Submitted:
06 June 2024
Posted:
10 June 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Modification of GOBP
2.1. Chemical Modification of GOBP
2.1.1. Etherification
2.1.2. Esterification
2.1.3. Copolymerization
2.2. Physical Modifications
2.2.1. Extrusion
2.2.2. Ultrasonic
2.2.3. Physicochemical Modifications
3. Applications
3.1. Film
3.2. Hydrogel
3.3. Three-Dimensional (3D) Printing
3.4. Adsorbent
4. Limitations of Hemicellulose Modification from GOBP
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, X.; Liu, J.; Wu, N.; Tan, B. Effect of steam explosion treatment on structural and physicochemical properties, and potential application of soluble dietary fiber from grain and oil processing by-products: A review. Cereal Chem. 2024, 101, 437–449. [CrossRef]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive utilization of corn starch processing by-products: A review. Grain Oil Sci. Technol. 2021, 4, 89–107. [CrossRef]
- Skendi, A.; Zinoviadou, K.G.; Papageorgiou, M.; Rocha, J.M. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020, 9, 1243. [CrossRef]
- Arzami, A.N.; Ho, T.M.; Mikkonen, K.S. Valorization of cereal by-product hemicelluloses: Fractionation and purity considerations. Food Res. Int. 2021, 151, 110818. [CrossRef]
- Rao, J.; Lv, Z.; Chen, G.; Peng, F. Hemicellulose: Structure, chemical modification, and application. Progress in Polymer Science 2023, 101675. [CrossRef]
- Hu, L.; Du, M.; Zhang, J. Hemicellulose-Based Hydrogels Present Status and Application Prospects: A Brief Review. Open J. For. 2018, 08, 15–28. [CrossRef]
- Farhat, W.; Venditti, R.A.; Hubbe, M.; Taha, M.; Becquart, F.; Ayoub, A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem 2016, 10, 305–323. [CrossRef]
- Lu, Y.; He, Q.; Fan, G.; Cheng, Q.; Song, G. Extraction and modification of hemicellulose from lignocellulosic biomass: A review. Green Process. Synth. 2021, 10, 779–804. [CrossRef]
- Sun, Q.; Chen, W.-J.; Pang, B.; Sun, Z.; Lam, S.S.; Sonne, C.; Yuan, T.-Q. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresour. Technol. 2021, 341, 125807. [CrossRef]
- Spaggiari, M.; Dall’asta, C.; Galaverna, G.; Bilbao, M.D.d.C. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods 2021, 10, 85. [CrossRef]
- Amoah, I.; Taarji, N.; Johnson, P.-N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. Sustainability 2020, 12, 7785. [CrossRef]
- Deepak, T.S.D.T.S.; Jayadeep, P.A.J.P.A. Prospects of Maize (Corn) Wet Milling By-Products as a Source of Functional Food Ingredients and Nutraceuticals. Food Technol. Biotechnol. 2021, 60, 109–120. [CrossRef]
- Nartea, A.; Kuhalskaya, A.; Fanesi, B.; Orhotohwo, O.L.; Susek, K.; Rocchetti, L.; Di Vittori, V.; Bitocchi, E.; Pacetti, D.; Papa, R. Legume byproducts as ingredients for food applications: Preparation, nutrition, bioactivity, and techno-functional properties. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1953–1985. [CrossRef]
- Nevara, G.A.; Ibrahim, S.G.; Muhammad, S.K.S.; Zawawi, N.; Mustapha, N.A.; Karim, R. Oilseed meals into foods: an approach for the valorization of oilseed by-products. Crit. Rev. Food Sci. Nutr. 2022, 63, 6330–6343. [CrossRef]
- ElMekawy, A.; Diels, L.; De Wever, H.; Pant, D. Valorization of Cereal Based Biorefinery Byproducts: Reality and Expectations. Environ. Sci. Technol. 2013, 47, 9014–9027. [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Pop, O.L.; Coldea, T.E.; Fogarasi, M.; Biriș-Dorhoi, E.S. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022, 14, 3470. [CrossRef]
- Szabo, K.; Mitrea, L.; Călinoiu, L.F.; Teleky, B.-E.; Martău, G.A.; Plamada, D.; Pascuta, M.S.; Nemeş, S.-A.; Varvara, R.-A.; Vodnar, D.C. Natural Polyphenol Recovery from Apple-, Cereal-, and Tomato-Processing By-Products and Related Health-Promoting Properties. Molecules 2022, 27, 7977. [CrossRef]
- Galanakis, C.M. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022, 11, 241. [CrossRef]
- Danciu, C.-A.; Tulbure, A.; Stanciu, M.-A.; Antonie, I.; Capatana, C.; Zerbeș, M.V.; Giurea, R.; Rada, E.C. Overview of the Sustainable Valorization of Using Waste and By-Products in Grain Processing. Foods 2023, 12, 3770. [CrossRef]
- Fărcaș, A.C.; Socaci, S.A.; Nemeș, S.A.; Salanță, L.C.; Chiș, M.S.; Pop, C.R.; Borșa, A.; Diaconeasa, Z.; Vodnar, D.C. Cereal Waste Valorization through Conventional and Current Extraction Techniques—An Up-to-Date Overview. Foods 2022, 11, 2454. [CrossRef]
- Ancuța, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 2001, 83, 1–11. [CrossRef]
- Chen, C. Comparison of Corn and Rye Arabinoxylans for the Production of Bio-based Materials. 2020.
