Submitted:
06 June 2024
Posted:
07 June 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Material and Methods
Questionnaire
Development of the Study
Statistical Analysis
Results
Discussion
Conclusion
References
- Agarwal, R.; Deorari, A.; Paul, V.; Sankar, M.J.; Sachdeva, A. AIIMS Protocols in Neonatology, 2nd edn. Noble Vision, Delhi; 2019.
- Bottino, R.; Pontiggia, F.; Ricci, C.; Gambacorta, A.; Paladini, A.; Chijenas, V.; Liubsys, A.; Navikiene, J.; Pliauckiene, A.; Mercadante, D.; Colnaghi, M.; Tana, M.; Tirone, C.; Lio, A.; Aurilia, C.; Pastorino, R.; Purcaro, V.; Maffei, G.; Liberatore, P.; Consigli, C.; Haass, C.; Lista, G.; Agosti, M.; Mosca, F.; Vento, G. Nasal high-frequency oscillatory ventilation and CO2 removal: A randomized controlled crossover trial. Pediatr Pulmonol. 2018 Sep;53(9):1245-1251. [CrossRef]
- Seth, S.; Saha, B.; Saha, A.K.; Mukherjee, S.; Hazra, A. Nasal HFOV versus nasal IPPV as a post-extubation respiratory support in preterm infants - a randomised controlled trial. Eur J Pediatr. 2021 Oct;180(10):3151-3160. [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; Das, A.; Hale, E.C.; Ball, M.B.; Newman, N.S.; Schibler, K.; Poindexter, B.B.; Kennedy, K.A.; Cotten, C.M.; Watterberg, K.L.; D’Angio, C.T.; DeMauro, S.B.; Truog, W.E.; Devaskar, U.; Higgins, R.D.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993-2012. JAMA. 2015 Sep 8;314(10):1039-51. [CrossRef]
- Ferguson, K.N.; Roberts, C.T.; Manley, B.J.; Davis, P.G. Interventions to Improve Rates of Successful Extubation in Preterm Infants: A Systematic Review and Meta-analysis. JAMA Pediatr. 2017 Feb 1;171(2):165-174. [CrossRef]
- Lemyre, B.; Laughon, M.; Bose, C.; Davis, P.G. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016 Dec 15;12(12):CD005384. Update in: Cochrane Database Syst Rev. 2023 Jul 19;7:CD005384. [CrossRef]
- Bryan, A.C.; Bohn, D. High frequency oscillatory ventilation. Can Respir J 1996;3(6):368-369.
- van der Hoeven, M.; Brouwer, E.; Blanco, C.E. Nasal high frequency ventilation in neonates with moderate respiratory insufficiency. Arch Dis Child Fetal Neonatal Ed. 1998 Jul;79(1):F61-3. [CrossRef]
- De Luca, D.; Dell’Orto, V. Non-invasive high-frequency oscillatory ventilation in neonates: review of physiology, biology and clinical data. Arch Dis Child Fetal Neonatal Ed. 2016 Nov;101(6):F565-F570. [CrossRef]
- De Luca, D.; Centorrino, R. Nasal High-Frequency Ventilation. Clin Perinatol. 2021 Dec;48(4):761-782. [CrossRef]
- Keel, J.; De Beritto, T.; Ramanathan, R.; Cayabyab, R.; Biniwale, M. Nasal high-frequency jet ventilation (NHFJV) as a novel means of respiratory support in extremely low birth weight infants. J Perinatol. 2021 Jul;41(7):1697-1703. [CrossRef]
- Yoder, B.A.; Albertine, K.H.; Null, D.M. Jr. High-frequency ventilation for non-invasive respiratory support of neonates. Semin Fetal Neonatal Med. 2016 Jun;21(3):162-73. [CrossRef]
- Chen, L.; Wang, L.; Ma, J.; Feng, Z.; Li, J.; Shi, Y. Nasal High-Frequency Oscillatory Ventilation in Preterm Infants With Respiratory Distress Syndrome and ARDS After Extubation: A Randomized Controlled Trial. Chest. 2019 Apr;155(4):740-748. [CrossRef]
- Li, J.; Li, X.; Huang, X.; Zhang, Z. Noninvasive high-frequency oscillatory ventilation as respiratory support in preterm infants: a meta-analysis of randomized controlled trials. Respir Res. 2019 Mar 15;20(1):58. [CrossRef]
