Submitted:
28 May 2024
Posted:
28 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. De Sitter State as Heat Bath for Matter
2.1. Atom in de Sitter Environment as Thermometer
2.2. Decay of Composite Particles in de Sitter Spacetime
2.3. Triplication of Particles in de Sitter Spacetime
2.4. Connection between the Local and Hawking Temperatures
2.5. Two Detectors: Exited Atom vs Ionized Atom
2.6. Radiation of Photons by Atom in de Sitter Environment
2.7. Accelerating Detector: Is There Connection between the Local Process and Unruh Radiation?
3. Thermodynamics of the de Sitter State
3.1. De Sitter Symmetry and de Sitter Heat Bath
3.2. From Local Temperature to Local Entropy
3.3. De Sitter Vacuum, Fermi Liquid and Cosmological Constant Problem
3.4. Hubble Volume Entropy vs Entropy of the Cosmological Horizon
4. Thermodynamics from the Heat Transfer in the Multi-Metric Gravity Ensemble
4.1. Multi-Metric Gravity
4.2. Heat Exchange in Multi-Metric Gravity
4.3. Thermodynamics from the Multi-Metric Ensemble
4.4. Regularization vs Thermalization
4.5. Coherence vs Thermalization
4.6. De Sitter Contribution to Chiral Anomaly
5. Thermodynamics of de Sitter State and Gravity
5.1. Thermodynamic variables in gravity
5.2. Gibbs-Duhem Relation in Gravity
5.3. Entropy of Cosmological Horizon in Terms of Effective Gravitational Coupling
5.4. Example of Quadratic Gravity
6. From de Sitter Thermodynamics to de Sitter Decay
6.1. De Sitter State as Thermal Bath for Matter
6.2. De Sitter Decay due to Thermalization of Matter by de Sitter Heat Bath
6.3. Connection to Holographic Principle
6.4. De Sitter Decay and Zel’dovich Stiff Matter
6.5. Thermal Fluctuations in de Sitter State
6.6. Cosmological Constant Problems
7. From de Sitter to Black Hole Thermodynamics
7.1. De Sitter vs Black Hole
7.2. Entropy of Expanding, Contracting and Static de Sitter
7.3. Gravastar —Black Hole with de Sitter Core
7.4. Entropy of Black Hole from Negative Entropy of Contracting de Sitter
7.5. White Hole and Anti-Gravastar
7.6. Gibbs-Duhem and Black Hole Thermodynamics
7.7. Entropy of the Schwarzschild-de Sitter Cosmological Horizon
7.8. Heat Exchange between Black Holes in the Multi-Metric Ensemble
8. Black and White Holes Entropy from Macroscopic Quantum Tunneling
8.1. Collective Canonically Conjugate Variables for Schwarzschild Black Hole
8.2. Modified First Law of Black Hole Thermodynamics
8.3. Adiabatic Change of Coupling K and Adiabatic Invariant
8.4. A and K as Canonically Conjugate Variables and Black-Hole—White-Hole Quantum Tunneling
8.5. Negative Entropy of White Hole
8.6. Black Hole to White Hole Transition as Series of the Hawking Radiation Co-Tunneling
8.7. Emission of Small Black Holes vs Hawking Radiation
9. Conclusion
9.1. Thermodynamic Variables vs Canonical Variables
References
- A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phy. Lett. B 91, 99–102 (1980).
- A.A. Starobinsky, Disappearing cosmological constant in f(R) gravity, JETP Lett. 86, 157–163 (2007).
- A.D. Felice and S. Tsujikawa, f(R) theories, Living Reviews in Relativity 13, 3 (2010).
- T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513, 1–189 (2012).
- S. Nojiri and S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505, 59–144 (2011), arXiv:1011.0544 [gr-qc].
- S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution, Phys. Rept. 692, 1–104 (2017), arXiv:1705.11098 [gr-qc].
- S.D. Odintsov, V.K. Oikonomou, I. Giannakoudi, F.P. Fronimos and E.C. Lymperiadou, Recent Advances on Inflation, Symmetry 15, 1701 (2023), arXiv:2307.16308 [gr-qc].
- F.R. Klinkhamer and G.E. Volovik, f(R) cosmology from q–theory, Pis’ma ZhETF 88, 339–344 (2008); JETP Lett. 88, 289–294 (2008); arXiv:0807.3896 [gr-qc].
