Submitted:
03 June 2024
Posted:
04 June 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Theory
3. Results
3.1. Mg()
3.2. Mg()
3.3. Mg()
4. Conclusions
Acknowledgments
References
- Barrow, R.F.; Beale, J.R. Rotational analysis of electronic bands of gaseous MgF. Proceedings of the Physical Society 1967, 91, 483. [Google Scholar] [CrossRef]
- Novikov, M.M.; Gurvich, L.V. The electronic spectra of MgF and MgF+. Journal of Applied Spectroscopy 1971, 14, 820–822. [Google Scholar] [CrossRef]
- Xu, S.; Xia, M.; Yin, Y.; Gu, R.; Xia, Y.; Yin, J. Determination of the normal A2∏ state in MgF with application to direct laser cooling of molecules. The Journal of Chemical Physics 2019, 150, 084302. [Google Scholar] [CrossRef] [PubMed]
- Doppelbauer, M.; Wright, S.C.; Hofsäss, S.; Sartakov, B.G.; Meijer, G.; Truppe, S. Hyperfine-resolved optical spectroscopy of the A2∏ ← X2∑+ transition in MgF. The Journal of Chemical Physics 2022, 156, 134301. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Gao, Y.; Kuang, F.; Gao, T.; Du, J.; Jiang, G. Theoretical study of laser cooling of magnesium monofluoride using ab initio methods. Phys. Rev. A 2015, 91, 042511. [Google Scholar] [CrossRef]
- Kang, S.; Gao, Y.; Kuang, F.; Gao, T.; Du, J.; Jiang, G. Erratum: Theoretical study of laser cooling of magnesium monofluoride using ab initio methods [Phys. Rev. A 91, 042511 (2015)]. Phys. Rev. A 2015, 92, 069902. [Google Scholar] [CrossRef]
- Gu, J.; Xiao, Z.; Yu, C.; Zhang, Q.; Chen, Y.; Zhao, D. High resolution laser excitation spectra and Franck-Condon factors of A2∏–X2∑+ electronic transition of MgF. Chinese Journal of Chemical Physics 2022, 35, 58–68. [Google Scholar] [CrossRef]
- Hou, S.; Bernath, P.F. Line list for the MgF ground state. Journal of Quantitative Spectroscopy and Radiative Transfer 2017, 203, 511–516. [Google Scholar] [CrossRef]
- Bruder, F.; Franzke, Y.J.; Weigend, F. Paramagnetic NMR Shielding Tensors Based on Scalar Exact Two-Component and Spin–Orbit Perturbation Theory. The Journal of Physical Chemistry A 2022, 126, 5050–5069. [Google Scholar] [CrossRef] [PubMed]
- TURBOMOLE V7.8 2024, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available fromhttp://www.turbomole.com.
- Vutha, A.C.; Horbatsch, M.; Hessels, E.A. Oriented Polar Molecules in a Solid Inert-Gas Matrix: A Proposed Method for Measuring the Electric Dipole Moment of the Electron. Atoms 2018, 6. [Google Scholar] [CrossRef]
- Buchachenko, A.A.; Viehland, L.A. Interaction potentials and transport properties of Ba, Ba+, and Ba2+ in rare gases from He to Xe. The Journal of Chemical Physics 2018, 148, 154304. [Google Scholar] [CrossRef] [PubMed]
- Kleshchina, N.N.; Kalinina, I.S.; Leibin, I.V.; Bezrukov, D.S.; Buchachenko, A.A. Stable axially symmetric atomic impurity in an fcc solid—Ba in rare gases. The Journal of Chemical Physics 2019, 151, 121104. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, G.; Lambo, R.; Ragyanszki, A.; Fournier, R.; Horbatsch, M.; Hessels, E. Accurate calculation of the interaction of a barium monofluoride molecule with an argon atom: A step towards using matrix isolation of BaF for determining the electron electric dipole moment. Journal of Molecular Spectroscopy 2023, 391, 111736. [Google Scholar] [CrossRef]
- Lambo, R.L.; Koyanagi, G.K.; Ragyanszki, A.; Horbatsch, M.; Fournier, R.; Hessels, E.A. Calculation of the local environment of a barium monofluoride molecule in an argon matrix: A step towards using matrix-isolated BaF for determining the electron electric dipole moment. Molecular Physics 2023, 121, e2198044. [Google Scholar] [CrossRef]
- Lambo, R.L.; Koyanagi, G.K.; Horbatsch, M.; Fournier, R.; Hessels, E.A. Calculation of the local environment of a barium monofluoride molecule in a neon matrix. Molecular Physics 2023, 121, e2232051. [Google Scholar] [CrossRef]
- Hao, Y.; Pašteka, L.F.; Visscher, L.; Aggarwal, P.; Bethlem, H.L.; Boeschoten, A.; Borschevsky, A.; Denis, M.; Esajas, K.; Hoekstra, S.; Jungmann, K.; Marshall, V.R.; Meijknecht, T.B.; Mooij, M.C.; Timmermans, R.G.E.; Touwen, A.; Ubachs, W.; Willmann, L.; Yin, Y.; Zapara, A.; eEDM Collaboration), N. High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling. The Journal of Chemical Physics 2019, 151, 034302. [Google Scholar] [CrossRef]
- Skripnikov, L.V.; Chubukov, D.V.; Shakhova, V.M. The role of QED effects in transition energies of heavy-atom alkaline earth monofluoride molecules: A theoretical study of Ba+, BaF, RaF, and E120F. The Journal of Chemical Physics 2021, 155, 144103. [Google Scholar] [CrossRef]