- Li, J.; Chen, L.; Shi, Y. Nasal high-frequency oscillatory ventilation versus nasal continuous positive airway pressure as primary respiratory support strategies for respiratory distress syndrome in preterm infants: a systematic review and meta-analysis. Eur J Pediatr. 2022 Jan;181(1):215-223. [CrossRef]
- Zhu, X.; Feng, Z.; Liu, C.; Shi, L.; Shi, Y.; Ramanathan, R.; NHFOV study group. Nasal High-Frequency Oscillatory Ventilation in Preterm Infants with Moderate Respiratory Distress Syndrome: A Multicenter Randomized Clinical Trial. Neonatology. 2021;118(3):325-331. [CrossRef]
- Wang, H.; Chen, W.; Zhang, Y. The clinical effects of two non-invasive ventilation modes on premature infants with respiratory distress syndrome: A randomized controlled trial. Medicine (Baltimore). 2023 Mar 3;102(9):e33142. [CrossRef]
- Wang, K.; Yue, G.; Gao, S.; Li, F.; Ju, R. Non-invasive high-frequency oscillatory ventilation (NHFOV) versus nasal continuous positive airway pressure (NCPAP) for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2024 Jan 16:fetalneonatal-2023-325681. [CrossRef]
- Cao, H.; Li, H.; Zhu, X.; Wang, L.; Yi, M.; Li, C.; Chen, L.; Shi, Y. Three non-invasive ventilation strategies for preterm infants with respiratory distress syndrome: a propensity score analysis. Arch Med Sci. 2020 Mar 9;16(6):1319-1326. [CrossRef]
- Zhu, X.; Qi, H.; Feng, Z.; Shi, Y.; De Luca, D.; Nasal Oscillation Post-Extubation (NASONE) Study Group. Noninvasive High-Frequency Oscillatory Ventilation vs Nasal Continuous Positive Airway Pressure vs Nasal Intermittent Positive Pressure Ventilation as Postextubation Support for Preterm Neonates in China: A Randomized Clinical Trial. JAMA Pediatr. 2022 Jun 1;176(6):551-559. [CrossRef]
- Mei, Z.; Ming, L.; Wu, Z.; Zhu, Y. Use of NHFOV vs. NIPPV for the respiratory support of preterm newborns after extubation: A meta-analysis. Front Pediatr. 2023 Jan 11;10:1063387. [CrossRef]
- Li, Y.; Wei, Q.; Zhao, D.; Mo, Y.; Yao, L.; Li, L.; Tan, W.; Pan, X.; Yao, J.; Dai, W.; Zhong, D. Non-invasive high-frequency oscillatory ventilation in preterm infants after extubation: a randomized, controlled trial. J Int Med Res. 2021 Feb;49(2):300060520984915. [CrossRef]
- Zhu, X.; Li, F.; Shi, Y.; Feng, Z.; De Luca, D; Nasal Oscillation Post-Extubation (NASONE) Study Group. Effectiveness of Nasal Continuous Positive Airway Pressure vs Nasal Intermittent Positive Pressure Ventilation vs Noninvasive High-Frequency Oscillatory Ventilation as Support After Extubation of Neonates Born Extremely Preterm or With More Severe Respiratory Failure: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open. 2023 Jul 3;6(7):e2321644. [CrossRef]
- Öktem, A.; Yiğit, Ş.; Çelik, H.T.; Yurdakök, M. Comparison of four different non-invasive respiratory support techniques as primary respiratory support in preterm infants. Turk J Pediatr. 2021;63(1):23-30. [CrossRef]
- Wang, K.; Zhou, X.; Gao, S.; Li, F.; Ju, R. Noninvasive high-frequency oscillatory ventilation versus nasal intermittent positive pressure ventilation for preterm infants as an extubation support: A systematic review and meta-analysis. Pediatr Pulmonol. 2023 Mar;58(3):704-711. [CrossRef]