- F.R. Klinkhamer and G.E. Volovik, Dynamic vacuum variable and equilibrium approach in cosmology, Phys. Rev. D 78, 063528 (2008); arXiv:0806.2805 [gr-qc].
- S.W. Hawking, The cosmological constant is probably zero, Phys. Lett. B 134, 403 (1984).
- M. Chaichian, A. Ghal’e and M. Oksanen, Alternative approach to the Starobinsky model for inflation scenarios, Phys. Rev. D 107, 023527 (2023).
- M. Brinkmann, M. Cicolic and P. Zito, Starobinsky inflation from string theory? J. High Energ. Phys. 2023, 38 (2023).
- D. Lüst, J. Masias, B. Muntz and M. Scalisi, Starobinsky Inflation in the Swampland, arXiv:2312.13210 [hep-th].
- G.E. Volovik, Analog Sommerfeld law in quantum vacuum, Pis’ma v ZhETF 118, 280–281 (2023), JETP Lett. 118, 282–287 (2023), arXiv:2307.00860.
- G.E. Volovik, Gravity through the prism of condensed matter physics, Pis’ma v ZhETF 118, 546–547 (2023), JETP Lett. 118, 531–541 (2023), arXiv:2307.14370 [cond-mat.other].
- G.E. Volovik, On de Sitter radiation via quantum tunneling, Int. Journal Mod. Phys. D 18, 1227–1241 (2009); arXiv:0803.3367.
- G.E. Volovik, Particle decay in de Sitter spacetime via quantum tunneling, Pis’ma ZhETF 90, 3–6 (2009); JETP Lett. 90, 1–4 (2009); arXiv:0905.4639 [gr-qc].
- G.E. Volovik, On the global temperature of the Schwarzschild-de Sitter spacetime, Pis’ma v ZhETF 118, 5–6 (2023), JETP Lett. 118, 8–13 (2023), arXiv:2304.09847.
- G.E. Volovik, de Sitter local thermodynamics in f(R) gravity, Pis’ma v ZhETF 119, (2024), JETP Letters 119, 564–571 (2024), arXiv:2312.02292v8. [CrossRef]
- H. Maxfield and Z. Zahraee, Holographic solar systems and hydrogen atoms: non-relativistic physics in AdS and its CFT dual, JHEP 11 (2022) 093.
- N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043.
- M. Reece, Lian-Tao Wang and Zhong-Zhi Xianyu Large-field inflation and the cosmological collider, Phys. Rev. D 107, L101304 (2023).
- P. Painlevé, La mécanique classique et la théorie de la relativité, C. R. Acad. Sci. (Paris) 173 , 677 (1921).
- A. Gullstrand, Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie, Arkiv. Mat. Astron. Fys. 16, 1-15 (1922).
- G.E. Volovik, The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).
- D.P. Jatkar, L. Leblond and A. Rajaraman, Decay of massive fields in de Sitter space, Phys. Rev. D 85, 024047 (2012).
- J. Bros, H. Epstein, and U. Moschella, Lifetime of a massive particle in a de Sitter universe, JCAP 0802:003 (2008); arXiv:hep-th/0612184.
- J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys. 295, 261–288 (2010).
- M.K. Parikh, New coordinates for de Sitter space and de Sitter radiation, Physics Letters B 546, 189–195 (2002).
- G. ’t Hooft, Quantum clones inside black holes, Universe 8, 537 (2022).
- Gerard ’t Hooft, How an exact discrete symmetry can preserve black hole information or Turning a black hole inside out, J. Phys.: Conf. Ser. 2533, 012015 (2023).
- Aindriu Conroy, Unruh-DeWitt detectors in cosmological spacetimes, Phys. Rev. D 105, 123513 (2022), arXiv:2204.00359 [gr-qc].
- W.G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).
- J. S. Ben-Benjamin, M. O. Scully, S. A. Fulling, D. M. Lee, D. N. Page, A. A. Svidzinsky, M. S. Zubairy, M. J. Duff, R. Glauber, W. P. Schleich, W. G. Unruh, Unruh Acceleration Radiation Revisited, International Journal of Modern Physics 34, 1941005 (2019).
- M.O. Scully, A. Svidzinsky and W. Unruh, Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective, Phys. Rev. Research 4, 033010 (2022).
- G.E. Volovik, Double Hawking temperature: from black hole to de Sitter, Universe 8, 639 (2022), arXiv:2205.06585 [gr-qc].