- Nechita, P.; Roman), M.R.(.; Năstac, S.M. Green Approaches on Modification of Xylan Hemicellulose to Enhance the Functional Properties for Food Packaging Materials—A Review. Polymers 2023, 15, 2088. [CrossRef]
- Lai, Y.-Z. Reactivity and accessibility of cellulose, hemicelluloses, and lignins. In Chemical modification of lignocellulosic materials; Routledge: 2017; pp. 35-95.
- Martins, J.R.; Abe, M.M.; Brienzo, M. Chemical modification strategies for developing functionalized hemicellulose: advanced applications of modified hemicellulose. Hemicellulose Biorefinery: A Sustainable Solution for Value Addition to Bio-Based Products and Bioenergy 2022, 171-205. [CrossRef]
- Casaburi, A.; Rojo, U.M.; Cerrutti, P.; Vazquez, A.; Foresti, M.L. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocoll. 2018, 75, 147–156. [CrossRef]
- Chakka, V.P.; Zhou, T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int. J. Biol. Macromol. 2020, 165, 2425–2431. [CrossRef]
- Ren, J.-L.; Sun, R.-C.; Peng, F. Carboxymethylation of hemicelluloses isolated from sugarcane bagasse. Polym. Degrad. Stab. 2008, 93, 786–793. [CrossRef]
- Peng, X.-W.; Ren, J.-L.; Zhong, L.-X.; Cao, X.-F.; Sun, R.-C. Microwave-Induced Synthesis of Carboxymethyl Hemicelluloses and Their Rheological Properties. J. Agric. Food Chem. 2010, 59, 570–576. [CrossRef]
- de Mattos, N.R.; Colodette, J.L.; de Oliveira, C.R. Alkaline extraction and carboxymethylation of xylans from corn fiber. Cellulose 2019, 26, 2177-2189. [CrossRef]
- Pinto, E.; Aggrey, W.N.; Boakye, P.; Amenuvor, G.; Sokama-Neuyam, Y.A.; Fokuo, M.K.; Karimaie, H.; Sarkodie, K.; Adenutsi, C.D.; Erzuah, S.; et al. Cellulose processing from biomass and its derivatization into carboxymethylcellulose: A review. Sci. Afr. 2021, 15, e01078. [CrossRef]
- Velkova, N.; Doliška, A.; Zemljič, L.F.; Vesel, A.; Saake, B.; Strnad, S. Influence of carboxymethylation on the surface physical–chemical properties of glucuronoxylan and arabinoxylan films. Polym. Eng. Sci. 2015, 55, 2706–2713. [CrossRef]
- Spasojevic, D.; Prokopijevic, M.; Prodanovic, O.; Zelenovic, N.; Polovic, N.; Radotic, K.; Prodanovic, R. Peroxidase-Sensitive Tyramine Carboxymethyl Xylan Hydrogels for Enzyme Encapsulation. Macromol. Res. 2019, 27, 764–771. [CrossRef]
- Zhao, Y.; Jing, S.; Zhang, X.; Chen, Z.; Zhuo, H.; Hu, Y.; Liu, Q.; Zhong, L.; Peng, X.; Sun, R. Strengthening effects of carboxymethylated hemicellulosic fractions on paper strength. Ind. Crop. Prod. 2018, 125, 360–369. [CrossRef]
- Fang, J.; Fowler, P.; Tomkinson, J.; Hill, C. Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohydr. Polym. 2002, 47, 285–293. [CrossRef]
- Singh, V.; Tiwari, A.; Tripathi, D.N.; Malviya, T. Microwave promoted methylation of plant polysaccharides. Tetrahedron Lett. 2003, 44, 7295–7297. [CrossRef]
