Submitted:
13 May 2024
Posted:
14 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Reference Evapotranspiration (ETo) Estimates
2.3. Assessment of Estimation Errors and Choice of GCM
2.4. Spatiotemporal Analysis and Average Test of Reference Evapotranspiration Projections
2.5. Trend Analysis and Sen’s Test
3. Results and Discussion
3.1. Choice of Climate Projection Models

3.2. Reference Evapotranspiration Climate Projections (ETo)

3.3. Trends Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| AWS | AWS name | Biome | Latitude (°) | Longitude (°) | Altitude (m) |
|---|---|---|---|---|---|
| A-901 | Cuiabá | Cerrado | -15.56 | -56.06 | 242 |
| A-902 | Tangará da Serra | Amazon | -14.65 | -57.43 | 440 |
| A-903 | São José do Rio Claro | Cerrado- Amazon | -13.45 | -56.68 | 340 |
| A-904 | Sorriso | Cerrado- Amazon | -12.56 | -55.72 | 379 |
| A-905 | Campo Novo do Parecis | Cerrado | -13.79 | -57.84 | 525 |
| A-906 | Guarantã do Norte | Amazon | -9.95 | -54.90 | 284 |
| A-907 | Rondonópolis | Cerrado | -16.46 | -54.58 | 290 |
| A-908 | Água Boa | Cerrado | -14.02 | -52.21 | 440 |
| A-910 | Apiacás | Amazon | -9.56 | -57.39 | 218 |
| A-912 | Campo Verde | Cerrado | -15.53 | -55.14 | 748 |
| A-913 | Comodoro | Cerrado | -13.71 | -59.76 | 577 |
| A-914 | Juara | Amazon | -11.28 | -57.53 | 263 |
| A-915 | Paranatinga | Cerrado | -14.42 | -54.04 | 477 |
| A-916 | Querência | Amazon | -12.63 | -52.22 | 361 |
| A-917 | Sinop | Cerrado- Amazon | -11.98 | -55.57 | 367 |
| A-918 | Confresa | Cerrado- Amazon | -10.64 | -51.57 | 233 |
| A-919 | Cotriguaçu | Amazon | -9.91 | -58.57 | 265 |
| A-920 | Juína | Amazon | -11.38 | -58.77 | 365 |
| A-921 | São Felix do Araguaia | Cerrado | -11.62 | -50.73 | 201 |
| A-922 | Vila Bela da Santíssima Trindade | Amazon | -15.06 | -59.87 | 213 |
| A-924 | Alta Floresta | Amazon | -10.08 | -56.18 | 292 |
| A-926 | Carlinda | Amazon | -9.97 | -55.83 | 294 |
| A-927 | Brasnorte (Novo Mundo) | Cerrado- Amazon | -12.52 | -58.23 | 426 |
| A-928 | Nova Maringá | Cerrado- Amazon | -13.04 | -57.09 | 334 |
| A-929 | Nova Ubiratã | Cerrado- Amazon | -13.41 | -54.75 | 466 |
| A-930 | Gaúcha do Norte | Cerrado- Amazon | -13.18 | -53.26 | 376 |
| A-931 | Santo Antônio do Leste | Cerrado | -14.93 | -53.88 | 664 |
| A-932 | Guiratinga | Cerrado | -16.34 | -53.77 | 525 |
| A-933 | Itiquira | Cerrado | -17.17 | -54.50 | 593 |
| A-934 | Alto Taquari | Cerrado | -17.84 | -53.29 | 862 |
| A-935 | Porto Estrela | Cerrado | -15.32 | -57.23 | 148 |
| A-936 | Salto do Céu | Amazon | -15.12 | -58.13 | 301 |
| A-937 | Pontes de Lacerda | Amazon | -15.23 | -59.35 | 273 |
References
- Trebicki, P. Climate change and plant virus epidemiology. Virus Research 2020, 286, e198059. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Garrett, K.A.; Nita, M.; De Wolf, E.D.; Esker, P.D.; Gomez-Montano, L.; Sparks, A.H. Plant pathogens as indicators of climate change. In Climate Change: Observed Impacts on Planet Earth; Letcher, T., Ed.; Elsevier, 2021; pp. 499–513. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, 2014; 151p. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Sobkowiak, L.; Li, Z. Climatic Characteristics of Reference Evapotranspiration in the Hai River Basin and Their Attribution. Water 2014, 6, 1482–1499. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration - a review. Agricultural Water Management 2020, 232, 1–16. [Google Scholar] [CrossRef]
