Submitted:
22 May 2024
Posted:
23 May 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentos
- 1)
- Instrument 1: Explosive strength: vertical jump test, reliability of 0.97; VERT vertical jump device with G Windth of Nickel technology, to determine the jump distance in cm [35].
- 2)
- Instrument 2: Absolute strength: lower limb dynamometer; strength levels, CRANE SCAL brand electronic leg scale, expresses values in kilograms and newtons [36].
2.3. Procedures
- 1)
- Pre-test: a) The participants were gathered by sports discipline in the training places, the study and informed consent were socialized; b) After this process, a draw was held to define the G.C and G.E.; c) Pre-test evaluations were carried out in the training places, prior to an agreement with the athletes and their coaches, establishing 2 previous days where they did not do any training, and came from a weekend of rest; d) The estimated evaluation time according to the pilot test carried out was 13 minutes per athlete.
- 2)
- Training with Nordic exercises
- 3)
- Posttest: After seven weeks of training, the corresponding evaluations were carried out on each athlete in each independent group. The same procedure was carried out as in the pretest, except for phase b, since the athletes had already been drawn.
2.4. Training with Nordic Exercises (Table 2)
- 1)
- For 7 weeks, we worked with the G.E prior to the usual training sessions.
- 2)
- A 15-minute warm-up similar to the pre-test was performed and a 5-minute cool-down period.
| Weeks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|
| Warm up in minutes | PRE-TEST | 15 | 15 | 15 | 15 | 15 | 15 | 15 | POST-TEST |
| Series | 2 | 2 | 2 | 3 | 3 | 3 | 3 | ||
| Repetitions | 5 | 6 | 8 | 10 | 12 | 12 | 10 | ||
| Voltage peaks in seconds | 2 | 2 | 3 | 3 | 5 | 5 | 3 | ||
| Pause in minutes | 2 | 2 | 2 | 1 | 1 | 1 | 1 | ||
| Back to calm in minutes | 5 | 5 | 5 | 5 | 5 | 5 | 5 | ||
| Total time in minutes | 23 | 23 | 23 | 24 | 25 | 25 | 24 |
2.5. Statistic Analysis
3. Results
4. Discussion
5. Conclusions
5.1. Practical Applications
- 1)
- As has been described in this study, after the application of a Nordic training protocol in athletes of different modalities, it focused on the improvement of explosive and absolute strength, concluding that not all sports generate gains in this physical capacity.
- 2)
- In this sense, it is considered that doctors, physiotherapists or people related to the protocol can develop this strength training program in accordance with the stage of the macrocycle they are going through.
- 3)
- According to the results achieved, explosive strength improved in most of the modalities studied, except in cycling and taekwondo; Therefore, they can be applicable to improve the aforementioned capacity only in sports where Nordic stimulation has positive effects.
- 4)
- Regarding absolute strength, the implemented protocol has positive effects on absolute strength in basketball and soccer.
- 5)
- The scope of the 7-week Nordic training protocol has limited effects; Therefore, its improvement may be temporary or may be linked to load management within each macrocycle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bompa, T.; Buzzichelli, C. Periodization of strength training for sports USA: Human Kinetics Publishers; 2021.
- Calero-Morales, S.; Vinueza-Burgos, G.D.; Yance-Carvajal, C.L.; Paguay-Balladares, W.J. Gross Motor Development in Preschoolers through Conductivist and Constructivist Physical Recreational Activities: Comparative Research. Sports 2023, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Nicoletti, P.; Baldin, G.; Bragazzi, N.L.; Crimì, A.; Ruggieri, P. Hamstring strain injury (HSI) prevention in professional and semi-professional football teams: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health 2021, 18, 8272. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Danelon, F.; La Rosa, G.; Nanni, G.; Stride, M.; Della Villa, F. Recommendations for hamstring function recovery after ACL reconstruction. Sports Medicine 2021, 51, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Jeffreys, I.; Moody, J. Strength and conditioning for sports performance. 2nd ed. NY: Routledge; 2021.
