Submitted:
29 May 2024
Posted:
29 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Description of the accident


3. Materials and Methods
3.1. Organization of Cleaning Operations at the Port of Gran Tarajal
3.2. Mechanical Oil Collection

3.3. Oil Slick Containment Systems

3.4. Removal of Vessels and Equipment






3.5. Bioremediation



3.6.1. Water Samples
- Trace elements: Zn, Cd, Pb, Cu, Ni, Cr, As, Hg, and Se, analyzed using spectrophotometry (UV-Visible).
- TBT's (tributyl tin) and its degradation products DBT (dibutyl tin) and MBT (monobutyl tin), analyzed by gas chromatography and mass detector.
- PCB's (polychlorinated biphenyls) with IUPAC numbers 28, 52, 101, 118, 138, 153, and 180, analyzed by gas chromatography and mass detector.
- Preliminary toxicity test (TPT) for luminescence inhibition.
- Total Petroleum Hydrocarbons (TPH's) analyzed using Gas Chromatography and Flame Detector.
- Polycyclic Aromatic Hydrocarbons (16 PAH's) analyzed using gas chromatography and flame detector.

3.6.2. Sediment Samples
- Trace elements: Zn, Cd, Pb, Cu, Ni, Cr, As, Hg, and Se, analyzed using VIS spectrophotometry.
- TBT's (tributyl tin) and its degradation products DBT (dibutyl tin) and MBT (monobutyl tin), analyzed by gas chromatography and mass detector.
- PCB's (polychlorinated biphenyls) with IUPAC numbers 28, 52, 101, 118, 138, 153, and 180, analyzed by gas chromatography and mass detector.
- Preliminary toxicity test (TPT) for luminescence inhibition.
- Total Petroleum Hydrocarbons (TPH's) analyzed using Gas Chromatography and Flame Detector.
- Polycyclic Aromatic Hydrocarbons (16 PAH's) analyzed using gas chromatography and flame detector.
- Organic matter content (%COT), determined by volumetry.
- Granulometry assessed through gravimetry and sieving of the material.


3.6.3. Organisms Samples
4. Results
4.1. Solid Material Removed From The Port
4.2. Contaminant Material Extracted
4.3. Sampling Cruises.
4.3.1. Water Samples