- Sarnighausen, V.C.R.; Gomes, F.G.; Dal Pai, A.; Rodrigues, S.A. Estimation of reference evapotranspiration by multiple linear regression models for Botucatu – SP. Revista Brasileira de Climatologia 2021, 28, 766–787. [Google Scholar] [CrossRef]
- Patle, G.T.; Sengdo, D.; Tapak, M. Trends in major climatic parameters and sensitivity of evapotranspiration to climatic parameters in the eastern Himalayan region of Sikkim, India. Journal of Water and Climate Change 2019, 11, 491–502. [Google Scholar] [CrossRef]
- Maeda, E.E.; Ma, X.; Wagner, F.H.; Kim, H.; Oki, T.; Eamus, D.; Huete, A. Evapotranspiration seasonality across the Amazon Basin. Earth System Dynamics 2017, 8, 439–454. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements; FAO - Irrigation and Drainage Paper, n.56; 1998; 300p. [Google Scholar]
- Chen, S.B.; Liu, Y.F.; Thomas, A. Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Climate Change 2006, 76, 291–319. [Google Scholar] [CrossRef]
- Kousari, M.R.; Ahani, H. An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. International Journal of Climatology 2012, 32, 2387–2402. [Google Scholar] [CrossRef]
- Jun, W.; Xinhua, W.; Meihua, G.; Xuyan, X.U. Impact of climate change on reference crop evapotranspiration in Chuxiong City, Yunnan Province. Procedia Earth and Planetary Science 2012, 5, 113–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Tang, Y.; Yang, Y. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan plateau. Journal of Geophysical Research 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Liu, X.W.; Shao, L.W.; Sun, H.Y.; Chen, S.Y.; Zhang, X.Y. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat. Agricultural Water Management 2013, 129, 173–180. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.S.; Wang, G.J.; Li, J.J.; Mu, M.Y.; Yan, G.X.; Xu, B.; Huang, J.; Wang, J.; Zhang, F.M.; Zhu, S.G. Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. Journal of Geophysical Research: Atmospheres 2016, 121, 9342–9355. [Google Scholar] [CrossRef]
- Lima, J.W.M.; Collischonn, W.; Marengo, J.A. Effect of Climate Change on Electricity Generation; AES Tietê: São Paulo, 2014; 360p. [Google Scholar]
- Sampaio, G.; Dias, P.L.S. Evolution of climate and weather and climate forecast models. Revista USP 2014, 1, 41–54. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Raju, K.S.; Kumar, D.N. Review of approaches for selection and ensembling of GCMs. Journal of Water and Climate Change 2020, 11, 577–599. [Google Scholar] [CrossRef]
- Souza, A.P.; Mota, L.L.; Zamadei, T.; Martim, C.C.; Almeida, F.T.; Paulino, J. Climate classification and climatic water balance in Mato Grosso state, Brazil. Nativa 2013, 1, 34–43. [Google Scholar] [CrossRef]
- Dentz, E.V. Agricultural production in the State of Mato Grosso and the relationship between agribusiness and cities: the case of Lucas do Rio Verde and Sorriso. Ateliê Geográfico 2019, 13, 165–186. [Google Scholar] [CrossRef]
- Souza, A.P.; Tanaka, A.A.; Silva, A.C.; Uliana, E.M.; Almeida, F.T.; Gomes, A.W.A.; Klar, A.E. Reference evapotranspiration by Penman-Monteith FAO 56 with missing data of global radiation. Revista Brasileira de Engenharia de Biossistemas 2016, 10, 217–233. [Google Scholar] [CrossRef]