- Augustsson, J.; Alt, T.; Andersson, H. Speed Matters in Nordic Hamstring Exercise: Higher Peak Knee Flexor Force during Fast Stretch-Shortening Variant Compared to Standard Slow Eccentric Execution in Elite Athletes. Sports 2023, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Kasper, K. Sports training principles. Current sports medicine reports 2019, 18, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Gómez, R.P.; Moya, V.P. Analysis of the Nordic curl protocol in the flexibility of athletes. Retos: nuevas tendencias en educación física, deporte y recreación 2023, 48, 720–726. [Google Scholar] [CrossRef]
- Gómez-Piqueras, P.; Martínez-Serrano, A.; Freitas, T.T.; Gómez Díaz, A.; Loturco, I.; Giménez, E.; et al. Weekly Programming of Hamstring-Related Training Contents in European Professional Soccer. Sports 2024, 12, 73. [Google Scholar] [CrossRef]
- Lee, J.W.; Mok, K.M.; Chan, H.C.; Yung, P.S.; Chan, K.M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. Journal of Science and Medicine in Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Patiño, B.A.; Uribe, J.D.; Valderrama, V. Bibliometric analysis of plyometrics in sport: 40 years of scientific production. Retos: nuevas tendencias en educación física, deporte y recreación 2024, 53, 183–195. [Google Scholar] [CrossRef]
- Franchina, M.; Turati, M.; Tercier, S.; Kwiatkowski, B. FIFA 11+ Kids: Challenges in implementing a prevention program. Journal of Children's Orthopaedics 2023, 17, 22–27. [Google Scholar] [CrossRef]
- Freeman, B.W.; Young, W.B.; Talpey, S.W.; Smyth, A.M.; Pane, C.L.; Carlon, T.A. The effects of sprint training and the Nordic hamstring exercise on eccentric hamstring strength. The Journal of Sports Medicine and Physical Fitness 2019, 59, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- van de Hoef, P.A.; Brink, M.S.; Huisstede, B.M.; van Smeden, M.; de Vries, N.; Goedhart, E.A.; et al. Does a bounding exercise program prevent hamstring injuries in adult male soccer players?–A cluster-RCT. Scandinavian Journal of Medicine & Science in Sports 2019, 29, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Rudisill, S.S.; Varady, N.H.; Kucharik, M.P.; Eberlin, C.T.; Martin, S.D. Evidence-based hamstring injury prevention and risk factor management: A systematic review and meta-analysis of randomized controlled trials. The American Journal of Sports Medicine 2023, 51, 1927–1942. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; et al. The mechanism of hamstring injuries—A systematic review. BMC Musculoskeletal Disorders 2020, 21, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Alvares, J.B.; Dornelles, M.P.; Fritsch, C.G.; de Lima-E-Silva, F.X.; Medeiros, T.M.; Severo-Silveira, L.; et al. Prevalence of hamstring strain injury risk factors in professional and under-20 male football (soccer) players. Journal of Sport Rehabilitation 2020, 29, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. British Journal of Sports Medicine 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- Kalema, R.N.; Schache, A.G.; Williams, M.D.; Heiderscheit, B.; Siqueira Trajano, G.; Shield, A.J. Sprinting biomechanics and hamstring injuries: Is there a link? A literature review. Sports 2021, 9, 141. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.J.; Macedo, A.R. Influence of hamstring tightness in pelvic, lumbar and trunk range of motion in low back pain and asymptomatic volunteers during forward bending. Asian Spine Journal 2015, 9, 535. [Google Scholar] [CrossRef] [PubMed]
- Willauschus, M.; Rüther, J.; Millrose, M.; Walcher, M.; Lambert, C.; Bail, H.J.; et al. Foot and Ankle Injuries in Elite Taekwondo Athletes: A 4-Year Descriptive Analysis. Orthopaedic Journal of Sports Medicine 2021, 9, 23259671211061112. [Google Scholar] [CrossRef]