- Kim, J.S.; Reuhs, B.L.; Michon, F.; Kaiser, R.E.; Arumugham, R.G. Addition of glycerol for improved methylation linkage analysis of polysaccharides. Carbohydr. Res. 2006, 341, 1061–1064. [CrossRef]
- Yang, Z.; Fan, H.; Li, R.; Li, B.; Fan, J.; Ge, J.; Xu, X.; Pan, S.; Liu, F. Potential role of cell wall pectin polysaccharides, water state, and cellular structure on twice “increase–decrease” texture changes during kohlrabi pickling process. Food Research International 2023, 173, 113308. [CrossRef]
- Junli, R.; Peng, X.; Zhong, L.; Peng, F.; Sun, R. Novel hydrophobic hemicelluloses: Synthesis and characteristic. Carbohydr. Polym. 2012, 89, 152–157. [CrossRef]
- Kaur, P.; Kaur, R. Valorization of rice straw via production of modified xylans and xylooligosaccharides for their potential application in food industry. Cellul. Chem. Technol. 2022, 56, 293–307. [CrossRef]
- de Almeida, W.S.; da Silva, D.A. Does polysaccharide quaternization improve biological activity? International journal of biological macromolecules 2021, 182, 1419-1436.
- Guan, Y.; Qi, X.-M.; Chen, G.-G.; Peng, F.; Sun, R.-C. Facile approach to prepare drug-loading film from hemicelluloses and chitosan. Carbohydr. Polym. 2016, 153, 542–548. [CrossRef]
- Zhang, M.; Zhan, A.; Ye, Y.; Liu, C.; Hang, F.; Li, K.; Li, J. Molecular modification, structural characterization, and biological activity of xylans. Carbohydr. Polym. 2021, 269, 118248. [CrossRef]
- Frohlich, A.C.; Bazzo, G.C.; Stulzer, H.K.; Parize, A.L. Synthesis and physico-chemical characterization of quaternized and sulfated xylan-derivates with enhanced microbiological and antioxidant properties. Biocatal. Agric. Biotechnol. 2022, 43. [CrossRef]
- Grondahl, M.; Gatenholm, P. Role of acetyl substitution in hardwood xylan. Polysaccharides: Structural diversity and functional versatility 2005, 20, 509-514.
- Xu, Y.; Wu, Y.-j.; Sun, P.-l.; Zhang, F.-m.; Linhardt, R.J.; Zhang, A.-q. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. International journal of biological macromolecules 2019, 132, 970-977. [CrossRef]
- Wang, X.; Wang, Z.; Shen, M.; Yi, C.; Yu, Q.; Chen, X.; Xie, J.; Xie, M. Acetylated polysaccharides: Synthesis, physicochemical properties, bioactivities, and food applications. Critical Reviews in Food Science and Nutrition 2022, 1-16. [CrossRef]
- Egüés, I.; Stepan, A.M.; Eceiza, A.; Toriz, G.; Gatenholm, P.; Labidi, J. Corncob arabinoxylan for new materials. Carbohydr. Polym. 2014, 102, 12–20. [CrossRef]
- Mugwagwa, L.; Chimphango, A. Optimising wheat straw alkali-organosolv pre-treatment to enhance hemicellulose modification and compatibility with reinforcing fillers. Int. J. Biol. Macromol. 2020, 143, 862–872. [CrossRef]
- Yilmaz-Turan, S.; Jiménez-Quero, A.; Menzel, C.; de Carvalho, D.M.; Lindström, M.E.; Sevastyanova, O.; Moriana, R.; Vilaplana, F. Bio-based films from wheat bran feruloylated arabinoxylan: Effect of extraction technique, acetylation and feruloylation. Carbohydr. Polym. 2020, 250, 116916. [CrossRef]
