Submitted:
29 May 2024
Posted:
30 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Metric
3. The FLRW Equations
4. Implications of the FLRW Equations
5. Time Dependence of the Scale Factor
5.1. The Lorentzian Sector
5.2. The Euclidean Sector
5.3. The Transition between Euclidean and Lorentzian Sectors
6. Conclusions
References
- Yahalom, Asher. 2022. "The Primordial Particle Accelerator of the Cosmos" Universe 8, no. 11: 594. arXiv:2211.09674 [gr-qc]. [CrossRef]
- Sakharov, A.D. Cosmological transitions with changes in the signature of the metric. Sov. Phys. JETP 1984, 60, 214–218. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/60/2/p214?a=list.
- Shestakova, T.P. The Birth of the Universe as a Result of the Change of the Metric Signature. Physics 2022, 4, 160–171. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Ellis, G.; Sumeruk, A.; Coule, D.; Hellaby, C. Change of signature in classical relativity. Class. Quantum Grav. 1992, 9, 1535–1554. [Google Scholar] [CrossRef]
- A. Yahalom "The Geometrical Meaning of Time" Foundations of Physics, Volume 38, Number 6, Pages 489-497 (June 2008). ["The Linear Stability of Lorentzian Space-Time" Los-Alamos Archives - gr-qc/0602034, gr-qc/0611124]. [CrossRef]
- Padmanabhan, T. Gravitation: Foundations and frontiers (Cambridge U. Press, Cambridge, 2010).
- Ling, E. Remarks on the cosmological constant appearing as an initial condition for Milne-like spacetimes. Gen Relativ Gravit 54, 68 (2022). [CrossRef]
- S. Weinberg "Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity" John Wiley & Sons, Inc. (1972).
- C. W. Misner, K.S. Thorne & J.A. Wheeler, "Gravitation" W.H. Freeman & Company (1973).
- Narlikar, J. V. (1993). Introduction to Cosmology, Cambridge University Press.
- Salvatore Capozziello, Silvia De Bianchi, and Emmanuele Battista, Avoiding singularities in Lorentzian-Euclidean black holes: the role of atemporality, ArXiv: 2404.17267, Phys. Rev. D 109, 104060 - Published 20 May 2024. [CrossRef]
- Battista, E., Esposito, G. Geodesic motion in Euclidean Schwarzschild geometry. Eur. Phys. J. C 82, 1088 (2022). [CrossRef]
- Garnier, A. Particle dynamics in spherically symmetric electro-vacuum instantons. Eur. Phys. J. C 84, 374 (2024). [CrossRef]
- Bruno Alexandre, Steffen Gielen & João Magueijo Overall signature of the metric and the cosmological constant, J. Cosmol. Astropart. Phys. 02 (2024) 036. [CrossRef]
- Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev., D23, 347 (1981).
- Asher Yahalom "Gravity, Stability and Cosmological Models". International Journal of Modern Physics D. Published: 10 October 2017 issue (No. 12). [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