- Sugiura, Y.; Sakuma, K.; Fujita, S.; Aoki, K.; Takazawa, Y. Effects of various numbers of runs on the success of hamstring injury prevention program in sprinters. International Journal of Environmental Research and Public Health 2022, 19, 9375. [Google Scholar] [CrossRef]
- Nuell, S.; Illera-Dominguez, V.; Carmona, G.; Macadam, P.; Lloret, M.; Padullés, J.M.; et al. Hamstring muscle volume as an indicator of sprint performance. The Journal of Strength & Conditioning Research 2021, 35, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Minghelli, B.; Machado, L.; Capela, R. Musculoskeletal injuries in taekwondo athletes: a nationwide study in Portugal. Revista da Associação Médica Brasileira 2020, 66, 124–132. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, R.; Monaghan, L.; Masson, R.A.; Werner, A.K.; Caprez, T.S.; Johnston, L.; et al. Physical and physiological determinants of rock climbing. International Journal of Sports Physiology and Performance 2020, 15, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Donti, O.; Papia, K.; Toubekis, A.; Donti, A.; Sands, W.A.; Bogdanis, G.C. Flexibility training in preadolescent female athletes: Acute and long-term effects of intermittent and continuous static stretching. Journal of Sports Sciences 2018, 36, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Smajla, D.; Kozinc, Z.; Šarabon, N. Associations between lower limb eccentric muscle capability and change of direction speed in basketball and tennis players. PeerJ 2022, 10, e13439. [Google Scholar] [CrossRef] [PubMed]
- Kotler, D.H.; Babu, A.N.; Robidoux, G. Prevention, evaluation, and rehabilitation of cycling-related injury. Current Sports Medicine Reports 2016, 15, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Tumiñá-Ospina, D.M.; Rivas-Campo, Y.; García-Garro, P.A.; Gómez-Rodas, A.; Afanador, D.F. Efectividad de los ejercicios nórdicos sobre la incidencia de lesiones de isquiotibiales en futbolistas profesionales y amateur masculinos entre los 15 y 41 años. Revista Iberoamericana de Ciencias de la Actividad Física y el Deporte 2022, 11, 47–65. [Google Scholar] [CrossRef]
- Edouard, P.; Pollock, N.; Guex, K.; Kelly, S.; Prince, C.; Navarro, L.; et al. Hamstring muscle injuries and hamstring specific training in elite athletics (track and field) athletes. International Journal of Environmental Research and Public Health 2022, 19, 10992. [Google Scholar] [CrossRef] [PubMed]
- Huygaerts, S.; Cos, F.; Cohen, D.D.; Calleja-González, J.; Guitart, M.; Blazevich, A.J.; et al. Mechanisms of hamstring strain injury: interactions between fatigue, muscle activation and function. Sports 2020, 8, 65. [Google Scholar] [CrossRef]
- Saleh, A.; Al Attar, W.; Faude, O.; Husain, M.A.; Soomro, N.; Sanders, R.H. Combining the Copenhagen adduction exercise and nordic hamstring exercise improves dynamic balance among male athletes: a randomized controlled trial. Sports Health 2021, 13, 580–587. [Google Scholar] [CrossRef]
- Cuthbert, M.; Ripley, N.; McMahon, J.J.; Evans, M.; Haff, G.G.; Comfort, P. The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations: a systematic review and meta-analyses. Sports Medicine 2020, 50, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, S.L. Quasi-experimental research designs. Clinical Nurse Specialist 2020, 34, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Manor, J.; Bunn, J.; Bohannon, R.W. Validity and reliability of jump height measurements obtained from nonathletic populations with the VERT device. Journal of Geriatric Physical Therapy 2020, 43, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Jiménez-Reyes, P.; Montaño-Munuera, J.A. Validity and reliability of a low-cost digital dynamometer for measuring isometric strength of lower limb. Journal of Sports Sciences 2017, 35, 2179–2184. [Google Scholar] [CrossRef]