- Cools, F.; Askie, L.M.; Offringa, M.; Asselin, J.M.; Calvert, S.A.; Courtney, S.E.; Dani, C.; Durand, D.J.; Gerstmann, D.R.; Henderson-Smart, D.J.; Marlow, N.; Peacock, J.L.; Pillow. J.J.; Soll, R.F.; Thome, U.H.; Truffert, P.; Schreiber, M.D.; Van Reempts, P.; Vendettuoli, V.; Vento, G.; PreVILIG collaboration. Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients’ data. Lancet. 2010 Jun 12;375(9731):2082-91. [CrossRef]
- Rüegger, C.M.; Lorenz, L.; Kamlin, C.O.F.; Manley, B.J.; Owen, L.S.; Bassler, D.; Tingay, D.G.; Donath, S.M.; Davis, P.G. The Effect of Noninvasive High-Frequency Oscillatory Ventilation on Desaturations and Bradycardia in Very Preterm Infants: A Randomized Crossover Trial. J Pediatr. 2018 Oct;201:269-273.e2. [CrossRef]
- Sammour, I.; Karnati, S. Non-invasive Respiratory Support of the Premature Neonate: From Physics to Bench to Practice. Front Pediatr. 2020 May 8;8:214. [CrossRef]
- Carlo, W.A. Should nasal high-frequency ventilation be used in preterm infants? Acta Paediatr. 2008 Nov;97(11):1484-5. [CrossRef]
- Hadj-Ahmed, M,A,; Samson, N.; Nadeau, C.; Boudaa, N.; Praud, J.P. Laryngeal muscle activity during nasal high-frequency oscillatory ventilation in nonsedated newborn lambs. Neonatology. 2015;107(3):199-205. [CrossRef]
- Null, D.M.; Alvord, J.; Leavitt, W.; Wint, A.; Dahl, M.J.; Presson, A.P.; Lane, R.H.; DiGeronimo, R.J.; Yoder, B.A.; Albertine, K.H. High-frequency nasal ventilation for 21 d maintains gas exchange with lower respiratory pressures and promotes alveolarization in preterm lambs. Pediatr Res. 2014 Apr;75(4):507-16. [CrossRef]
- Reddy, P.I.; Al-Jumaily, A.M.; Bold, G.T. Dynamic surface tension of natural surfactant extract under superimposed oscillations. J Biomech. 2011 Jan 4;44(1):156-63. [CrossRef]
- Rehan, V.K.; Fong, J.;, Lee, R.; Sakurai, R.; Wang, Z.M.; Dahl, M.J.; Lane, R.H.; Albertine, K.H.; Torday, J.S. Mechanism of reduced lung injury by high-frequency nasal ventilation in a preterm lamb model of neonatal chronic lung disease. Pediatr Res. 2011 Nov;70(5):462-6. [CrossRef]
- Yoder, B.A.; Siler-Khodr, T.; Winter, V.T.; Coalson, J.J. High-frequency oscillatory ventilation: effects on lung function, mechanics, and airway cytokines in the immature baboon model for neonatal chronic lung disease. Am J Respir Crit Care Med. 2000 Nov;162(5):1867-76. [CrossRef]
- Gaertner, V.D.; Waldmann, A.D.; Davis, P.G.; Bassler, D.; Springer, L.; Thomson, J.; Tingay, D.G.; Rüegger, C.M. Transmission of Oscillatory Volumes into the Preterm Lung during Noninvasive High-Frequency Ventilation. Am J Respir Crit Care Med. 2021 Apr 15;203(8):998-1005. [CrossRef]
- Gaertner, V.D.; Waldmann, A.D.; Davis, P.G.; Bassler, D.; Springer, L.; Thomson, J.; Tingay, D.G.; Rüegger, C.M. Lung volume distribution in preterm infants on non-invasive high-frequency ventilation. Arch Dis Child Fetal Neonatal Ed. 2022 Sep;107(5):551-557. [CrossRef]
- Ordinul Ministrului Sănătăţiişi Familiei nr. 910 Privind Criteriile de Ierarhizare a Secţiilor de Spital de Specialitate Obstetrică, Ginecologie şi Neonatologie. Monitorul Oficial al României. Nov 18, 2002.
- Ordinului Ministrului Sănătăţii nr. 323/18.04.2011 Privind Aprobarea Metodologiei şi a Criteriilor Minime Obligatorii Pentru Clasificarea Spitalelor în Funcţie de Competenţă Monitorul Oficial al României. Apr 19, 2011.
