Submitted:
29 May 2024
Posted:
30 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Correlation of HVEM and CD160 Gene SNPs with ccRCC Susceptibility
2.2. Multifactorial Regression Analysis
2.3. Haplotype Analysis
2.4. Sex-Dependent Association of HVEM and CD160 Polymorphisms and ccRCC Risk
2.5. Association of HVEM and CD160 Polymorphisms with Clinical Features of ccRCC
| N (case/control) | OR (95% CI); p value | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rs1886730 | TT | CT | CC | CT+CC vs TT | CT+TT vs CC | CT vs TT | CT vs TT+ CC | |||||
| 15/50 | 46/77 | 25/44 | 1.92 (1.01-3.64); | 0.04 | 0.84 (0.47-1.49); | 0.57 | 1.95 (0.99-3.84); | 0.05 | 1.40 (0.83-2.36); | 0.20 | ||
| rs2234167 | GG | AG | AA | AG+AA vs GG | GG+AG vs AA | AG vs GG | AG vs GG+AA | |||||
| 55/142 | 37/80 | 1/2 | 2.63 (1.46-4.73); | 0.001 | 0.84 (0.11-6.47); | 1.00 | 2.73 (1.50-4.96); | 0.001 | 2.76 (1.51-5.02); | 0.001 | ||
| rs8725 | GG | AG | AA | AG+AA vs GG | GG+AG vs AA | AG vs GG | AG vs GG+AA | |||||
| 14/56 | 47/74 | 25/41 | 2.45 (1.28-4.67); | 0.01 | 0.77 (0.43-1.37); | 0.38 | 2.48 (1.26-4.91); | 0.01 | 1.58 (0.94-2.66); | 0.09 | ||
| rs2231375 | CC | CT | TT | TT+CT vs CC | CC+CT vs TT | CT vs CC | CT vs CC+ TT | |||||
| 28/77 | 47/65 | 10/28 | 1.67 (0.97-2.87); | 0.06 | 1.44 (0.67-3.08); | 0.32 | 1.97 (1.12-3.48); | 0.02 | 2.00 (1.18-3.39); | 0.01 | ||
2.6. Analysis of Patients' Survival in Context to Clinical Parameters as well as HVEM and CD160 Gene Polymorphisms
3. Discussion
4. Materials and Methods
4.1. Patients
| Variable | All N=238 | Male N=151 | Female N=86 |
|---|---|---|---|
| Age at diagnosis | |||
| Median | 62 | 61 | 63 |
| Mean | 62.61 | 62.01 | 63.67 |
| Q1-Q3 | 56-70 | 56-68 | 58-71 |
| Min, Max | 21, 85 | 21, 85 | 24, 85 |
| BMI | |||
| Median | 27.70 | 27.70 | 27.75 |
| Mean | 28.29 | 28.26 | 28.33 |
| Q1-Q3 | 24.6-31.5 | 25.1-30.7 | 23.85-31.2 |
| Min, Max | 19.1, 43.8 | 19.7, 43.8 | 19.1, 43.8 |
| Stage of disease | N (%) | N (%) | N (%) |
| I | 108 (45.57) | 63 (41.72) | 45 (52.33) |
| II | 26 (10.97) | 20 (13.25) | 6 (6.98) |
| III | 26 (10.97) | 16 (10.60) | 10 (11.63) |
| IV | 76 (32.07) | 51 (33.77) | 25 (29.07) |
| Unknown | 1 (0.42) | 1 (0.66) | 0 (0) |
| Metastasis | |||
| No | 165 (69.62) | 101 (66.89) | 64 (74.42) |
| Present | 53 (22.36) | 35 (23.18) | 18 (20.93) |
| Unknown | 19 (8.02) | 15 (9.93) | 4 (4.65) |
| Necrosis | |||
| No | 118 (59.00) | 71 (55.47) | 47 (65.28) |
| Present | 82 (41.00) | 57 (44.53) | 25 (34.72) |
| Unknown | 0 (0) | 0 (0) | 0 (0) |
| Tumor size | |||
| < 70 mm | 143 (60.34) | 87 (57.61) | 56 (65.12) |
| > 70 mm | 65 (27.42) | 48 (31.79) | 17 (19.77) |
| Unknown | 29 (12.24) | 16 (10.60) | 13 (15.11) |
4.2. Controls
4.3. Selection of SNPs
4.4. DNA Isolation and SNP Genotyping
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padala SA, Barsouk A, Thandra KC, Saginala K, Mohammed A, Vakiti A, et al. Epidemiology of Renal Cell Carcinoma. World J Oncol 2020;11:79–87. [CrossRef]
- Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015;48:166–74. [CrossRef]
- Cancer Today, Global Cancer Observatory. Available at: https://gco.iarc.fr/today/home (Accessed: 02 February 2024). n.d.
- Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol 2017;47:765–79. [CrossRef]
- Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16:275–87. [CrossRef]
- Del Rio ML, Lucas CL, Buhler L, Rayat G, Rodriguez-Barbosa JI. HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. J Leukoc Biol 2009;87:223–35. [CrossRef]
- Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024;12:8. [CrossRef]
- Murphy KM, Nelson CA, Šedý JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 2006;6:671–81. [CrossRef]
- Lan X, Li S, Gao H, Nanding A, Quan L, Yang C, et al. Increased BTLA and HVEM in gastric cancer are associated with progression and poor prognosis. Onco Targets Ther 2017;10:919–26. [CrossRef]
- Ren S, Tian Q, Amar N, Yu H, Rivard CJ, Caldwell C, et al. The immune checkpoint, HVEM may contribute to immune escape in non-small cell lung cancer lacking PD-L1 expression. Lung Cancer 2018;125:115–20. [CrossRef]
- Malissen N, Macagno N, Granjeaud S, Granier C, Moutardier V, Gaudy-Marqueste C, et al. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. OncoImmunology 2019;8:e1665976. [CrossRef]
- Liu F-T, Giustiniani J, Farren T, Jia L, Bensussan A, Gribben JG, et al. CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia. Blood 2010;115:3079–88. [CrossRef]
- Gauci M-L, Giustiniani J, Lepelletier C, Garbar C, Thonnart N, Dumaz N, et al. The soluble form of CD160 acts as a tumor mediator of immune escape in melanoma. Cancer Immunol Immunother 2022;71:2731–42. [CrossRef]
- Farren TW, Giustiniani J, Liu F-T, Tsitsikas DA, Macey MG, Cavenagh JD, et al. Differential and tumor-specific expression of CD160 in B-cell malignancies. Blood 2011;118:2174–83. [CrossRef]
- Li D, Fu Z, Chen S, Yuan W, Liu Y, Li L, et al. HVEM Gene Polymorphisms Are Associated with Sporadic Breast Cancer in Chinese Women. PLoS ONE 2013;8:e71040. [CrossRef]
- Chen S, Cao R, Liu C, Tang W, Kang M. Investigation of IL-4, IL-10 , and HVEM polymorphisms with esophageal squamous cell carcinoma: a case–control study involving 1929 participants. Biosci Rep 2020;40:BSR20193895. [CrossRef]
- Peltomäki P. Mutations and epimutations in the origin of cancer. Exp Cell Res 2012;318:299–310. [CrossRef]
- Foulkes WD. Inherited Susceptibility to Common Cancers. N Engl J Med 2008;359:2143–53. [CrossRef]
- Andrzejczak A, Partyka A, Wiśniewski A, Porębska I, Pawełczyk K, Ptaszkowski K, et al. The association of BTLA gene polymorphisms with non-small lung cancer risk in smokers and never-smokers. Front Immunol 2023;13:1006639. [CrossRef]