- Fang, J.; Sun, R.; Tomkinson, J.; Fowler, P. Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr. Polym. 1999, 41, 379–387. [CrossRef]
- Sun, R.; Min, S.T.; Sun, X.F. Preparation and Characterization of Wheat Straw Hemicellulosic Succinates. Int. J. Polym. Anal. Charact. 2002, 7, 130–144. [CrossRef]
- Li, H.; Wang, Y.; Zhao, P.; Guo, L.; Huang, L.; Li, X.; Gao, W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr. Polym. 2023, 313, 120746. [CrossRef]
- Ren, J.; Sun, R.; Liu, C.; Cao, Z.; Luo, W. Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydr. Polym. 2007, 70, 406–414. [CrossRef]
- Stepan, A.M.; King, A.W.T.; Kakko, T.; Toriz, G.; Kilpeläinen, I.; Gatenholm, P. Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose 2013, 20, 2813–2824. [CrossRef]
- Martins, J.R.; Llanos, J.H.R.; Botaro, V.; Gonçalves, A.R.; Brienzo, M. Hemicellulose Biomass Degree of Acetylation (Natural Versus Chemical Acetylation) as a Strategy for Based Packaging Materials. BioEnergy Res. 2024, 17, 877–896. [CrossRef]
- Xu, F.; Jiang, J.-X.; Sun, R.-C.; She, D.; Peng, B.; Sun, J.-X.; Kennedy, J.F. Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohydr. Polym. 2008, 73, 612–620. [CrossRef]
- Sun, R.; Sun, X.F.; Bing, X. Succinoylation of wheat straw hemicelluloses with a low degree of substitution in aqueous systems. J. Appl. Polym. Sci. 2001, 83, 757–766. [CrossRef]
- Sun, R.; Tomkinson, J.; Liu, J.; Geng, Z. Oleoylation of Wheat Straw Hemicelluloses in New Homogeneous System. Polym. J. 1999, 31, 857–863. [CrossRef]
- Ren, J.-L.; Xu, F.; Sun, R.-C.; Peng, B.; Sun, J.-X. Studies of the Lauroylation of Wheat Straw Hemicelluloses under Heating. J. Agric. Food Chem. 2008, 56, 1251–1258. [CrossRef]
- Peng, F.; Ren, J.-L.; Peng, B.; Xu, F.; Sun, R.-C.; Sun, J.-X. Rapid homogeneous lauroylation of wheat straw hemicelluloses under mild conditions. Carbohydr. Res. 2008, 343, 2956–2962. [CrossRef]
- Li, Y. Formation of Hydrogels from Antioxidative Synthetic Hydroxycinnamate Ester Conjugates Based on Corn Bran Arabinoxylan. Cellul. Chem. Technol. 2022, 56, 271–282. [CrossRef]
- Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Med. Chem. J. 2017, 11, 109–126. [CrossRef]
- Vijayasri, K.; Tiwari, A.; Singh, A.K. Grafted natural polymers: synthesis and structure–property relationships. In Handbook of Natural Polymers, Volume 1; Elsevier: 2023; pp. 251-274. [CrossRef]
- Fanta, G.F.; Burr, R.C.; Doane, W.M. Graft polymerization of acrylonitrile and methyl acrylate onto hemicellulose. J. Appl. Polym. Sci. 1982, 27, 4239–4250. [CrossRef]
- Soliman, A.A. Graft copolymerization of acrylonitrile onto hemicellulose and its effect on paper sheets. Journal of scientific & industrial research 1997, 56, 545-552.