- Fischer, H.S.; Bohlin, K.; Bührer, C.; Schmalisch, G.; Cremer, M.; Reiss, I.; Czernik, C. Nasal high-frequency oscillation ventilation in neonates: a survey in five European countries. Eur J Pediatr. 2015 Apr;174(4):465-71. [CrossRef]
- Mukerji, A.; Shah, P.S.; Shivananda, S.; Yee, W.; Read, B.; Minski, J.; Alvaro, R.; Fusch, C.; Canadian Neonatal Network Investigators. Survey of noninvasive respiratory support practices in Canadian neonatal intensive care units. Acta Paediatr. 2017 Mar;106(3):387-393. [CrossRef]
- Petrillo, F.; Gizzi, C.; Maffei, G.; Matassa, P.G.; Ventura, M.L.; Ricci, C.; Pastorino, R.; Vento, G.; Neonatal Pneumology Study Group Italian Society of Neonatology. Neonatal respiratory support strategies for the management of extremely low gestational age infants: an Italian survey. Ital J Pediatr. 2019 Apr 11;45(1):44. [CrossRef]
- Cucerea, M.; Simon, M.; Stoicescu, S.M.; Blaga, L.D.; Galiș, R.; Stamatin, M.; Olariu, G.; Ognean, M.L. Neonatal Resuscitation Practices in Romania: A Survey of the Romanian Association of Neonatology (ANR) and the Union of European Neonatal and Perinatal Societies (UENPS). The Journal of Critical Care Medicine 2024; 10(1); DOI: 10.2478jccm-2024-0010.
- Gizzi, C.; Trevisanuto, D.; Gagliardi, L.; Vertecchi, G.; Ghirardello, S.; Di Fabio, S.; Moretti, C.; Mosca, F. Neonatal resuscitation practices in Italy: a survey of the Italian Society of Neonatology (SIN) and the Union of European Neonatal and Perinatal Societies (UENPS). Ital J Pediatr. 2022 Jun 2;48(1):81. [CrossRef]
- Gizzi, C.; Gagliardi, L.; Trevisanuto, D.; Ghirardello, S.; Di Fabio, S.; Beke, A.; Buonocore, G.; Charitou, A.; Cucerea, M.; Degtyareva, M.V.; Filipović-Grčić, B.; Jekova, N.G.; Koç, E.; Saldanha, J.; Luna, M.S.; Stoniene, D.; Varendi, H.; Calafatti, M.; Vertecchi, G.; Mosca, F.; Moretti, C; Union of European Neonatal and Perinatal Societies (UENPS) Study Committee. Variation in delivery room management of preterm infants across Europe: a survey of the Union of European Neonatal and Perinatal Societies. Eur J Pediatr. 2023 Sep;182(9):4173-4183. [CrossRef]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; Speer, C.P.; Vento, M.; Visser, G.H.A.; Halliday, H.L. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology. 2023;120(1):3-23. [CrossRef]
- Ali, Y.A.H.; Seshia, M.M.; Ali, E.; Alvaro, R. Noninvasive High-Frequency Oscillatory Ventilation: A Retrospective Chart Review. Am J Perinatol. 2022 Apr;39(6):666-670. [CrossRef]
- Colaizy, T.T.; Younis, U.M.; Bell, E.F.; Klein, J.M. Nasal high-frequency ventilation for premature infants. Acta Paediatr. 2008 Nov;97(11):1518-22. [CrossRef]
- Mukerji, A.; Singh, B.; Helou, S.E.; Fusch, C.; Dunn, M.; Belik, J.; Shah, V. Use of noninvasive high-frequency ventilation in the neonatal intensive care unit: a retrospective review. Am J Perinatol. 2015 Feb;30(2):171-6. [CrossRef]
- Klotz, D.; Schaefer, C.; Stavropoulou, D.; Fuchs, H.; Schumann, S. Leakage in nasal high-frequency oscillatory ventilation improves carbon dioxide clearance-A bench study. Pediatr Pulmonol. 2017 Mar;52(3):367-372. [CrossRef]