- S. Marianer and B.I. Shklovskii, Effective temperature of hopping electrons in a strong electric field, Ohys. Rev. B 46, 13100 (1992).
- B.I. Shklovskii, Half-century of Efros-Shklovskii Coulomb gap. Romance with Coulomb interaction and disorder, arXiv:2403.19793.
- G. Gregori, G. Marocco, S. Sarkar, R. Bingham and C. Wang, Measuring Unruh radiation from accelerated electrons, arXiv:2301.06772.
- Charles H.-T. Wang, Gianluca Gregori, Robert Bingham, Yakubu Adamu, Bethel N. Eneh, Maé C. Rodriguez, Sarah-Jane Twigg, Observable Unruh Effect and Unmasked Unruh Radiation, arXiv:2212.13246 [gr-qc].
- arXiv:2404.19160.Tomohiro Matsuda, How to define the Unruh-DeWitt detector on manifolds, arXiv:2404.19160.
- R. Aldrovandi, J.P. Beltran Almeida and J.G. Pereira, de Sitter special relativity, Class. Quantum Grav. 24, 1385–1404 (2007), arXiv:gr-qc/0606122.
- S. Cacciatori, V. Gorini and A. Kamenshchik, Special relativity in the 21st century, Ann. Phys. (Berlin) 17, 728–768 (2008), arXiv:0807.3009.
- T. Padmanabhan, Gravity and Quantum Theory: Domains of Conflict and Contact, Int. J. Mod. Phys. D 29, 2030001 (2020).
- S.N. Vergeles, Phase transition near the Big Bang in the lattice theory of gravity and some cosmological considerations, arXiv:2301.01692.
- P. Huhtala and G.E. Volovik, Fermionic microstates within Painlevé-Gullstrand black hole, ZhETF 121, 995–1003; JETP 94, 853–861 (2002); gr-qc/0111055.
- Meir Lewkowicz and Mikhail Zubkov, Classical Limit for Dirac Fermions with Modified Action in the Presence of a Black Hole, Symmetry 11, 1294 (2019).
- arXiv:2307.06164.Chong-Sun Chu and Rong-Xin Miao, A Fermi Model of Quantum Black Hole, arXiv:2307.06164.
- T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Rep. Prog. Phys. 73, 046901 (2010).
- J.D. Barrow, Dimensionality, Phil. Trans. R. Soc. Lond. A 310, 337–346 (1983).
- G.E. Volovik, Dimensionless physics: continuation, ZhETF 162, 680–685 (2022), JETP 135, 663–670 (2022), arXiv:2207.05754 [gr-qc].
- P. Strasberg and J. Schindler, Comparative microscopic study of entropies and their production, arXiv:2403.09403 [pdf, other].
- K. Wood, P.M. Saffin and A. Avgoustidis, Black Holes in Multi-Metric Gravity, arXiv:2402.17835v1 [gr-qc].
- C.D. Frogatt and H.B. Nielsen, Origin of Symmetries, World Scientifc,Singapore - New Jersey - London - Hong Kong (1991).
- Yuri N. Obukhov and G.E. Volovik, Spacetime geometry from Dirac spinor theory, Phys. Rev. D 109, 064076 (2024), arXiv:2402.11593.
- K. Akama, An Attempt at Pregeometry: Gravity with Composite Metric, Progress of Theoretical Physics, 60, 1900–1909 (1978).
- C. Wetterich, Gravity from spinors, Phys. Rev. D 70, 105004 (2004).
- D. Diakonov, Towards lattice-regularized Quantum Gravity, arXiv:1109.0091.
- A.A. Vladimirov and D. Diakonov, Phase transitions in spinor quantum gravity on a lattice, Phys. Rev. D 86, 104019 (2012).
- A.A. Vladimirov and D. Diakonov, Diffeomorphism-invariant lattice actions, Physics of Particles and Nuclei 45, 800 (2014).
- L. Sindoni, Emergent Models for Gravity: an Overview of Microscopic Models, SIGMA 8, 027 (2012).
- Y.N. Obukhov and F.W. Hehl, Extended Einstein–Cartan theory a la Diakonov: The field equations, Phys. Lett. B 713, 321–325 (2012).
- G.E. Volovik, Superfluid 3He-B and gravity, Physica B 162, 222–230 (1990).