- Tanaka, A.A.; Souza, A.P.; Klar, A.E.; Silva, A.C.; Gomes, A.W.A. Reference evapotranspiration estimated with simplified models for the state of Mato Grosso, Brazil. Pesquisa Agropecuária Brasileira 2016, 51, 91–104. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Jerszurki, D.; De Souza, J.L.M.; Silva, L.D.C.R. Sensitivity of ASCE-Penman–Monteith reference evapotranspiration under different climate types in Brazil. Climate Dynamics 2019, 53, 943–956. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. Climate Data Store: In situ total column ozone and ozone soundings from 1924 to present from the World Ozone and Ultraviolet Radiation Data Centre; Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2021. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric test against trend. Econometrika 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; London: Griffin, 1997; 202p. [Google Scholar]
- Sabino, M.; Souza, A.P. Gap-filling meteorological data series using the GapMET software in the state of Mato Grosso, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 2023, 27, 149–156. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.; Maignan, F.; Miralles, D.G. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences 2013, 17, 3707–3720. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Scientific Reports 2015, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gulizia, C.; Camilloni, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology 2015, 35, 583–595. [Google Scholar] [CrossRef]
- Martins, G.; Silva, C.M.S. Estimate of water balance of the Amazon basin at the end of the first half XXI century using the simulations of CMIP5. Boletim de Geografia 2015, 33, 1–16. [Google Scholar] [CrossRef]
- Guimarães, S.O.; Costa, A.A.; Vasconcelos Júnior, F.D.C.; Silva, E.M.D.; Sales, D.C.; Araújo Júnior, L.M.D.; Souza, S.G.D. Climate change projections over the Brazilian Northeast of the CMIP5 and CORDEX Models. Revista Brasileira de Meteorologia 2016, 31, 337–365. [Google Scholar] [CrossRef]
- Silva, R.O.; Souza, E.B.; Tavares, A.L.; Mota, J.A.; Ferreira, D.; Souza-Filho, P.W.; Rocha, E.J.D. Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon. Anais da Academia Brasileira de Ciências 2017, 89, 1985–2002. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.M.; Correia, F.W.S.; Chou, S.C.; Lyra, A.; Silva, P.R.T.; Gomes, W.B.; Vergasta, L. Evaluation of the water budget in the Amazon basin simulated by the ETA-HADGEM2-es model from 1985 to 2005. Revista de Geografia 2016, 33, 276–298. [Google Scholar]
- Gomes, W.W.E.; Leite Filho, A.T.; Soares-Filho, B.S. Simulation of the impacts of global climate change on reference evapotranspiration in the Brazilian Amazon basin. Revista Brasileira de Climatologia 2021, 28, 450–470. [Google Scholar] [CrossRef]
- Sabino, M.; Souza, A.P. Global sensitivity of Penman-Monteith reference Evapotranspiration to climatic variables in Mato Grosso, Brazil. Earth 2023, 4, 714–727. [Google Scholar] [CrossRef]
- Chou, C.; Lan, C.W. Changes in the annual range of precipitation under global warming. Journal of Climate 2012, 25, 222–235. [Google Scholar] [CrossRef]
- Chou, C.; Chiang, J.C.; Lan, C.W.; Chung, C.H.; Liao, Y.C.; Lee, C.J. Increase in the range between wet and dry season precipitation. Nature Geoscience 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 2020, 11, e3044. [Google Scholar] [CrossRef]
- Richter, I.; Xie, S.P. Muted precipitation increase in global warming simulations: a surface evaporation perspective. Journal of Geophysical Research: Atmospheres 2008, 113, 1–20. [Google Scholar] [CrossRef]
- Greve, P.; Seneviratne, S.I. Assessment of future changes in water availability and aridity. Geophysical Research Letters 2015, 42, 5493–5499. [Google Scholar] [CrossRef]
- Werth, D.; Avissar, R. The regional evapotranspiration of the Amazon. Journal of Hydrometeorology 2004, 5, 100–109. [Google Scholar] [CrossRef]