- Andrzejczak A, Tupikowski K, Tomkiewicz A, Małkiewicz B, Ptaszkowski K, Domin A, et al. The Variations’ in Genes Encoding TIM-3 and Its Ligand, Galectin-9, Influence on ccRCC Risk and Prognosis. Int J Mol Sci 2023;24:2042. [CrossRef]
- Partyka A, Tupikowski K, Kolodziej A, Zdrojowy R, Halon A, Malkiewicz B, et al. Association of 3′ nearby gene BTLA polymorphisms with the risk of renal cell carcinoma in the Polish population. Urol Oncol Semin Orig Investig 2016;34:419.e13-419.e19. [CrossRef]
- Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 2018;50:1–11. [CrossRef]
- Wagner M, Jasek M, Karabon L. Immune checkpoint molecules—inherited variations as markers for cancer risk. Front Immunol 2021;11:606721. [CrossRef]
- Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor microenvironment dynamics in clear-cell renal cell carcinoma. Cancer Discov 2019;9:1349–57. [CrossRef]
- Bukavina L, Bensalah K, Bray F, Carlo M, Challacombe B, Karam JA, et al. Epidemiology of renal cell carcinoma: 2022 update. Eur Urol 2022;82:529–42. [CrossRef]
- Tupikowski K, Partyka A, Pawlak EA, Ptaszkowski K, Zdrojowy R, Frydecka I, et al. Variation in the gene encoding the co-inhibitory molecule BTLA is associated with survival in patients treated for clear cell renal carcinoma – results of a prospective cohort study. Arch Med Sci 2023;19:1454–62. [CrossRef]
- Wagner M, Tupikowski K, Jasek M, Tomkiewicz A, Witkowicz A, Ptaszkowski K, et al. SNP-SNP interaction in genes encoding PD-1/PD-L1 axis as a potential risk factor for clear cell renal cell carcinoma. Cancers 2020;12:3521. [CrossRef]
- Tupikowski K, Partyka A, Kolodziej A, Dembowski J, Debinski P, Halon A, et al. CTLA-4 and CD28 genes’ polymorphisms and renal cell carcinoma susceptibility in the Polish population -a prospective study. Tissue Antigens 2015;86:353–61. [CrossRef]
- Cheung TC, Oborne LM, Steinberg MW, Macauley MG, Fukuyama S, Sanjo H, et al. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment. J Immunol 2009;183:7286–96. [CrossRef]
- Shrestha R, Garrett-Thomson SC, Liu W, Almo SC, Fiser A. Redesigning HVEM interface for selective binding to LIGHT, BTLA, and CD160. Structure 2020;28:1197-1205.e2. [CrossRef]
- Cai G, Freeman GJ. The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 2009;229:244–58. [CrossRef]
- Tu TC, Brown NK, Kim T-J, Wroblewska J, Yang X, Guo X, et al. CD160 is essential for NK-mediated IFN-γ production. J Exp Med 2015;212:415–29. [CrossRef]
- Šedý JR, Bjordahl RL, Bekiaris V, Macauley MG, Ware BC, Norris PS, et al. CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J Immunol 2013;191:828–36. [CrossRef]
- Liu W, Garrett SC, Fedorov EV, Ramagopal UA, Garforth SJ, Bonanno JB, et al. Structural basis of CD160:HVEM recognition. Structure 2019;27:1286-1295.e4. [CrossRef]