- Wei Lu, Clifford algebra Cl(0,6) approach to beyond the standard model and naturalness problems, International Journal of Geometric Methods in Modern Physics 21, 2450089 (2024).
- G.E. Volovik, Fermionic quartet and vestigial gravity, Pis’ma v ZhETF 119, 317–318 (2024), JETP Letters 119, 330–334 (2024), arXiv:2312.09435.
- A. Parhizkar and V. Galitski, Strained bilayer graphene, emergent energy scales, and moire gravity, Phys. Rev. Research 4, L022027 (2022).
- S. Chadha and H.B. Nielsen, Lorentz invariance as a low-energy phenomenon, Nucl. Phys. B 217, 125–144 (1983).
- Yu.M. Bunkov and G.E. Volovik, Spin superfluidity and magnon Bose-Einstein condensation, in: Novel Superfluids, eds. K. H. Bennemann and J. B. Ketterson, International Series of Monographs on Physics 156, Volume 1, Chapter 4, pp. 253–311 (2013); arXiv:1003.4889.
- A. Vilenkin, Macroscopic parity-violating effect: Neutrino fluxes from rotating black holes and in rotating thermal radiation, Phys. Rev. D 20, 1807 (1979).
- A. Vilenkin, Quantum field theory at finite temperature in a rotating system, Phys. Rev. D 21, 2260 (1980).
- D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report, Progress in Particle and Nuclear Physics 88, 1–28 (2016).
- Michael Stone and JiYoung Kim, Mixed anomalies: Chiral vortical effect and the Sommerfeld expansion, Phys. Rev. D 98, 025012 (2018).
- R.A. Abramchuk and M. Selch, Non-perturbative suppression of chiral vortical effect in hot (s)QGP for hyperons spin polarization in heavy ion collisions, Eur. Phys. J. C 84, 107 (2024).
- A. Flachi and K. Fukushima, Chiral vortical effect with finite rotation, temperature, and curvature, Phys. Rev. D 98, 096011 (2018).
- R.V. Khakimov, G.Yu. Prokhorov, O.V. Teryaev and V.I. Zakharov, Hydrodynamical dual of the gravitational axial anomaly and the cosmological constant, Phys. Rev. D 109, 105001 (2024).
- V.E. Ambrus and E. Winstanley, Vortical effects for free fermions on anti-de Sitter space-time, Symmetry 13, 2019 (2021).
- J. Nissinen and G.E. Volovik, Anomalous chiral transport with vorticity and torsion: Cancellation of two mixed gravitational anomaly currents in rotating chiral p+ip Weyl condensates, Phys. Rev. D 106, 045022 (2022), arXiv:2111.08639.
- N. Yamamoto, Generalized Bloch theorem and chiral transport phenomena, Phys. Rev. D 92, 085011 (2015).
- G.E. Volovik, Chiral vortical effect generated by chiral anomaly in vortex-skyrmions, Pis’ma ZhETF 105, 282–283 (2017), JETP Lett. 105, 303–306 (2017), arXiv:1701.01863.
- Z.V. Khaidukov and M.A. Zubkov, Chiral Torsional Effect, JETP Lett. 108, 670–674 (2018).
- G.E. Volovik, Macroscopic quantum tunneling: from quantum vortices to black holes and Universe, ZhETF 162, 449–454 (2022), JETP 135, 388–408 (2022), arXiv:2108.00419.
- G.E. Volovik, Varying Newton constant and black hole to white hole quantum tunneling, MDPI, Universe 6, 133 (2020), arXiv:2003.10331.
- S.A. Hayward, Unified first law of black-hole dynamics and relativistic thermodynamics, Class. Quantum Grav. 15, 3147–3162 (1998).
- S.A. Hayward, S. Mukohyama and M.C. Ashworth, Dynamic black-hole entropy, Phys. Lett. A 256, 347–350 (1999), arXiv:gr-qc/9810006.
- T. Jacobson, Thermodynamics of spacetime: The Einstein equation of state, Phys. Rev. Lett. 75, 1260–1263 (1995).
- S. Nojiri, S.D. Odintsov, T. Paul and S. SenGupta, Horizon entropy consistent with FLRW equations for general modified theories of gravity and for all EoS of the matter field, Phys. Rev. D 109, 043532 (2024), arXiv:2307.05011.
- P. Pronin and I. Kulikov, Local quantum statistics in arbitrary curved space-time, Pramana 28, 355 (1987).