- Grimm, A.M.; Barros, V.R.; Doyle, M.E. Climate variability in southern South America associated with El Niño and La Niña events. Journal of Climate 2000, 13, 35–58. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Terink, W.; Immerzeel, W.W.; Droogers, P. Climate change projections of precipitation and reference evapotranspiration for the Middle East and northern Africa until 2050. International Journal of Climatology 2013, 33, 3055–3072. [Google Scholar] [CrossRef]
- Tao, X.; Chen, H.; Xu, C.-Y.; Hou, Y.K.; Jie, M. Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China. Water Science and Engineering 2015, 8, 273–281. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, D. Climate change, the evaporation paradox, and their effects on Streamflow in Lijiang Watershed. Polish Journal of Environmental Studies 2018, 27, 2585–2591. [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Shi, Z.; Yang, X.; Zhang, X.; Guo, H.; Zhang, B.; Zhang, Z. Trends in potential evapotranspiration from 1960 to 2013 for a desertification-prone region of China. International Journal of Climatology 2016, 36, 3434–3445. [Google Scholar] [CrossRef]
- Obada, E.; Alamou, E.; Chabi, A.; Zandagba, J.; Afouda, A. Trends and changes in recent and future Penman-Monteith potential evapotranspiration in Benin (West Africa). Hydrology 2017, 4, e38. [Google Scholar] [CrossRef]
- Rahman, M.A.; Yunsheng, L.; Sultana, N.; Ongoma, V. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets. Meteorology and Atmospheric Physics 2018, 131, 1–17. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, H.; Yue, Q.; Wang, Z. Spatiotemporal variation in reference to evapotranspiration and its contributing climatic factors in China under future scenarios. International Journal of Climatology 2020, 40, 3813–3831. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Lawrimore, J.H.; Peterson, T.C. Pan Evaporation Trends in Dry and Humid Regions of the United States. Journal of Hydrometeorology 2000, 1, 543–646. [Google Scholar] [CrossRef]
- Mahyoub, H.; Buhairi, A. Analysis of monthly, seasonal and annual air temperature variability and trends in Taiz City Republic of Yemen. Journal of Environmental Protection 2010, 1, 401–409. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Kyaw Tha Paw, U. Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China. Hydrological Sciences Journal 2019, 64, 1944–1956. [Google Scholar] [CrossRef]
- Yesilirmak, E. Temporal changes of warm-season pan evaporation in a semi-arid basin in Western Turkey. Stochastic Environmental Research and Risk Assessment 2013, 27, 311–321. [Google Scholar] [CrossRef]
- Ozdogan, M.; Salvuccci, G.D. Irrigation-induced changes in potential evapotranspiration in southeastern Trukey: test and application of Bouchet’s complementary hypothesis. Water Resrouces Research 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G. Changes in Australian Pan Evaporation from 1970 to 2002. International Journal of Climatology 2004, 24, 1077–1090. [Google Scholar] [CrossRef]
- Ndiaye, P.M.; Bodian, A.; Diop, L.; Deme, A.; Dezetter, A.; Djaman, K.; Ogilvie, A. Trend and sensitivity analysis of reference evapotranspiration in the Senegal river basin using NASA meteorological data. Water 2020, 12, e1957. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend Analysis in reference to evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resources Management 2012, 26, 211–224. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. The Cause of Decreased Pan Evaporation over the Past 50 Years. Science 2002, 298, 1410–1411. [Google Scholar] [CrossRef]