- Lee W-C. Searching for disease-susceptibility loci by testing for Hardy-Weinberg disequilibrium in a gene bank of affected individuals. Am J Epidemiol 2003;158:397–400. [CrossRef]
- Makino T, Kadomoto S, Izumi K, Mizokami A. Epidemiology and prevention of renal cell carcinoma. Cancers 2022;14:4059. [CrossRef]
- Fang M, Huang W, Mo D, Zhao W, Huang R. Association of five snps in cytotoxic T-lymphocyte antigen 4 and cancer susceptibility: evidence from 67 studies. Cell Physiol Biochem 2018;47:414–27. [CrossRef]
- Yang M, Liu Y, Zheng S, Geng P, He T, Lu L, et al. Associations of PD-1 and PD-L1 gene polymorphisms with cancer risk: a meta-analysis based on 50 studies. Aging 2024. [CrossRef]
- Jo B-S, Choi SS. Introns: the functional benefits of introns in genomes. Genomics Inform 2015;13:112. [CrossRef]
- Wang Z, Wang K, Yang H, Han Z, Tao J, Chen H, et al. Associations between HVEM/LIGHT/BTLA/CD160 polymorphisms and the occurrence of antibody-mediate rejection in renal transplant recipients. Oncotarget 2017;8:100079–94. [CrossRef]
- He W, Zhao J, Liu X, Li S, Mu K, Zhang J, et al. Associations between CD160 polymorphisms and autoimmune thyroid disease: a case-control study. BMC Endocr Disord 2021;21:148. [CrossRef]
- Svejgaard A, Ryder LP. HLA and disease associations: Detecting the strongest association. Tissue Antigens 1994;43:18–27. [CrossRef]

| SNP | Genotype | Case | Control | OR (95% CI) | p value | ||
|---|---|---|---|---|---|---|---|
| N | % | N | % | ||||
| rs1886730 | TT | 49 | 20.59 | 140 | 26.87 | 1 | 0.169 |
| CT | 130 | 54.62 | 257 | 49.33 | 1.44 (0.98-2.12) | ||
| CC | 59 | 24.79 | 124 | 23.80 | 1.36 (0.87-2.12) | ||
| CT+CC | 189 | 79.41 | 381 | 73.13 | 1.41 (0.98-2.04) | 0.063 | |
| TT+CT | 179 | 75.21 | 397 | 76.20 | 0.94 (0.66-1.35) | 0.768 | |
| rs2234167 | GG | 167 | 70.17 | 404 | 77.54 | 1 | 0.057 |
| AG | 68 | 28.57 | 108 | 20.73 | 1.52 (1.07-2.17) | ||
| AA | 3 | 1.26 | 9 | 1.73 | 0.89 (0.26-3.07) | ||
| AG+AA | 71 | 29.83 | 117 | 22.46 | 1.47 (1.04-2.07) | 0.029 | |
| GG+AG | 235 | 98.74 | 512 | 98.27 | 1.25 (0.36-4.29) | 0.633 | |
| rs8725 | GG | 52 | 21.85 | 145 | 27.83 | 1 | 0.218 |
| AG | 125 | 52.52 | 252 | 48.37 | 1.38 (0.94-2.02) | ||
| AA | 61 | 25.63 | 124 | 23.80 | 1.37 (0.88-2.12) | ||
| AG+AA | 186 | 78.15 | 376 | 72.17 | 1.37 (0.96-1.97) | 0.081 | |
| GG+AG | 177 | 74.37 | 397 | 76.20 | 0.90 (0.64-1.29) | 0.586 | |
| rs744877 | CC | 77 | 32.35 | 173 | 33.21 | 1 | 0.954 |
| AC | 118 | 49.58 | 258 | 49.52 | 1.03 (0.73-1.45) | ||
| AA | 43 | 18.07 | 90 | 17.27 | 1.08 (0.69-1.69) | ||
