yang, B., & Usman, M. (2021). Do industrialization, economic growth and globalization processes influence the ecological footprint and healthcare expenditures? Fresh insights based on the STIRPAT model for countries with the highest healthcare expenditures. Sustainable Production and Consumption, 28, 893-910.
| Variables | At Level | At first difference | ||||||
| Intercept | p-value | Intercept & Trend | p-value | Intercept | p-value | Intercept & Trend | p-value | |
| OOPpc | -2.42 | 0.00 | -4.58 | 0.00 | -5.53 | 0.00 | -5.76 | 0.00 |
| GDPpc | -2.83 | 0.00 | -1.96 | 0.02 | -4.45 | 0.00 | -5.24 | 0.00 |
| RMpc | -3.07 | 0.00 | -0.95 | 0.16 | -3.23 | 0.00 | -2.29 | 0.01 |
| CPI | -1.52 | 0.06 | -4.08 | 0.00 | -7.39 | 0.00 | -6.28 | 0.00 |
| Pop65+ | -2.44 | 0.00 | -3.56 | 0.00 | -0.82 | 0.20 | -0.34 | 0.36 |
| MYS | -2.42 | 0.00 | 0.69 | 0.75 | -0.24 | 0.40 | -2.13 | 0.01 |
| D-GGHE | -0.76 | 0.22 | -1.82 | 0.03 | -5.76 | 0.00 | -4.57 | 0.00 |
| Variables | At Level | At first difference | ||||||
| Intercept | p-value | Intercept & Trend | p-value | Intercept | p-value | Intercept & Trend | p-value | |
| OOPpc | -0.92 | 0.18 | -1.88 | 0.03 | -4.48 | 0.00 | -3.20 | 0.00 |
| GDPpc | -0.50 | 0.31 | 0.81 | 0.79 | -3.36 | 0.00 | -2.87 | 0.00 |
| RMpc | -0.44 | 0.33 | 1.10 | 0.86 | -2.72 | 0.00 | -1.81 | 0.03 |
| CPI | -0.63 | 0.26 | -2.24 | 0.01 | -6.31 | 0.00 | -4.34 | 0.00 |
| Pop65+ | 0.26 | 0.60 | -0.68 | 0.25 | 0.15 | 0.56 | 1.04 | 0.85 |
| MYS | 1.42 | 0.92 | 1.36 | 0.91 | -0.94 | 0.17 | -0.69 | 0.25 |
| D-GGHE | 1.71 | 0.96 | -1.21 | 0.11 | -4.98 | 0.00 | -2.97 | 0.00 |
| Variable | At Level | At first difference | ||||||
| Intercept | p-value | Intercept & Trend | p-value | Intercept | p-value | Intercept & Trend | p-value | |
| OOPpc | 23.31 | 0.06 | 27.37 | 0.02 | 45.93 | 0.00 | 35.55 | 0.00 |
| GDPpc | 16.11 | 0.31 | 8.69 | 0.85 | 36.42 | 0.00 | 32.47 | 0.00 |
| RMpc | 14.53 | 0.41 | 10.94 | 0.69 | 31.45 | 0.00 | -1.81 | 0.03 |
| CPI | 14.65 | 0.40 | 28.65 | 0.01 | 62.80 | 0.00 | 45.85 | 0.00 |
| Pop65+ | 19.38 | 0.15 | 32.07 | 0.00 | 18.62 | 0.18 | 13.70 | 0.47 |
| MYS | 10.35 | 0.74 | 7.25 | 0.92 | 21.35 | 0.09 | 20.50 | 0.12 |
| D-GGHE | 4.96 | 0.99 | 19.82 | 0.14 | 50.57 | 0.00 | 33.07 | 0.00 |
| Variable | At Level | At first difference | ||||||
| Intercept | p-value | Intercept & Trend | p-value | Intercept | p-value | Intercept & Trend | p-value | |
| OOPpc | 53.28 | 0.00 | 48.18 | 0.00 | 60.35 | 0.00 | 50.86 | 0.00 |
| GDPpc | 44.74 | 0.00 | 19.98 | 0.13 | 68.89 | 0.00 | 85.79 | 0.00 |
| RMpc | 26.48 | 0.02 | 13.61 | 0.48 | 80.96 | 0.00 | 101.44 | 0.00 |
| CPI | 19.25 | 0.16 | 36.94 | 0.00 | 115.34 | 0.00 | 95.21 | 0.00 |
| Pop65+ | 8.95 | 0.83 | 4.42 | 0.99 | 7.08 | 0.93 | 2.29 | 1.00 |
| MYS | 8.28 | 0.87 | 9.50 | 0.80 | 32.83 | 0.00 | 40.96 | 0.00 |