- I.K. Kulikov and P.I. Pronin, Low temperature properties of a quantum Fermi gas in curved space-time, International Journal of Theoretical Physics 34, 1843–1854 (1995).
- A.I. Larkin and S.A. Pikin, On phase transitions of the first order resembling those of the second order, JETP 29, 891–896 (1969).
- A.M. Polyakov, Self-tuning fields and resonant correlations in 2d-gravity, Mod. Phys. Lett. A 6, 635–644 (1991).
- A.M. Polyakov and F.K. Popov, Kronecker anomalies and gravitational striction, in: M.L Ge, Y.H. He (eds), Dialogues Between Physics and Mathematics, C. N. Yang at 100, 1st ed. 2022, Springer, Cham., arXiv:2203.07101 [hep-th].
- F.R. Klinkhamer and G.E. Volovik, Self-tuning vacuum variable and cosmological constant, Phys. Rev. D 77, 085015 (2008); arXiv:0711.3170.
- Ya.B. Zel’dovich, The equation of state at ultrahigh densities and its relativistic limitations, ZhETF 41, 1609–1615 (1961), JETP 14, 1143–1147 (1962).
- G. Cognola, E. Elizalde, S. Nojiri, S.D Odintsov and S. Zerbini, One-loop f(R) gravity in de Sitter universe, JCAP02(2005)010.
- R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling, Phys. Rev. D 79, 044025 (2009).
- Chao-Qiang Geng, Wei-Cheng Hsu, Jhih-Rong Lu and Ling-Wei Luo, Thermodynamics of f(R) gravity with disformal transformation, Entropy 21, 172 (2019). [CrossRef]
- Sergey Bondarenko, Dynamical Signature: Complex Manifolds, Gauge Fields and Non-Flat Tangent Space, Universe 2022, 8, 497 (2022).
- L. Boyle and N. Turok, Thermodynamic solution of the homogeneity, isotropy and flatness puzzles (and a clue to the cosmological constant), Phys. Lett. B 849, 138442 (2024).
- A.Yu. Kamenshchik, A.A. Starobinsky and T. Vardanyan, Massive scalar field in de Sitter spacetime: a two-loop calculation and a comparison with the stochastic approach, Eur. Phys. J. C 82, 345 (2022).
- A.M. Polyakov, Infrared instability of the de Sitter space, arXiv:1209.4135 [hep-th].
- A.A. Starobinsky and J. Yokoyama, Equilibrium state of a self-interacting scalar field in the de Sitter background, Phys. Rev. D 50, 6357 (1994).
- D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quantum Grav. 13, 377 (1996).
- L. Kofman, A. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56, 3258 (1997).
- Hyun Jeong, K. Kamada, A.A. Starobinsky and J. Yokoyama, Reheating process in the R2 inflationary model with the baryogenesis scenario, JCAP11(2023)023.
- A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Physics Letters B 117, 175–178 (1982).
- A.A. Starobinsky, STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, Lect. Notes Phys. 246, 107–126 (1986).
- Chris Pattison, Vincent Vennin, Hooshyar Assadullahi and David Wands, Stochastic inflation beyond slow roll, JCAP07(2019)031.
- Diego Cruces and Cristiano Germani, Stochastic inflation at all order in slow-roll parameters: Foundations, Phys. Rev. D 105, 023533 (2022).
- D. Cruces, Review on Stochastic Approach to Inflation. Universe 8 334 (2022).
- Yoann L. Launay, Gerasimos I. Rigopoulos and E. Paul S. Shellard, Stochastic Inflation in General Relativity, arXiv:2401.08530.
- G.E. Volovik, Double Hawking temperature in de Sitter Universe and cosmological constant problem, arXiv:2007.05988.
- T. Padmanabhan, Cosmological constant – the weight of the vacuum, Physics Reports 380, 235–320 (2003).
- T. Padmanabhan, Gravity and the thermodynamics of horizons, Physics Reports 406, 49–125 (2005).
- T. Markkanen, De Sitter stability and coarse graining, Eur. Phys. J. C 78, 97 (2018).
- M. Fairbairn, T. Markkanen and D. Rodriguez Roman, Horizon feedback inflation, Eur. Phys. J. C 78, 347 (2018).
- D. Rodriguez Roman, Gravitational particle creation in the early universe, Thesis: PhD King’s Coll. London (2020).