- Peroval, C.; Debeaufort, F.; Seuvre, A.-M.; Cayot, P.; Chevet, B.; Despré, D.; Voilley, A. Modified arabinoxylan-based films: Grafting of functional acrylates by oxygen plasma and electron beam irradiation. J. Membr. Sci. 2004, 233, 129–139. [CrossRef]
- Littunen, K.; Kilpeläinen, P.; Junka, K.; Sipponen, M.; Master, E.R.; Seppälä, J. Effect of Xylan Structure on Reactivity in Graft Copolymerization and Subsequent Binding to Cellulose. Biomacromolecules 2015, 16, 1102–1111. [CrossRef]
- Littunen, K.; Mai-Gisondi, G.; Seppälä, J.; Master, E.R. Enzymatically Debranched Xylans in Graft Copolymerization. Biomacromolecules 2017, 18, 1634–1641. [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U. Modified and thermoplastic rapeseed straw xylan: A renewable additive in PCL biocomposites. Ind. Crop. Prod. 2018, 119, 73–82. [CrossRef]
- Ünlü, C.H.; Öztekin, N.S.; Atıcı, O.G. Synthesis and thermal characterization of xylan-graft-polyacrylonitrile. Carbohydr. Polym. 2012, 90, 1120–1126. [CrossRef]
- Li, W.; Zhou, X. Modification of the water-insoluble hemicelluloses via free radical copolymerization in diluted alkali aqueous medium. J. Wood Chem. Technol. 2017, 37, 191–200. [CrossRef]
- Xu, Y.; Liu, K.; Yang, Y.; Kim, M.-S.; Lee, C.-H.; Zhang, R.; Xu, T.; Choi, S.-E.; Si, C. Hemicellulose-based hydrogels for advanced applications. Front. Bioeng. Biotechnol. 2023, 10, 1110004. [CrossRef]
- Zhao, Y.; Sun, H.; Yang, B.; Weng, Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers 2020, 12, 1775. [CrossRef]
- Fadel, A.; Plunkett, A.; Ashworth, J.; Mahmoud, A.M.; Ranneh, Y.; El Mohtadi, M.; Li, W. The effect of extrusion screw-speed on the water extractability and molecular weight distribution of arabinoxylans from defatted rice bran. J. Food Sci. Technol. 2018, 55, 1201–1206. [CrossRef]
- Fang, F.; Mukherjee, I.; Okoniewska, M.; Yao, T.; Campanella, O.H.; Hamaker, B.R. Soluble corn arabinoxylan has desirable material properties for high incorporation in expanded cereal extrudates. Food Hydrocoll. 2022, 133. [CrossRef]
- Vaidya, A.A.; Gaugler, M.; Smith, D.A. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion. Carbohydr. Polym. 2016, 136, 1238–1250. [CrossRef]
- Yan, X.; Ye, R.; Chen, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem. 2015, 180, 106–115. [CrossRef]
- Demuth, T.; Betschart, J.; Nyström, L. Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion. Carbohydr. Polym. 2020, 240, 116328. [CrossRef]
- Li, L.; Ma, S.; Fan, L.; Zhang, C.; Pu, X.; Zheng, X.; Wang, X. The influence of ultrasonic modification on arabinoxylans properties obtained from wheat bran. Int. J. Food Sci. Technol. 2016, 51, 2338–2344. [CrossRef]
- Vandenbossche, V.; Brault, J.; Vilarem, G.; Hernández-Meléndez, O.; Vivaldo-Lima, E.; Hernández-Luna, M.; Barzana, E.; Duque, A.; Manzanares, P.; Ballesteros, M.; et al. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder. Ind. Crop. Prod. 2014, 55, 258–266. [CrossRef]
- Chen, Z.; Li, P.; Ji, Q.; Xing, Y.; Ma, X.; Xia, Y. All-polysaccharide composite films based on calcium alginate reinforced synergistically by multidimensional cellulose and hemicellulose fractionated from corn husks. Mater. Today Commun. 2023, 34. [CrossRef]
- Wang, H.-M.; Yuan, T.-Q.; Song, G.-Y.; Sun, R.-C. Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chem. 2021, 23, 3790–3817. [CrossRef]
- Kumar, A.; Mishra, R.; Verma, K.; Aldosari, S.; Maity, C.; Verma, S.; Patel, R.; Thakur, V. A comprehensive review of various biopolymer composites and their applications: From biocompatibility to self-healing. Mater. Today Sustain. 2023, 23. [CrossRef]