- Kyuberis, A.A.; Pašteka, L.F.; Eliav, E.; Perrett, H.A.; Sunaga, A.; Udrescu, S.M.; Wilkins, S.G.; Garcia Ruiz, R.F.; Borschevsky, A. Theoretical determination of the ionization potentials of CaF, SrF, and BaF. Phys. Rev. A 2024, 109, 022813. [Google Scholar] [CrossRef]
- Denis, M.; Haase, P.A.B.; Mooij, M.C.; Chamorro, Y.; Aggarwal, P.; Bethlem, H.L.; Boeschoten, A.; Borschevsky, A.; Esajas, K.; Hao, Y.; Hoekstra, S.; van Hofslot, J.W.F.; Marshall, V.R.; Meijknecht, T.B.; Timmermans, R.G.E.; Touwen, A.; Ubachs, W.; Willmann, L.; Yin, Y. Benchmarking of the Fock-space coupled-cluster method and uncertainty estimation: Magnetic hyperfine interaction in the excited state of BaF. Phys. Rev. A 2022, 105, 052811. [Google Scholar] [CrossRef]
- Norrgard, E.B.; Chamorro, Y.; Cooksey, C.C.; Eckel, S.P.; Pilgram, N.H.; Rodriguez, K.J.; Yoon, H.W.; Pašteka, L.c.v.F.; Borschevsky, A. Radiative decay rate and branching fractions of MgF. Phys. Rev. A 2023, 108, 032809. [Google Scholar] [CrossRef]
- Hättig, C.; Weigend, F. CC2 excitation energy calculations on large molecules using the resolution of the identity approximation. The Journal of Chemical Physics 2000, 113, 5154–5161. [Google Scholar] [CrossRef]
- Hättig, C. Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2). In Response Theory and Molecular Properties (A Tribute to Jan Linderberg and Poul Jørgensen); Jensen, H., Ed.; Academic Press, 2005; Vol. 50, Advances in Quantum Chemistry, pp. 37–60. [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Hättig, C.; Köhn, A. Transition moments and excited-state first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation. The Journal of Chemical Physics 2002, 117, 6939–6951. [Google Scholar] [CrossRef]
- Gauss, J. Equation-of-Motion Coupled-Cluster Theory, 2017. https://www.esqc.org/lectures/gauss_EOM_lecture_handout.pdf [Accessed: , 2024]. 31 May.
- Crawford, T.D.; Schaefer III, H.F. , An Introduction to Coupled Cluster Theory for Computational Chemists. In Reviews in Computational Chemistry; John Wiley & Sons, Ltd, 2000; pp. 33–136. [CrossRef]
- Smith, D.G.A.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; James, A.M.; Lehtola, S.; Misiewicz, J.P.; Scheurer, M.; Shaw, R.A.; Schriber, J.B.; Xie, Y.; Glick, Z.L.; Sirianni, D.A.; O’Brien, J.S.; Waldrop, J.M.; Kumar, A.; Hohenstein, E.G.; Pritchard, B.P.; Brooks, B.R.; Schaefer, Henry F. , I.; Sokolov, A.Y.; Patkowski, K.; DePrince, A. Eugene, I.; Bozkaya, U.; King, R.A.; Evangelista, F.A.; Turney, J.M.; Crawford, T.D.; Sherrill, C.D. PSI4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of Chemical Physics 2020, 152, 184108. [Google Scholar] [CrossRef]
- Damour, Y.; Quintero-Monsebaiz, R.; Caffarel, M.; Jacquemin, D.; Kossoski, F.; Scemama, A.; Loos, P.F. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality. Journal of Chemical Theory and Computation 2023, 19, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.C.; Myhre, R.H.; Koch, H. New and Efficient Implementation of CC3. Journal of Chemical Theory and Computation 2021, 17, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Damour, Y.; Scemama, A.; Jacquemin, D.; Kossoski, F.; Loos, P.F. State-Specific Coupled-Cluster Methods for Excited States. 2024; arXiv:physics.chem-ph/2401.05048. [Google Scholar]
- Lee, J.; Small, D.W.; Head-Gordon, M. Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states. The Journal of Chemical Physics 2019, 151, 214103. [Google Scholar] [CrossRef] [PubMed]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theoretical Chemistry Accounts 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, Thom H. , J.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. The Journal of Chemical Physics 1992, 96, 6796–6806, https://pubs.aip.org/aip/jcp/article-pdf/96/9/6796/18998924/6796_1_online.pdf. [Google Scholar] [CrossRef]
- Peterson, K.A.; Woon, D.E.; Dunning, Thom H. , J. Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction. The Journal of Chemical Physics 1994, 100, 7410–7415. [Google Scholar] [CrossRef]
- Field, R.W.; Bergeman, T.H. Radio-Frequency Spectroscopy and Perturbation Analysis in CS A 1 ∏ (theta = 0). The Journal of Chemical Physics 1971, 54, 2936–2948. [Google Scholar] [CrossRef]



| CBS | Expt | ||||
|---|---|---|---|---|---|
| 27 507 | 27 556 | 27 744 | 27 849 | 27 817 27 834† | |
| 36 966 | 36 895 | 37 067 | 37 169 | 37 167 | |
| 42 257 | 42 316 | 42 534 | 42 663 | 42 590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