- Jinn-Ouk Gong and Min-Seok Seo, Instability of de Sitter space under thermal radiation in different vacua, JCAP10(2021)042, arXiv:2011.01794.
- G. Dvali and C. Gomez, On exclusion of positive cosmological constant, Fortschr. Phys. 67, 1800092 (2019).
- L. Berezhiani, G. Dvali and O. Sakhelashvili, de Sitter space as a BRST invariant coherent state of gravitons, Phys. Rev. D 105, 025022 (2022).
- T. Padmanabhan, Emergence and Expansion of Cosmic Space as due to the Quest for Holographic Equipartition, arXiv:1206.4916.
- P. B. Krishna, V. T. Hassan Basari and Titus K. Mathew, Emergence of cosmic space and its connection with thermodynamic principles, General Relativity and Gravitation 54, 58 (2022).
- Pranav Prasanthan, Sarath Nelleri, Navaneeth Poonthottathil, Sreejith E.K., Emergence of Cosmic Space and Horizon Thermodynamics from Kaniadakis Entropy, arXiv:2405.03592.
- F.R. Klinkhamer, On vacuum-energy decay from particle production, Mod. Phys. Lett. A 27, 1250150 (2012), arXiv:1205.7072 [hep-th].
- G.E. Volovik, From analogue models to gravitating vacuum, in: Analogue spacetimes: The first thirty years, eds. V. Cardoso, L.C.B. Crispino, S. Liberati, E.S. de Oliveira, M. Visser, Editoria Livraria da Fisica, Sao Paulo 2013, pp. 263–290; arXiv:1111.1155.
- F.R. Klinkhamer and G.E. Volovik, Dark matter from dark energy in q-theory, Pis’ma ZhETF 105, 62–63 (2017), JETP Lett. 105, 74–77 (2017), arXiv:1612.02326.
- P. Bueno, P.A. Cano, R.A. Hennigar, Regular Black Holes From Pure Gravity, arXiv:2403.04827 [gr-qc].
- P.A. Cano, Inconsistency of modified gravity in cosmology, arXiv:2404.01376 [gr-qc].
- F. Di Filippo, I. Kolar and D. Kubiznak, Inner-extremal regular black holes from pure gravity, arXiv:2404.07058 [gr-qc].
- L.D. Landau and E.M. Lifshitz, Statistical Physics, Part 1, Oxford, Pergamon Press (1980).
- G.E. Volovik and A.I. Zelnikov, Universal temperature corrections to the free energy for the gravitational field, Pisma ZhETF 78, 1271–1276 (2003), JETP Lett. 78, 751–756 (2003); gr-qc/0309066.
- H.-T. Cho, J.-T. Hsiang, and B. L. Hu, Quantum capacity and vacuum compressibility of spacetime: Thermal fields, Universe 8, 291 (2022).
- Yu-Cun Xie, Jen-Tsung Hsiang and Bei-Lok Hu, Dynamical vacuum compressibility of space, Phys. Rev. D 109, 065027 (2024).
- arXiv:2405.00360 [hep-th].Jen-Tsung Hsiang, Yu-Cun Xie and Bei-Lok Hu, Heat Capacity and Quantum Compressibility of Dynamical Spacetimes with Thermal Particle Creation, arXiv:2405.00360 [hep-th].
- A. Widom, E. Sassaroli, Y.N. Srivastava and J. Swain, The Casimir Effect and Thermodynamic Instability, arXiv:quant-ph/9803013.
- W.G. Unruh, Experimental Black-Hole Evaporation? Phys. Rev. Lett. 46, 1351 (1981).
- A. Milekhin and Jiuci Xu, On scrambling, tomperature and superdiffusion in de Sitter space, arXiv:2403.13915 [hep-th].
- G. Chapline, E. Hohlfeld, R. B. Laughlin and D. I. Santiago, Quantum phase transitions and the breakdown of classical general relativity Int. J. Mod. Phys. A 18, 3587 (2003), arXiv:gr-qc/0012094.
- P.O. Mazur and E. Mottola, Gravitational condensate stars: an alternative to black holes, Universe 9, 88 (2023).
- E. Mottola, Gravitational vacuum condensate stars, arXiv:2302.09690.
- I. Dymnikova, The cosmological term as a source of mass, Class. Quantum Grav. 19, 725 (2002).