- Shehadeh, A.M.H. Non-invasive respiratory support for preterm infants following extubation from mechanical ventilation. A narrative review and guideline suggestion. Pediatr Neonatol. 2020 Apr;61(2):142-147. [CrossRef]
- Chen, W.; Chen, Z.; Lai, S.; Cai, W.; Lin, Y. Noninvasive high-frequency oscillatory ventilation versus bi-level positive pressure ventilation in premature infants with respiratory failure: A retrospective study. Pak J Med Sci. 2022 May-Jun;38(5):1353-1359. [CrossRef]
- Shi, Y.; De Luca, D.; NASal OscillatioN post-Extubation (NASONE) study group. Continuous positive airway pressure (CPAP) vs noninvasive positive pressure ventilation (NIPPV) vs noninvasive high frequency oscillation ventilation (NHFOV) as post-extubation support in preterm neonates: protocol for an assessor-blinded, multicenter, randomized controlled trial. BMC Pediatr. 2019 Jul 26;19(1):256. [CrossRef]
- Fischer, H.S.; Bührer, C.; Czernik, C. Hazards to avoid in future neonatal studies of nasal high-frequency oscillatory ventilation: lessons from an early terminated trial. BMC Res Notes. 2019 Apr 25;12(1):237. [CrossRef]
- Shalish, W.; Kanbar, L.; Kovacs, L.; Chawla, S.; Keszler, M.; Rao, S.; Panaitescu, B.; Laliberte, A.; Precup, D.; Brown, K.; Kearney, R.E.; Sant’Anna, G.M. The Impact of Time Interval between Extubation and Reintubation on Death or Bronchopulmonary Dysplasia in Extremely Preterm Infants. J Pediatr. 2019 Feb;205:70-76.e2. [CrossRef]
- Zhu, X.W.; Zhao, J.N.; Tang, S.F.; Yan, J.; Shi, Y. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with moderate-severe respiratory distress syndrome: A preliminary report. Pediatr Pulmonol. 2017 Aug;52(8):1038-1042. [CrossRef]
- Aleksandrovich, Yu.S.; Dalzhinova, S.B., Pshenisnov, K.V., Aleksandrovich, I.V. Non-invasive ventilation provides adequate gas exchange minimizing pulmonary and extrapulmonary complications. Messenger of Anesthesiology and Resuscitation. 2020;17(6):22-30. (In Russ.) . [CrossRef]
- Lai, S.H.; Xie, Y.L.; Chen, Z.Q.; Chen, R.; Cai, W.H.; Wu, L.C.; Lin, Y.F.; Zheng, YR. Non-invasive High-Frequency Oscillatory Ventilation as Initial Respiratory Support for Preterm Infants With Respiratory Distress Syndrome. Front Pediatr. 2022 Jan 11;9:792160. [CrossRef]
- Mahmoud, R.A.; Schmalisch, G.; Oswal, A.; Roehr, C.C. Non-invasive ventilatory support in neonates: An evidence-based update. Paediatr Respir Rev. 2022 Dec;44:11-18. [CrossRef]
- De Luca, D.; Costa, R.; Visconti, F.; Piastra, M.; Conti, G. Oscillation transmission and volume delivery during face mask-delivered HFOV in infants: Bench and in vivo study. Pediatr Pulmonol. 2016 Jul;51(7):705-12. [CrossRef]
- King, B.C.; Gandhi, B.B.; Jackson, A.; Katakam, L.; Pammi, M.; Suresh, G. Mask versus Prongs for Nasal Continuous Positive Airway Pressure in Preterm Infants: A Systematic Review and Meta-Analysis. Neonatology. 2019;116(2):100-114. [CrossRef]
- Malakian, A.; Bashirnezhadkhabaz, S.; Aramesh, M.R.; Dehdashtian, M. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: a randomized controlled trial. J Matern Fetal Neonatal Med. 2020 Aug;33(15):2601-2607. [CrossRef]
- Shankar-Aguilera, S.; Taveira, M.; De Luca, D. Neonatal ventilation trials need specific funding. Lancet Respir Med. 2014 Nov;2(11):867-869. [CrossRef]