4.3.2. Sediment Samples















5. Conclusions
References
- Lionel Camus, Mathijs G.D. Smit, Environmental effects of Arctic oil spills and spill response technologies, introduction to a 5 year joint industry effort, Marine Environmental Research, Volume 144, 2019, Pages 250-254, ISSN 0141-1136. [CrossRef]
- Pavlov, V. (2020). Arctic Marine Oil Spill Response Methods: Environmental Challenges and Technological Limitations. In: Pongrácz, E., Pavlov, V., Hänninen, N. (eds) Arctic Marine Sustainability. Springer Polar Sciences. Springer, Cham. [CrossRef]
- IVSHINA, Irena B., et al. Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 2015, vol. 17, no 7, p. 1201-1219.
- Lehr, W., Bristol, S., & Possolo, A. (2010). Oil budget calculator Deepwater Horizon. Retrieved from Federal Interagency Solutions Group, Oil budget calculator science and Engineering team. http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf.
- United States Department of Commerce. 2016. Final programmatic damage assessment and restoration plan and final programmatic environmental impact statement. National Oceanic and Atmospheric Administration. The Deepwater Horizon natural resource trustees. https://www.gulfspillrestoration.noaa.gov/sites/default/files/wp-content/uploads/Front-Matter-and-Chapter-1_Introduction-and-Executive-Summary_508.pdf.
- Westerholm, D. G., Ainsworth, C. H., Barker, C. H., Brewer, P. G., Farrington, J. W., Justić, D., Solo-Gabriele, H. M. (2021). Preparedness, planning, and advances in operational response. Oceanography, 34(1), 212–227.
- Özgökmen, T. M., Chassignet, E. P., Dawson, C. N. Dukhovskoy, D., Jacobs, G., Ledwell, J., . . . Skancke, J. (2016). Over what área did the oil and gas spread during the 2010 Deepwater Horizon oil spill? Oceanography, 29(3), 96-107.
- Passow, U., & Overton, E. (2021). The complexity of spills: The fate of Deepwater Horizon oil. The Annual Review of Marine Science, 13, 109-136.
- Quigg, A., Farrington, J. W., Gilbert, S., Murawski, S. A., & John, V. T. (2021). A decade of GoMRI dispersant science. Oceanography, 34(1), 98-111.
- National Academies of Sciences, Engineering, and Medicine (NASEM). (2020). The use of dis-persants in marine oil spill response. The National Academies Press. https://www.nap.edu/catalog/25161/the-use-of-dispersants-in-marine-oil-spillresponse#.
- John, V., Arnosti, C., Field, J., Kujawinski, E., & McCormick, A. (2016). The role of dis-persants in oil spill remediation: Fundamental concepts, rationale for use, fate, and transport issues. Oceanography, 29(3), 108–117.
- Bailey, D., Dannreuther, M. N., Maung-Douglass, E., Partyka, M., Sempier, S., Skelton, T., & Wil-son, M. (2021). Dispersant use and impacts after the Deepwater Horizon oil spill. GOMSG-G-21-008.
- Maung-Douglass, E., Graham, L., Hale, C., Sempier, S., Skelton, T., Swann, L., and Wilson, M. (2019). Frequently asked questions: Dispersants edition. GOMSG-G-19-001.
- Maung-Douglass, E.S., Graham, L., Hale, C., Sempier, S., Swann, L., and Wilson, M. (2015). Oil Spill Science: Responses of Aquatic Animals in the Gulf of Mexico to Oil and Dis-persants. GOMSG–G–15-001.
- Graham, L., Hale, C., Maung-Douglass, E., Sempier, S., Swann, L., and Wilson, M. (2016). Oil Spill Science: Chemical dispersants and their role in oil spill response. MASGP-15-015.
- Wilson, M., Graham, L., Hale, C., Maung-Douglass, E., Sempier, S., and Swann, L. (2015). Oil Spill Science: Persistence, Fate, and Effectiveness of Dispersants used during the Deep-water Horizon Oil Spill. GOMSG-G-15-004.
- Maung-Douglass, E., Graham, L., Hale, C., Sempier, S., Skelton, T., Swann, L., and Wilson, M. (2017). Oil spill science: Emerging surfactants, sorbents, and additives for use in oil spill clean-up. GOMSG-G-17-003.
- National Academies of Sciences, Engineering, and Medicine 2020. The Use of Disper-sants in Marine Oil Spill Response. Washington, DC: The National Academies Press. [CrossRef]
- Brandvik, Per Johan, et al. Subsea mechanical dispersion (SSMD) a possible new option for the oil spill response toolbox?. En International Oil Spill Conference. 2021. p. 689545.
- Brandvik, P. J., Davies, E., Krause, D. F., Beynet, P. A., Agrawal, M., & Evans, P. (2016, April). Subsea mechanical dispersion, adding to the toolkit of oil spill response technology. In SPE International Conference and Exhibition on Health, Safety, Environment, and Sustainability? (p. D031S051R003). SPE.
- Vonk, S. M., Hollander, D. J., & Murk, A. J. (2015). Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?. Marine Pollution Bulletin, 100(1), 5-12.
- Ross, J., Hollander, D., Saupe, S., Burd, A. B., Gilbert, S., & Quigg, A. (2021). Integrating marine oil snow and MOSSFA into oil spill response and damage assessment. Marine Pollution Bulletin, 165, 112025.