- Svärd, A.; Brännvall, E.; Edlund, U. Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydr. Polym. 2015, 133, 179–186. [CrossRef]
- Azeredo, H.M.C.; Kontou-Vrettou, C.; Moates, G.K.; Wellner, N.; Cross, K.; Pereira, P.H.F.; Waldron, K.W. Wheat straw hemicellulose films as affected by citric acid. Food Hydrocoll. 2015, 50, 1–6. [CrossRef]
- Kocabaş, D.S.; Akçelik, M.E.; Bahçegül, E.; Özbek, H.N. Bulgur bran as a biopolymer source: Production and characterization of nanocellulose-reinforced hemicellulose-based biodegradable films with decreased water solubility. Ind. Crop. Prod. 2021, 171. [CrossRef]
- Kapil, S.; Mankoo, R.K.; Dudeja, I.; Singh, A.; Kaur, J. Structural, antioxidant, antibacterial and biodegradation properties of rice straw xylan (native and modified) based biofilms. International Journal of Food Science & Technology 2023, 58, 2772-2781. [CrossRef]
- Pereira, P.H.; Waldron, K.W.; Wilson, D.R.; Cunha, A.P.; de Brito, E.S.; Rodrigues, T.H.; Rosa, M.F.; Azeredo, H.M. Wheat straw hemicelluloses added with cellulose nanocrystals and citric acid. Effect on film physical properties. Carbohydr. Polym. 2017, 164, 317–324. [CrossRef]
- Xu, S.; Jiang, M.; Lu, Q.; Gao, S.; Feng, J.; Wang, X.; He, X.; Chen, K.; Li, Y.; Ouyang, P. Properties of Polyvinyl Alcohol Films Composited With Hemicellulose and Nanocellulose Extracted FromArtemisia selengensisStraw. Front. Bioeng. Biotechnol. 2020, 8. [CrossRef]
- Louis, A.C.F.; Venkatachalam, S.; Gupta, S. Innovative strategy for rice straw valorization into nanocellulose and nanohemicellulose and its application. Ind. Crop. Prod. 2022, 179. [CrossRef]
- WHISTLER, R.L. Hemicelluloses. In Industrial gums; Elsevier: 1993; pp. 295-308. [CrossRef]
- Popa, V.I.; Spiridon, J. Hemicelluloses: structure and properties. Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York 1998, 297-311.
- Sun, X.-F.; Zhang, T.; Wang, H.-H. Hemicelluloses-based hydrogels. Plant and algal hydrogels for drug delivery and regenerative medicine 2021, 181-216.
- Kong, W.; Dai, Q.; Gao, C.; Ren, J.; Liu, C.; Sun, R. Hemicellulose-based hydrogels and their potential application. Polymer Gels: Science and Fundamentals 2018, 87-127. [CrossRef]
- Meena, R.; Lehnen, R.; Schmitt, U.; Saake, B. Effect of oat spelt and beech xylan on the gelling properties of kappa-carrageenan hydrogels. Carbohydr. Polym. 2011, 85, 529–540. [CrossRef]
- Talantikite, M.; Beury, N.g.; Moreau, C.l.; Cathala, B. Arabinoxylan/cellulose nanocrystal hydrogels with tunable mechanical properties. Langmuir 2019, 35, 13427-13434. [CrossRef]
- Sun, X.-F.; Wang, H.-h.; Jing, Z.-x.; Mohanathas, R. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydrate Polymers 2013, 92, 1357-1366. [CrossRef]
- Sun, X.-F.; Liu, B.; Jing, Z.; Wang, H. Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr. Polym. 2015, 118, 16–23. [CrossRef]
- Wang, L.; Zhang, L.; Qiu, S.; Liu, C.; Zhang, P.; Yin, L.; Chen, F. Rheological properties and structural characteristics of arabinoxylan hydrogels prepared from three wheat bran sources. J. Cereal Sci. 2019, 88, 79–86. [CrossRef]
- Li, J.; Lu, Z.; Chen, Z.; Li, C.; Du, Y.; Chen, C.; Wang, L.; Yu, P. Preparation and characterization of pH-responsive microgel using arabinoxylan from wheat bran for BSA delivery. Food Chemistry 2021, 342, 128220. [CrossRef]
- Sun, X.-F.; Xie, Y.; Shan, S.; Li, W.; Sun, L. Chemically-Crosslinked Xylan/Graphene Oxide Composite Hydrogel for Copper Ions Removal. J. Polym. Environ. 2022, 30, 3999–4013. [CrossRef]