- Raya-Gonzalez, J.; Castillo, D.; Clemente, F.M. Injury prevention of hamstring injuries through exercise interventions. The Journal of Sports Medicine and Physical Fitness 2021, 61, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Ishøi, L.; Krommes, K.; Husted, R.S.; Juhl, C.B.; Thorborg, K. Diagnosis, prevention and treatment of common lower extremity muscle injuries in sport–grading the evidence: a statement paper commissioned by the Danish Society of Sports Physical Therapy (DSSF). British Journal of Sports Medicine 2020, 54, 528–537. [Google Scholar] [CrossRef]
- Al Attar, W.S.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: a systematic review and meta-analysis. Sports Medicine 2017, 47, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Vianna, K.B.; Rodrigues, L.G.; Oliveira, N.T.; Ribeiro-Alvares, J.B.; Baroni, B.M. A preseason training program with the nordic hamstring exercise increases eccentric knee flexor strength and fascicle length in professional female soccer players. International Journal of Sports Physical Therapy 2021, 16, 459. [Google Scholar] [CrossRef] [PubMed]
- Capaverde, V.D.; Oliveira, G.D.; de Lima-E-Silva, F.X.; Ribeiro-Alvares, J.B.; Baroni, B.M. Do age and body size affect the eccentric knee flexor strength measured during the Nordic hamstring exercise in male soccer players? Sports Biomechanics 2021, 1–11. [Google Scholar] [CrossRef]
- Drury, B.; Peacock, D.; Moran, J.; Cone, C.; Campillo, R.R. Different interset rest intervals during the Nordic hamstrings exercise in young male athletes. Journal of Athletic Training 2021, 56, 952–959. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; Molina, J.G.; de Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of plyometric, strength and change of direction training on high-school basketball player’s physical fitness. Journal of Human Kinetics 2021, 78, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scandinavian Journal of Medicine & Science in Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Whyte, E.F.; Heneghan, B.; Feely, K.; Moran, K.A.; O'Connor, S. The effect of hip extension and Nordic hamstring exercise protocols on hamstring strength: a randomized controlled trial. The Journal of Strength & Conditioning Research 2021, 35, 2682–2689. [Google Scholar] [CrossRef] [PubMed]
- Llurda-Almuzara, L.; Labata-Lezaun, N.; López-de-Celis, C.; Aiguadé-Aiguadé, R.; Romaní-Sánchez, S.; Rodríguez-Sanz, J.; et al. Biceps femoris activation during hamstring strength exercises: a systematic review. International Journal of Environmental Research and Public Health 2021, 18, 8733. [Google Scholar] [CrossRef]
- Cardozo, L.A.; Moreno-Jiménez, J. Valoración de la fuerza explosiva en deportistas de taekwondo: una revisión sistemática. Kronos 2018, 17, 1–15, https://revistakronos.info/articulo/valoracion-de-la-fuerzaexplosiva-en-deportistas-de-taekwondo-una-revision-sistematica-2430-sa-y5b4e14fcec173. [Google Scholar]

| Variable | G. Experimental | G. Control | T value | P |
| Age | 18,15 ± 3,18 | 18,59 ± 3,4 | 0,44 | 0,6 |
| Gender | ||||
| Female | 23,0% | 22,1% | - | - |
| Male | 30,3% | 24,6% | - | - |
| Experience (years) | 3,6 ± 4,11 | 3,7 ± 3,89 | 0,1 | 0,5 |
| Dominant Absolute Strength I | 12,4 ± 0,51 | 12,5 ± 0,48 | 1,19 | 0,5 |
| Non-dominant absolute strength I | 11,1 ± 0,42 | 11, 5 ± 0,48 | 0,56 | 0,7 |
| Explosive strength | 42,4 ± 1,02 | 40,5 ± 1,36 | -1,1 | 0,7 |
| Mean values ± standard error of the mean / P = <0,05 |
| Initial characteristics | G.C | G.E | Valor t | P |
|---|---|---|---|---|
| Dominant Absolute Strength I | 12,5 ± 0,48 | 12,4 ± 0,51 | 1,19 | 0,5 |