- H. Balasin and H. Nachbagauer, The energy-momentum tensor of a black hole, or what curves the Schwarzschild geometry? Class. Quantum Grav. 10, 2271 (1993).
- arXiv:2405.08080 [hep-th].Willy Fischler, Sarah Racz, Plato Meets de Sitter, or de Sitter’s Allegory of the Cave, arXiv:2405.08080 [hep-th].
- R. Bousso and S. W. Hawking, Pair creation of black holes during inflation, Phys. Rev. D 54, 6312 (1996).
- L. Landau, in: Niels Bohr and the Development of Physics, edited by Pauli (McGraw-Hill, New York, 1955), p. 52.
- K. Akama, `Pregeometry’, in: Lecture Notes in Physics, 176, Gauge Theory and Gravitation, ed. N. Nakanishi and H. Nariai, Springer-Verlag, Berlin, pp. 267–271 (1983).
- K. Akama, Y. Chikashige, T. Matsuki and H. Terazawa, Gravity and electromagnetism as collective phenomena: a derivation of Einstein’s general relativity, Prog. Theor. Phys 60, 868 (1978).
- H. Terazawa, High energy physics in the 21st century, in: Proceedings of 22nd International Workshop on the Fundamental Problems of High Energy Physics and Field Theory; KEK Preprint 99-46, July 1999.
- H. Terazawa, Y. Chikashige, K. Akama and T. Matsuki, Simple relation between the fine-structure and gravitational constants, Phys. Rev. D 15, 1181–1183 (1977).
- H. Terazawa, Cosmological origin of mass scales, Phys. Lett. B 101, 43 (1981).
- F.R. Klinkhamer and G.E. Volovik, Merging gauge coupling constants without Grand Unification, Pisma ZhETF 81, 683–687 (2005); JETP Lett. 81, 551–555 (2005); hep-ph/0505033.
- J. D. Bekenstein, The quantum mass spectrum of the Kerr black hole, Lett. Nuovo Cimento 11, 467 (1974).
- G. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges, and the first law of black hole thermodynamics, Phys. Rev. Lett. 77, 4992 (1996).
- G.T. Horowitz and A. Strominger, Counting states of near extremal black holes, Phys. Rev. Lett. 77, 2368 (1996).
- A. Barvinsky, S. Das, G. Kunstatter, Quantum mechanics of charged black holes, Phys. Lett. B 517, 415–420 (2001).
- A. Barvinsky, S. Das, G. Kunstatter, Discrete spectra of charged black holes, Foundations of Physics 32, 1851–1862 (2002).
- M. Ansorg and J. Hennig, The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter, Class. Quantum Grav. 25, 22 (2008).
- M. Visser, Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole, J. High Energ. Phys. 2012, 23 (2012).
- R. Tharanath, V.C. Kuriakose, Thermodynamics and spectroscopy of Schwarzschild black hole surrounded by Quintessence, Mod. Phys. Lett. A 28, 1350003 (2013).
- C. Corda, Time dependent Schrödinger equation for black hole evaporation: No information loss, Ann. Phys. 353, 71–72 (2015).
- J. D. Bekenstein, Quantum black holes as atoms, Proceedings of the Eight Marcel Grossmann Meeting, T. Piran and R. Ruffini, eds., pp. 92-111 (World Scientific Singapore 1999), arXiv:gr-qc/9710076.
- S. Carlip, Black hole thermodynamics, Int. J. Mod. Phys. D 23, 1430023 (2014).
- C. Barcelo, R. Carballo-Rubio, L.J. Garay, Mutiny at the white-hole district, Int. J. Mod. Phys. D 23, 1442022 (2014).
- C. Barcelo, R. Carballo-Rubio, L.J. Garay, Exponential fading to white of black holes in quantum gravity, Class. Quantum Grav. 34, 105007 (2017).
- P. Martin-Dussaud and C. Rovelli, Evaporating black-to-white hole, Class. Quantum Grav. 36, 245002 (2019).
- C. Rovelli, Viewpoint: Black hole evolution traced out with loop quantum gravity, Physics 11, 127 (2018).
- J.B. Achour, S. Brahma and J.P. Uzan, Bouncing compact objects. Part I. Quantum extension of the Oppenheimer-Snyder collapse, JCAP 03 (2020) 041.
- J.B. Achour and J.P. Uzan, Bouncing compact objects. II. Effective theory of a pulsating Planck star, Phys. Rev. D 102, 124041 (2020), arXiv:2001.06153.