- Han, S.; Xu, D.; Wang, S. Decreasing potential evaporation trends in China from 1956 to 2005: accelerated in regions with significant agricultural influence? Agricultural and Forest Meteorology 2012, 154, 44–56. [Google Scholar] [CrossRef]
- Chattopadhyay, N.; Hulme, M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology 1997, 87, 55–73. [Google Scholar] [CrossRef]
- Palácios, R.D.S.; Castagna, D.; Barbosa, L.S.; Souza, A.P.; Imbiriba, B.; Zolin, C.A.; Nassarden, D.; Duarte, L.; Morais, F.G.; Franco, M.A.; Cirino, G.; Kuhn, P.; Sodré, G.; Curado, L.F.A.; Basso, J.M.; De Paulo, S.R.; Rodrigues, T.R. ENSO effects on the relationship between aerosols and evapotranspiration in the south of the Amazon biome. Environmental Research 2024, 250, e118516. [Google Scholar] [CrossRef] [PubMed]
- Palácios, R.D.S.; Artaxo, P.; Cirino, G.G.; Nakale, V.; Morais, F.G.D.; Rothmund, L.D.; Biudes, M.S.; Machado, N.G.; Curado, L.F.A.; Marques, J.B.; Nogueira, J.D.S. Long-term measurements of aerosol optical properties and radiative forcing (2011-2017) over Central Amazonia. Atmósfera 2022, 35, 143–163. [Google Scholar] [CrossRef]
- Palácios, R.D.S.; Romera, K.S.; Curado, L.F.A.; Banga, N.M.; Rothmund, L.D.; Da Silva Sallo, F.; MoraiS, D.; Santos, A.C.A.; Moraes, T.J.; Morais, F.G.; Landulfo, E. Long term analysis of optical and radiative properties of aerosols in the Amazon Basin. Aerosol and Air Quality Research 2020, 20, 139–154. [Google Scholar] [CrossRef]








| MCG | Research Group | Resolution (Lat. × Lon.) |
|---|---|---|
| BNU-ESM | College of Global Change and Earth System Science, Beijing Normal University, China | 2.8 × 2.8 |
| CESM1-CAM5 | Community Earth System Model Contributors, USA | 1.25 × 0.94 |
| CNRM-CM5 | National Center of Meteorological Research, France | 1.4 ×1.4 |
| CSIRO-Mk3 6.0 | Organization/Queensland Climate Change Center of Excellence, Australia | 1.8 ×1.8 |
| GFDL-CM3 | NOAA Geophysical Fluid Dynamics Laboratory, USA | 2.5 × 2.0 |
| GFDL-ESM2G | NOAA Geophysical Fluid Dynamics Laboratory, USA | 2.5 × 2.0 |
| HadGEM2-ES | Met Office Hadley Center, UK | 1.88 ×1.25 |
| IPSL-CM5A LR | Institut Pierre Simon Laplace, France | 3.75 ×1.8 |
| IPSL-CM5A MR | Institut Pierre Simon Laplace, France | 2.5 ×1.25 |
| Eto (mm day-1) | Observed | RCP 2.6 | RCP 4.5 | RCP 8.5 |
|---|---|---|---|---|
| Actual (2007 – 2020) | 4.02 | 3.95 Aa | 3.94 Aa | 4.10 Aa |
| Projection (2021 – 2050) | 4.16 Aab | 4.13 Aa | 4.17 Aa | |
| Projection (2051 – 2075) | 4.13 Ab | 4.31 ABb | 4.42 Bb* | |
| Projection (2076 – 2100) | 4.08 Aab | 4.37 Bb* | 4.66 Cc* |
| Database | Period | Scenarios | Variables | |||||
|---|---|---|---|---|---|---|---|---|
| SRD | RH | Tmax | Tmin | SW | ETo | |||
| Observed | Short term (2007-2020) | Actual | -0.109 | -0.276 | 0.567** | 0.220 | -0.111** | -0.035 |
| Simulated | Short term (2007-2020) | RCP 2.6 | 0.731** | -4.709** | 2.141** | 1.216** | 0.016 | 0.423** |
| RCP 4.5 | -0.288 | -0.204 | 0.768 | 0.651** | -0.024 | 0.051 | ||
| RCP 8.5 | 0.047 | -1.211 | 0.683* | 0.587** | 0.047** | 0.075 | ||
| Long term (2007-2100) | RCP 2.6 | 0.006 | -0.084 | 0.080** | 0.058** | 0.005** | 0.011 | |
| RCP 4.5 | 0.061** | -0.539** | 0.345** | 0.377** | 0.001* | 0.055** | ||
| RCP 8.5 | 0.075** | -1.152** | 0.779** | 0.716** | 0.019** | 0.121** | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