| AC+AA | 161 | 67.65 | 348 | 66.79 | 1.04 (0.75-1.44) | 0.817 | |
| CC+AC | 195 | 81.93 | 431 | 82.73 | 0.94 (0.63-1.40) | 0.790 | |
| rs2231375 | CC | 78 | 33.05 | 206 | 39.62 | 1 | 0.030 |
| CT | 130 | 55.08 | 233 | 44.81 | 1.47 (1.05-2.06) | ||
| TT | 28 | 11.86 | 81 | 15.58 | 0.92 (0.56-1.52) | ||
| CT+TT | 158 | 66.95 | 314 | 60.38 | 1.33 (0.96-1.83) | 0.084 | |
| CC+CT | 208 | 88.14 | 439 | 84.42 | 1.36 (0.86-2.14) | 0.178 | |
| ccRCC (n=238) | Control (n=521) | ||||
| A+, B+ | 39 | 57 | |||
| A+, B- | 28 | 51 | |||
| A-, B+ | 91 | 177 | |||
| A-, B- | 78 | 236 | |||
| Test | OR | P value | 95% CI | Comparison | Individual association |
| (a) A | 1.53 | 0.02 | 1.08-2.18 | ||
| (b) B | 1.58 | 0.04 | 1.16-2.15 | ||
| (c) + + vs - + | 1.33 | 0.24 | 0.82-2.15 | A in B positive | A association |
| (d) + - vs - - | 1.85 | 0.02 | 1.09-3.13 | A in B negative | |
| (e) + + vs + - | 1.25 | 0.48 | 0.67-2.31 | B in A positive | B association |
| (f) - + vs - - | 1.56 | 0.02 | 1.09-2.23 | B in A negative | |
| (g) + - vs - + | 1.07 | 0.81 | 0.63-1.81 | Differences between A and B | |
| (h) + + vs - - | 2.07 | 0.003 | 1.30-3.35 | Combined association | |
| Logistic Regression | Regression Coefficient | Standard Error | p-value | OR | CI 95% | |
|---|---|---|---|---|---|---|
| Unifactorial Model | ||||||
| rs2234167 | AA+AG | 0.38 | 0.18 | 0.029 | 1.47 | 1.04-2.07 |
| rs8725 | G G | -0.32 | 0.18 | 0.082 | 0.72 | 0.50-1.04 |
| rs1886730 | T T | -0.35 | 0.19 | 0.064 | 0.71 | 0.49-1.02 |
| rs2231375 | C T | 0.41 | 0.16 | 0.010 | 1.50 | 1.10-2.05 |
| Multifactorial Model | ||||||
| rs2234167 | AA +AG | 0.26 | 0.19 | 0.16 | 1.30 | 0.90-1.88 |
| rs8725 | G G | -0.09 | 0.33 | 0.80 | 0.92 | 0.48-1.75 |
| rs1886730 | T T | -0.18 | 0.34 | 0.60 | 0.84 | 0.43-1.62 |
| rs2231375 | C T | 0.39 | 0.16 | 0.015 | 1.47 | 1.08-2.01 |
| Haplotype* | Case (%) | Control (%) | Odds Ratio [95% CI] | p value |
|---|---|---|---|---|
| C A A A C | 15.23 (0.032) | 41.05 (0.039) | 0.79 [0.434~1.438] | 0.44 |
| C A A C T | 44.30 (0.094) | 42.11 (0.040) | 2.41 [1.55~3.73] | 5.78e-5 |
| C G A A C | 79.55 (0.179) | 156.46 (0.150) | 1.11 [0.83~1.50] | 0.48 |
| C G A C C | 29.73 (0.063) | 83.12 (0.080) | 0.75 [0.49~1.16] | 0.20 |
| C G A C T | 50.36 (0.107) | 111.32 (0.107) | 0.97 [0.68~1.38] | 0.86 |
| T G G A C | 92.68 (0.196) | 189.24 (0.182) | 1.07 [0.81~1.41] | 0.65 |
| T G G C C | 39.02 (0.083) | 102.89 (0.099) | 0.80 [0.54~1.17] | 0.25 |
| T G G C T | 80.71 (0.171) | 201.04 (0.193) | 0.83 [0.62~1.11] | 0.21 |
| Global χ2=20.33, df=7, p=0.005 | ||||
| * rs1886730, rs2234167, rs8725, rs744877, rs2231375 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