- Baldan, E.; Varal, I.G.; Dogan, P.; Cizmeci, M.N. The effect of non-invasive high-frequency oscillatory ventilation on the duration of non-invasive respiratory support in late preterm and term infants with transient tachypnea of the newborn: a randomized controlled trial. Eur J Pediatr. 2023 Oct;182(10):4499-4507. [CrossRef]
- Ullrich, T.L.; Czernik, C.; Bührer, C.; Schmalisch, G.; Fischer, H.S. Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study. Pediatr Pulmonol. 2017 Nov;52(11):1455-1460. [CrossRef]
- Shi, Y.; Muniraman, H.; Biniwale, M.; Ramanathan, R. A Review on Non-invasive Respiratory Support for Management of Respiratory Distress in Extremely Preterm Infants. Front Pediatr. 2020 May 28;8:270. [CrossRef]
- Anne, R.P.; Murki, S. Noninvasive Respiratory Support in Neonates: A Review of Current Evidence and Practices. Indian J Pediatr. 2021 Jul;88(7):670-678. [CrossRef]
- Cantin, D.; Djeddi, D.; Samson, N.; Nadeau, C.; Praud, J.P. Nasal high-frequency oscillatory ventilation inhibits gastroesophageal reflux in the neonatal period. Respir Physiol Neurobiol. 2018 May;251:28-33. [CrossRef]
- Pfenninger, J.; Minder, C. Pressure-volume curves, static compliances and gas exchange in hyaline membrane disease during conventional mechanical and high-frequency ventilation. Intensive Care Med. 1988;14(4):364-72. [CrossRef]
- Li, Y.; Mo, Y.; Yao, L.; Wei, Q.; Meng, D.; Tan, W.; Pan, X. The long-term outcomes of preterm infants receiving non-invasive high-frequency oscillatory ventilation. Front Pediatr. 2022 Jul 22;10:865057. [CrossRef]
| Mean ± SD | Range | Median (IQR) | |
| Number of admissions/year 2022 | 2648.5±1352.8 | 250-5674 | 2350(1550-3466) |
| NICU beds | 13.6±6.3 | 8-27 | 10 (10-17.5) |
| N(%) | |
| Types of non-invasive respiratory support | |
| - CPAP on mechanical ventilators | 20/21 (95.2) |
| - nCPAP | 4/21 (19.0) |
| - Bubble CPAP | 10/21 (47.6) |
| - BiPAP | 10/21 (47.6) |
| - HHHFNC | 13/21 (61.9) |
| - NIPPV | 16/21 (76.2) |
| - nHFOV | 11/21 (52.4) |
| Interfaces on non-invasive respiratory support | |
| - short binasal prongs | 16/21 (76.2) |
| - facial/nasal mask | 16/21 (76.2) |
| - RAM cannula | 5/21 (23.8) |
| - nasopharyngeal tube | 2/21 (9.5) |
| - nasal cannula | 13/21 (61.9) |
| Preferred interfaces in the delivery room | |
| - facial mask | 20/21 (95,2) |
| - short nasal prongs | 5/21 (23.8) |
| - RAM nasal cannula | 1/21 (4.8) |
| The preferred method for surfactant administration in preterm infants spontaneously breathing | |
| - INSURE1 | 15/21 (71.4) |
| - LISA2 | 14/21 (66.7) |
| N (%) | |
| Frequency of nHFOV use | |
| - rare (<1 patient/2 months) | 4/21 (19.0) |
| - occasional (1 patient/month) | 2/21 (9.5) |
| - frequent (2 patients/month) | 3/21 (14.3) |
| - often (>2 patients/month) | 2/21 (9.5) |
| - never | 10/21 (47.7) |
| Categories of patients in which nHFOV is used | |
| - < 28 weeks GA1 | 8/11 (72.7) |
| - < 32 weeks GA1 | 7/11 (63.6) |
| - < 1000 g BW2 | 8/11 (72.7) |
| - < 1500 g BW2 | 8/11 (72.7) |
| - all preterm infants | 7/11 (63.6) |
| - term neonates | 0 |
| - preterm and term neonates | 7/11 (63.6) |
| Indications for nHFOV | |
| - initial respiratory support in RDS | 6/11 (54.5) |