| Non-dominant absolute strength I | 11,5 ± 0,48 | 11,1 ± 0,42 | 0,56 | 0,7 |
| Explosive strength | 40,5 ± 1,36 | 42,4 ± 1,02 | -1,1 | 0,7 |
| Absolute strength (F.A), I (initial), F (final), Explosive strength (F.E), ± (standard error of the mean), T (t student), P = * (<0.05) ** (<0.01). | ||||
| Group | Experimental | Control | ||||||
|---|---|---|---|---|---|---|---|---|
| Characteristics | Pretest | Posttest | Valor t | p | Pretest | Posttest | Valor t | p |
| Dominant Absolute Strength I | 12,4 ± 0,51 | 14,5 ± 0,98 | -3,47 | 0,001 ** | 12,5 ± 0,48 | 12,52 ± 0,48 | -0,18 | 0,85 |
| Non-dominant Absolute Strength | 11,1 ± 0,42 | 13,8 ± 0,81 | -2,8 | 0,007 ** | 11, 5 ± 0,48 | 11,61 ± 0,44 | -0,33 | 0,74 |
| Explosive strength | 42,4 ± 1,02 | 45,8 ± 1,5 | -4,5 | 0,00002 ** | 40,5 ± 1,36 | 39,84 ± 1,21 | -1,3 | 0,17 |
| Absolute strength (F.A), I (initial), Explosive force (F.E), ± (standard error of the mean), T (t student), P = * (<0.05) ** (<0.01) | ||||||||
| Characteristics | Control Group | Experimental Group | Valor t | P |
|---|---|---|---|---|
| Dominant Absolute Strength I | 12,52 ± 0,48 | 14,5 ± 0,98 | -2,22 | 0,04 ** |
| Non-dominant Absolute Strength | 11,61 ± 0,44 | 13,8 ± 0,81 | -1,7 | 0,03 ** |
| Explosive strength | 39,84 ± 1,21 | 45,8 ± 1,5 | -3,59 | 0,0004 ** |
| Absolute strength (F.A), I (initial), F (final), Explosive strength (F.E), ± (standard error of the mean), T (t student), P = * (<0.05) ** (< 0.01) | ||||
| Football | Basketball | Cycling | Climbing | Taekwondo | Athletics/Speed | |||||||
| N | 10 | 14 | 12 | 12 | 10 | 10 | 10 | 9 | 7 | 7 | 10 | 11 |
| Group | C | E | C | E | C | E | C | E | C | E | C | E |
| Dominant | ||||||||||||
| F. A. I ± | 10,59 ± 0,66 | 14,12 ± 1,01 | 13,18 ± 0,954 | 11,96 ± 0,89 | 13,49 ± 1,13 | 8,19 ± 0,85 | 12,03 ± 1,138 | 13,72 ± 1,38 | 14,86 ± 3,10 | 13,93 ± 1,83 | 12,33 ± 0,97 | 12,91 ± 1,43 |
| F. A. F ± | 10,29 ± 0,52 | 15,01 ± 0,79 | 12,62 ± 0,827 | 14,406 ± 0,66 | 14,39 ± 1,09 | 9,54 ± 0,45 | 12,18 ± 1,30 | 17,63 ± 4,64 | 13,57 ± 2,44 | 14,49 ± 1,46 | 12,58 ± 1,22 | 16,19 ± 4,32 |
| T | 1,24 | -0,86 | 1,08 | -0,3114 | -1,98 | -1,99 | -0,159 | -1,119 | 0,932 | -0,527 | -0,27 | -1,037 |
| P | 0,246 | 0,049* | 0,303 | 0,010** | 0,079 | 0,07 | 0,877 | 0,296 | 0,404 | 0,613 | 0,787 | 0,327 |
| Non-Dominant | ||||||||||||
| F. A. I ± | 10,57 ± 0,8 | 11,88 ± 0,92 | 11,54 ± 0,744 | 11,566 ± 0,76 | 12,58 ± 1,05 | 8,33 ± 0,29 | 11,03 ± 1,009 | 12,01 ± 0,88 | 13,78 ± 3,59 | 12,32 ± 1,7 | 10,93 ± 1,05 | 11,26 ± 0,97 |
| F. A. F ± | 10,12 ± 0,6 | 14,99 ± 0,7 | 11,73 ± 0,558 | 13,96 ± 0,89 | 12,89 ± 1,27 | 9,54 ± 0,45 | 10,98 ± 0,72 | 16,8 ± 3,64 | 14,65 ± 3,24 | 12,53 ± 0,84 | 10,94 ± 0,83 | 15,97 ± 3,58 |
| T | 1,74 | -2.17 | -0,443 | -2,931 | -0,68 | -0,266 | 0,104 | -1,556 | -1,789 | -0,121 | 1,45 | -1,543 |
| P | 0,114 | 0,405 | 0,666 | 0,014** | 0,514 | 0,035** | 0,919 | 0,158 | 0,148 | 0,907 | 0,888 | 0,157 |
| F. E. I. ± | 41,35 ± 2,5 | 45,12 ± 0,88 | 40,21 ± 2,39 | 43,73 ± 3,24 | 30,67 ± 3,68 | 37,16 ± 2,10 | 42,65 ± 1,65 | 43,36 ± 2,24 | 50,66 ± 7,9 | 43.44 ± 3,75 | 42,65 ± 1,65 | 42,04 ± 2,4 |
| F. E. F. ± | 38,25 ± 2,9 | 49,62 ± 127 | 39,82 ± 1,7 | 46,044 ± 3,51 | 33,01 ± 3,30 | 41,3 ± 3,31 | 41,72 ± 1,46 | 48,11 ± 2,23 | 49,60 ± 6,9 | 42,50 ± 3,6 | 41,57 ± 1,68 | 47,24 ± 2,59 |
| T | 3,06 | -5,408 | 0,33 | -2,502 | -2,129 | -1,02 | 1,043 | -3,56 | 0,655 | 0,956 | 1,21 | -3,088 |
| P | 0,014* | 0,00001** | 0,747 | 0,029* | 0,062 | 0,338 | 0,324 | 0,007** | 0,548 | 0,387 | 0,257 | 0,0003** |
| C (control), E(experimental), Absolute strength (F.A), I (initial), F (final), Explosive strength (F.E), ± (standard error of the mean), T (t student), P = * (<0.05) ** (<0.01) | ||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