- J.B. Achour, S. Brahma, S. Mukohyama and J.P. Uzan, Towards consistent black-to-white hole bounces from matter collapse, JCAP 09 (2020) 020, arXiv:2004.12977.
- N. Bodendorfer, F.M. Mele, J. Münch, Mass and horizon Dirac observables in effective models of quantum black-to-white hole transition, Class. Quantum Grav. 38, 095002 (2021), arXiv:1912.00774.
- F. D’Ambrosio, M. Christodoulou, P. Martin-Dussaud, C. Rovelli, and F. Soltani, End of a black hole’s evaporation, Phys. Rev. D 103, 106014 (2021).
- E. Bianchi, M. Christodoulou, F. D’Ambrosio, H.M. Haggard and C. Rovelli, White holes as remnants: a surprising scenario for the end of a black hole, Class. Quantum Grav. 35, 225003 (2018).
- L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Volume 5, Statistical Physics.
- E. Keski-Vakkuri, P. Kraus, Microcanonical D-branes and back reaction, Nuclear Physics B 491, 249–262 (1997).
- S. Massar and R. Parentani, Gravitational instanton for black hole radiation, Phys. Rev. Lett. 78, 3810 (1997).
- V.A. Berezin, A.M. Boyarsky† and A.Yu. Neronov, On the mechanism of Hawking radiation, Gravitation & Cosmology 5, 16–22 (1999), arXiv:gr-qc/0605099.
- M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85, 5042 (2000).
- M.V. Feigel’man and A.S. Ioselevich, Variable-range cotunneling and conductivity of a granular metal, JETP Letters 81, 277–283 (2005).
- L.I. Glazman and M. Pustilnik, Low-temperature transport through a quantum dot, Lectures notes of the Les Houches Summer School 2004, in: in "Nanophysics: Coherence and Transport," eds. H. Bouchiat et al. (Elsevier, 2005), pp. 427–478, arXiv:cond-mat/0501007.
- S.W. Hawking and G.T. Horowitz, Entropy, area, and black hole pairs, Phys. Rev. 51, 4302 (1995).
- Hyeyoun Chung, Tunneling between single- and multicentered black hole configurations, Phys. Rev. D 86, 064036 (2012).
- P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nuclear Physics B 433, 403–420 (1995).
- J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems, Phys. Rev. D 23, 287 (1981).
- V. Narovlansky and H. Verlinde, Double-scaled SYK and de Sitter Holography, arXiv:2310.16994.
- A. Milekhin and Jiuci Xu, Revisiting Brownian SYK and its Possible Relations to de Sitter, arXiv:2312.03623.
- S.D. Odintsov and T. Paul, A non-singular generalized entropy and its implications on bounce cosmology, Physics of the Dark Universe 39, 101159 (2023), arXiv:2212.05531.
- S. Nojiri, S.D. Odintsov and T. Paul, Early and late universe holographic cosmology from a new generalized entropy, Physics Letters B 831, 137189 (2022).
- S. Nojiri, S.D. Odintsov and V. Faraoni, Area-law versus Renyi and Tsallis black hole entropies, Phys. Rev. D 104, 084030 (2021).
- Venkatesa Chandrasekaran, Roberto Longo, Geoff Penington and Edward Witten, An algebra of observables for de Sitter space, J. High Energ. Phys. 2023, 82 (2023).
- T. Jacobson, Black hole entropy and induced gravity, arXiv:gr-qc/9404039.
- J.-L. Lehners and J. Quintin, A small Universe, Phys. Lett. B 850, 138488 (2024).
- J.D. Barrow, Finite action principle revisited, Phys. Rev. D 101, 023527 (2020).
- B.R. Majhi and E.C. Vagenas, Black hole spectroscopy via adiabatic invariance, Phys. Lett. B 701, 623–625 (2011).
- S. Capozziello and M. De Laurentis, The dark matter problem from f(R) gravity viewpoint, Ann. Phys. (Berlin) 524, 545–578 (2012).
- K.K. Boddy, S.M. Carroll and J. Pollack, De Sitter Space Without Dynamical Quantum Fluctuations, Foundations of Physics 46, 702–735 (2016), arXiv:1405.0298 [hep-th].Chiral Matter, pp. 47-58 (2023) Chiral Magnetic Effect in Heavy Ion Collisions and Beyond Dmitri E. Kharzeev.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