| D-GGHE | 11.27 | 0.66 | 29.10 | 0.01 | 92.32 | 0.00 | 69.40 | 0.00 |
| Variables | Overall | Bangladesh | Bhutan | India | Sri Lanka | Maldives | Nepal | Pakistan |
| Mean SD |
Mean SD |
Mean SD |
Mean SD |
Mean SD |
Mean SD |
Mean SD |
Mean SD |
|
| OOPpc (in USD) |
52.65 | 20.92 | 15.19 | 30.87 | 60.73 | 196.90 | 21.16 | 20.07 |
| 62.81 | 9.53 | 4.8 | 5.29 | 14.89 | 36.86 | 8.23 | 3.17 | |
| GDPpc (in USD) |
2723.2 | 1200.5 | 2588.5 | 1489.8 | 3302.5 | 8274.4 | 783.89 | 1269.4 |
| 2572.1 | 599.67 | 714.26 | 390.19 | 1004 | 1888.3 | 280 | 224 | |
| RMpc (in USD) |
496.3 | 275.93 | 836.71 | 185.82 | 723.71 | 1231.2 | 72.91 | 126.77 |
| 497.63 | 123.86 | 292.82 | 59.19 | 275.23 | 643.54 | 25.01 | 27.78 | |
| CPI | 6.8 | 6.98 | 6.12 | 7.06 | 7.3 | 4.18 | 7.37 | 9.01 |
| 3.69 | 1.74 | 2.45 | 2.74 | 5.25 | 4.11 | 2.64 | 4.42 | |
| Pop65+ | 5.45 | 4.75 | 5.49 | 5.52 | 8.77 | 4.38 | 5.17 | 3.87 |
| 1.61 | 0.44 | 0.44 | 0.6 | 1.33 | 0.19 | 0.62 | 0.2 | |
| MYS | 5.68 | 5.62 | 3.29 | 5.72 | 10.42 | 5.68 | 4.09 | 4.74 |
| 2.3 | 0.77 | 1.17 | 0.75 | 0.24 | 1.48 | 0.72 | 0.3 | |
| D-GGHE (in USD) |
89.07 | 5.88 | 64.76 | 13.87 | 54.67 | 467.11 | 7.67 | 8.06 |
| 171.2 | 2.42 | 21.86 | 4.69 | 13.82 | 185.97 | 4.14 | 3.74 |
| Test | Test Statistics | P value | Selected Model/ Conclusion |
| Model Selection Test | |||
| Chow Test | Cross-section F=63.30 | Fixed Effect Model | |
| Cross-section χ2=176.53 | 0.00 | Fixed Effect Model | |
| Hausman Test | χ2= 379.78 | 0.00 | Fixed Effect Model |
| Bruesch Pegan Tests | |||
| Breusch-Pagan LM | 66.468 | 0.00 | Random Effect Model |
| Pesaran scaled LM | 7.016 | 0.00 | |
| Pesaran CD | 2.303 | 0.02 | |
| Dependent variable: Out-of-pocket payments for health per capita USD | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| lnGDPpc | 1.08 | 0.18 | 6.14 | 0.00 |
| lnRMpc | -0.15 | 0.13 | -1.17 | 0.24 |
| lnCPI | 0.09 | 0.03 | 2.72 | 0.01 |
| lnPop65+ | 1.20 | 0.41 | 2.96 | 0.00 |
| lnMYS | 0.00 | 0.14 | 0.01 | 0.99 |
| lnD-GGHE | 0.15 | 0.11 | 1.34 | 0.18 |
| Constant | -6.47 | 0.88 | -7.37 | 0.00 |
| R-squared | 0.981 | |||
| Adjusted R-squared | 0.975 | |||
| F-statistic | 162.323 | |||
| Prob(F-statistic) | 0.000 | |||
| Dependent variable: Out-of-pocket payments for health per capita USD | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| lnGDPpc | 1.47 | 0.09 | 17.25 | 0.00 |
| lnRMpc | -0.72 | 0.04 | -19.78 | 0.00 |
| lnCPI | 0.06 | 0.02 | 2.52 | 0.01 |
| lnPop65+ | -0.18 | 0.08 | -2.17 | 0.03 |
| lnMYS | 0.64 | 0.06 | 10.64 | 0.00 |
| lnD-GGHE | 0.12 | 0.04 | 3.43 | 0.00 |
| Constant | -4.79 | 0.44 | -10.91 | 0.00 |
| R-squared | 0.879 | |||
| Adjusted R-squared | 0.872 | |||
| F-statistic | 127.546 | |||
| Prob(F-statistic) | 0.000 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).