- Chimphango, A.F.; van Zyl, W.H.; Görgens, J.F. In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohydr. Polym. 2012, 88, 1109–1117. [CrossRef]
- Zhang, X.; Chen, T.; Lim, J.; Gu, F.; Fang, F.; Cheng, L.; Campanella, O.H.; Hamaker, B.R. Acid gelation of soluble laccase-crosslinked corn bran arabinoxylan and possible gel formation mechanism. Food Hydrocoll. 2019, 92, 1–9. [CrossRef]
- Li, C.; Wang, L.; Chen, Z.; Li, Y.; Li, J. Facile and green preparation of diverse arabinoxylan hydrogels from wheat bran by combining subcritical water and enzymatic crosslinking. Carbohydr. Polym. 2020, 241, 116317. [CrossRef]
- Munk, L.; Muschiol, J.; Li, K.; Liu, M.; Perzon, A.; Meier, S.; Ulvskov, P.; Meyer, A.S. Selective Enzymatic Release and Gel Formation by Cross-Linking of Feruloylated Glucurono-Arabinoxylan from Corn Bran. ACS Sustain. Chem. Eng. 2020, 8, 8164–8174. [CrossRef]
- Yilmaz-Turan, S.; Lopez-Sanchez, P.; Jiménez-Quero, A.; Plivelic, T.S.; Vilaplana, F. Revealing the mechanisms of hydrogel formation by laccase crosslinking and regeneration of feruloylated arabinoxylan from wheat bran. Food Hydrocoll. 2022, 128. [CrossRef]
- Naidu, D.S.; Hlangothi, S.P.; John, M.J. Bio-based products from xylan: A review. Carbohydr. Polym. 2017, 179, 28–41. [CrossRef]
- Li, N.; Qiao, D.; Zhao, S.; Lin, Q.; Zhang, B.; Xie, F. 3D printing to innovate biopolymer materials for demanding applications: A review. Mater. Today Chem. 2021, 20. [CrossRef]
- Teixeira, M.C.; Lameirinhas, N.S.; Carvalho, J.P.F.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int. J. Mol. Sci. 2022, 23, 6564. [CrossRef]
- Bahcegul, E.G.; Bahcegul, E.; Ozkan, N. 3D printing of hemicellulosic biopolymers extracted from lignocellulosic agricultural wastes. ACS Applied Polymer Materials 2020, 2, 2622-2632.
- Bahcegul, E.G.; Ozkan, N. 3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin. Ind. Crop. Prod. 2022, 186. [CrossRef]
- Yang, J.; An, X.; Liu, L.; Tang, S.; Cao, H.; Xu, Q.; Liu, H. Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydr. Polym. 2020, 250, 116881. [CrossRef]
- Mohammadabadi, S.I.; Javanbakht, V. Ultrasonic assisted hydrolysis of barley straw biowastes into construction of a novel hemicellulose-based adsorbent and its adsorption properties for Pb2+ ions from aqueous solutions. Renew. Energy 2020, 161, 893–906. [CrossRef]
- Guan, Y.; Rao, J.; Wu, Y.; Gao, H.; Liu, S.; Chen, G.; Peng, F. Hemicelluloses-based magnetic aerogel as an efficient adsorbent for Congo red. Int. J. Biol. Macromol. 2020, 155, 369–375. [CrossRef]
- Sharma, K.; Kaur, M.; Tewatia, P.; Kumar, V.; Paulik, C.; Yoshitake, H.; Sharma, M.; Rattan, G.; Singhal, S.; Kaushik, A. Ultra-sensitive detection and scavenging of arsenic ions and ciprofloxacin using 3D multipurpose hemicellulose based aerogel: Adsorption mechanism and RSM optimization. Bioresour. Technol. 2023, 389, 129825. [CrossRef]
- Chen, S.; Xia, Y.; Zhang, B.; Chen, H.; Chen, G.; Tang, S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. J. Hazard. Mater. 2020, 408, 124956. [CrossRef]
- Roth, M.; Jekle, M.; Becker, T. Opportunities for upcycling cereal byproducts with special focus on Distiller’s grains. Trends Food Sci. Technol. 2019, 91, 282–293. [CrossRef]
- Sun, D.; Lv, Z.-W.; Rao, J.; Tian, R.; Sun, S.-N.; Peng, F. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr. Polym. 2021, 281, 119050. [CrossRef]
- Zhang, G.; Huang, K.; Jiang, X.; Huang, D.; Yang, Y. Acetylation of rice straw for thermoplastic applications. Carbohydr. Polym. 2013, 96, 218–226. [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).