- Murk, A. J., Hollander, D. J., Chen, S., Hu, C., Liu, Y., Vonk, S. M., ... & Foekema, E. M. (2020). A predictive strategy for mapping locations where future MOSSFA events are expected. Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War, 355-368.
- Quigg, A., Passow, U., Daly, K. L., Burd, A., Hollander, D. J., Schwing, P. T., & Lee, K. (2020). Marine oil snow sedimentation and flocculent accumulation (MOSSFA) events: learning from the past to predict the future. Deep Oil Spills: Facts, Fate, and Effects, 196-220.
- Daniel Niehaus, Sebastian Hofmann, Srividya Bairamangala Kumar, Marko Hoffmann, Jesus Cisneros-Aguirre, Michael Schlüter. Experimental characterization and field experience of a reusable,modified polyurethane foam for the mechanical clean-up of oil spills at sea surface. JMSE. Marine Pollution. September 2022. https://www.mdpi.com/journal/jmse/special_issues/oil_clean. https://susy.mdpi.com/user/manuscripts/review_info/cbee0ed40af5bae50495f8375ca2e526.
- CSIC, Bioremediation test in Salvora Island (Arosa, Galicia, Spain) during Prestige Oil Spill. March-Oct. 2003. Report.
- CSIC. Bioremediation test in Villanova Harbour, Barcelona, Spain. May 2004. Report.
- CSIC. Bioremediation in Montserrat Mountain soil, Barcelona, Spain. Oct.2004. Report.
- RITTMAN, B. 1994. In situ bioremediation. 2 ed. Noyes Publication. New Jersey, USA. 255 p.
- CAPRETTE, D.. 2000. Substrate oxidation: Krebs reaction. Rice Unix Facility,Rice University.Houston,USAhttp://www.ruf.rice.edu/~bioslabs/studies/mitochondria/mitokrebs.html.
- Van Beilen, J. ; Duetz, W. ; Smits, T. ; Witholt, B. 2003. Diversity of alkane hydroxylase systems in the environment. Oil & Gas Science and Technology. 58:427-440.
- González-Díaz V.; Hernández-Moreno, J.M.; Jiménez-Abizanda, A. I.; Jiménez-Moreno, F.; Levels of Heavy Metals in Canary Islands Soils. December 2003. Report I-QA-469/10: Canary Islands Regional Government Environmental Department & La Laguna University. 230 p.
- Monterroso, O., M. Rodríguez, E. Ramos, O. Pérez, O. Álvarez, L. Cruces, M. Ruiz, A. Miguel y M. González. Plan de vigilancia ambiental de marzo a septiembre en el puerto de Gran Tarajal. Caracterización de muestras de sedimento, aguas y organismos para la valoración ambiental de un vertido accidental en Fuerteventura. Campaña de septiembre 2018. CIMA S.L. Informe Técnico 2019-12: 130 pp.
| Oil Type | Quantity |
|---|---|
| Diesel | 170,270 l. |
| Hydraulic Oil | 14,854 l. |
| Fuel Oil | 42,720 l. |
| Material Recovered | Quantity |
|---|---|
| 504 cans 5 kg each of paint | 2,875 kg |
| 5 cans 15 kg each of paint | |
| 14 cans 20 kg each of paint | |
| 67 cans 3 l. each of dissolvent | 381 l |
| 20 cans 5 l. each of dissolvent | |
| 4 cans 20 l. each of dissolvent | |
| 5 cans 4 kg each of glue | 20 kg |
| 2 cans 3 l. each of soap | 6 l |
| 1 carafe of 3 l. Sulfuric Acid | 28 l |
| 1 carafe of 25 l. Sulfuric Acid | |
| 33 cans 15 kg each of Engine Grease | 495 kg |
| 1 can 10 kg of sepiolite | 10 kg |
| 18 carafes 5 l each antifreeze | 133 l |
| 1 carafe of 18 l antifreeze | |
| 1 carafe of 25 l antifreeze | |
| Heavy Lead batteries | 57 units |
| Boat Tire fenders | 183 units |
| Parameter | 25-28 March | 7-11 April | 17-21 May | 23-27 Sept. |
|---|---|---|---|---|
| Mercury (µg/l) | 0,0 | 0,8 | 0,0 | 0,0 |
| Cadmium (µg/l) | 4,9 | 0,0 | 0,0 | 0,0 |
| Lead (µg/l) | 39,3 | 6,5 | 0,0 | 32,0 |
| Copper (µg/l) | 20,1 | 8,9 | 45,9 | 372,0 |
| Zinc (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| Crome (µg/l) | 8,8 | 6,9 | 5,3 | 0,0 |
| Niquel (µg/l) | 19,7 | 12,6 | 1,0 | 0,0 |
| Arsenic (µg/l) | 93,9 | 103,1 | 150,0 | 68,0 |
| Selenium (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| Ʃ 7 PCB’s (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| Ʃ 16 HAP’s (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| TPT’s (Equitox/m³) | 0,0 | 0,0 | 0,0 | - |
| TBT’s (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| TPH’s (mg/l) | 1,7 | 0,0 | 0,0 | 0,0 |
| Parameter | 25-28 March | 7-11 April | 17-21 May | 23-27 Sept. |
|---|---|---|---|---|
| Mercury (µg/l) | 2,6 | 0,4 | 0,0 | 0,0 |
| Cadmium (µg/l) | 1,4 | 1,1 | 1,3 | 1,3 |
| Lead (µg/l) | 80,1 | 66,2 | 76,8 | 58,5 |
| Copper (µg/l) | 306,6 | 522,4 | 362,8 | 461,1 |
| Zinc (µg/l) | 308,1 | 391,6 | 281,2 | 515,8 |
| Crome (µg/l) | 800,6 | 869,9 | 756,0 | 769,3 |
| Niquel (µg/l) | 542,0 | 766,3 | 804,9 | 1.022,1 |
| Arsenic (µg/l) | 67,5 | 75,4 | 90,9 | 104,1 |
| Selenium (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| Ʃ 7 PCB’s (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| Ʃ 16 HAP’s (µg/l) | 6,3 | 2,8 | 3,4 | 0,1 |
| TPT’s (Equitox/m³) | 8,6 | 3,8 | 4,6 | 0,1 |
| TBT’s (µg/l) | 0,0 | 0,0 | 0,0 | 0,0 |
| TPH’s (mg/l) | 59.962 | 35.780 | 35.016 | 1.593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