| - alveolar recruitment | 6/11 (54.5) |
| - CPAP failure | 10/11 (90.9) |
| - post extubation | 7/11 (63.6) |
| - hypercapnia | 9/11 (81.8) |
| - BPD | 8/11 (72.7) |
| Maximum CPAP level before switching to nHFOV | |
| - 5 cmH20 | 0 |
| - 6 cmH2O | 6/11 (54.5) |
| - 7 cmH2O | 1/11 (9.1) |
| - 8 cmH2O | 4/11 (36.4) |
| - 9 cmH2O | 0 |
| - > 9 cmH2O | 0 |
| MAP compared to CPAP levels when switching from CPAP to nHFOV | |
| - MAP = CPAP | 2/11 (18.2) |
| - MAP< CPAP | 0 |
| - MAP = CPAP + 1-2 cmH2O | 8/11 (72.7) |
| - MAP > CPAP + 2 cmH2O | 2/11 (18.2) |
| Type of equipment used for nHFOV | |
| - dedicated machines (e.g., Medin CNO) | 5/11 (45.5) |
| - mechanical ventilators | 7/11 (63.6) |
| Equipment used for nHFOV | |
| - Draeger | 1/11 (9.1) |
| - Fabian | 4/11 (36.4) |
| - Sensormedics | 1/11 (9.1) |
| - Leoni | 4/11 (36.4) |
| - SLE | 4/11 (36.4) |
| Interfaces used for nHFOV | |
| - short nasal prongs | 8/11 (72.7) |
| - face/nasal mask | 10/11 (90.9) |
| - RAM cannula | 1/11 (9.1) |
| - nasopharyngeal tube | 1/11 (9.1) |
| Secondary effects observed on nHFOV | |
| - abdominal distension | 5/11 (45.5) |
| - upper airway obstruction | 7/11 (63.6) |
| - thick secretions | 9/11 (81.8) |
| - intolerance/altered feeding tolerance | 3/11 (14.3) |
| - agitation | 8/11 (38.1) |
| - pneumothorax | 0 |
| - leaks at the interface | 10/11 (90.9) |
| - equipment malfunction | 2/11 (18.2) |
| Existence of a nHFOV protocol | 3/11 (27.3) |
| Reason for not using nHFOV | |
| - lack of equipment | 5/10 (50.0) |
| - insufficient information on indications | 4/10 (40.0) |
| - insufficient information on settings | 4/10 (40.0) |
| - insufficient information on outcomes | 4/10 (40.0) |
| - insufficient evidence for indications | 3/10 (30.0) |
| - insufficient evidence for settings | 3/10 (30.0) |
| - insufficient evidence for outcomes | 3/10 (30.0) |
| - insufficient experience/training | 6/10 (60.0) |
| nHFOV with dedicated equipment (5 NICUs) | nHFOV with mechanical ventilators (7 NICUs) | p | |||
| Mean ± SD | Median (IQR) | Mean ± SD | Median (IQR) | ||
| Maximum CPAP before switching to NHFOV (cmH2O) | 6.8±1.1 | 6 (6-8) | 6.8±1.0 | 6.5 (6-8) | 0.931 |
| Frequency (Hz) | |||||
| - initial | 10,2±1.1 | 10 (9.50-11) | 10,2±0,4 | 10 (10.0-10.25) | 0.792 |
| - minimum | 8,8±1,1 | 8 (8.0-10.0) | 8,5±1,5 | 8.5 (7.5-10.0) | 1.000 |
| - maximum | 14,2±1,3 | 15 (13.0-15.0) | 14,3±1,7 | 14.5 (12.75-15.50) | 1.000 |
| Amplitude (cmH2O) | |||||
| - initial | 11.6±4.8 | 10 (9.0-15.0) | 21.3±5.3 | 20 (18.5-25.5) | 0.017 |
| - minimum | 8.8±4.0 | 8 (5.5-12.5) | 16.3±3.1 | 15.5 (14.25-20.0) | 0.017 |
| - maximum | 13.8±6.5 | 10 (10.0-19.5) | 31.0±7.8 | 30 (24.5-40.0) | 0.009 |
| MAP (cmH2O) | |||||
| - initial | 6.2±1.1 | 6 (5.5-7) | 12,7±5.0 | 10 (9.5-18.5) | 0.004 |
| - minimum | 5.6±0.5 | 6 (5-6) | 10.8±3,7 | 9 (8-15.25) | 0.004 |
| - maximum | 12.0±4.1 | 15 (7.5-15.0) | 20.5±8.4 | 18 (14.25-27.5) | 0.052 |
| No of NICU beds | 16.4±7.9 | 12 (10.0-25.0) | 13.2±7.4 | 10.5 (8-18) | 0.537 |
| No of admissions/year 2022 | 3721.4±1517.2 | 3300 (2406-5247) |
2006.5± 1535.5 |
1550 (805-3610) |
0.126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
