Submitted:
02 July 2024
Posted:
04 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Fundamentals of Terahertz Antennas
1.2. Related Work
1.2.1. Metamaterial-Based Antennas

1.3. Printed and Flexible THz Antennas



1.4. Terahertz Antenna Arrays and MIMO Systems


1.5. Applications of Terahertz Antennas
2. Conclusions
Acknowledgements
References
- Wang, C. , Wei, S., Feng, W., & Cao, J. (2022, December 21). Nonlinear dynamics of semiconductor terahertz devices. In X.-C. Zhang, M. Tani, & C. Zhang (Eds.), Infrared, Millimeter-Wave, and Terahertz Technologies IX. [CrossRef]
- Bharadwaj, A. N. , Kashyap, A. M., Bhatta, G., Jayachandran, R., & Kishore, R. (2023, February 10). A Survey on Te rahertz Devices-A cutting edge Technology. 2023 International Conference on Recent Trends in Electronics and Commu nication (ICRTEC). Presented at the 2023 International Conference on Recent Trends in Electronics and Communication (ICRTEC), Mysore, India. [CrossRef]
- Hellicar, A. D. , Li, L., Greene, K., Hislop, G., Hanham, S., Nikolic, N., & Dn, J. (2022). A 500-700 GHz system for ex ploring the THz frequency regime. In Advances in Broadband Communication and Networks (pp. 37–54). [CrossRef]
- Elaage, S. , El Ghzaoui, M., Mrani, N., El Alami, R., El Alami, A., Jamil, M. O., & Qjidaa, H. (2023). Modeling and analysis of short distance terahertz communication channel. In Lecture Notes in Networks and Systems. Digital Technologies and Applications (pp. 289–297). [CrossRef]
- Balzer, J. C. , Saraceno, C. J., Koch, M., Kaurav, P., Pfeiffer, U. R., Withayachumnankul, W., … Czylwik, A. (2023). THz Systems Exploiting Photonics and Communications Technologies. IEEE Journal of Microwaves, 3(1), 268–288. [CrossRef]
- Malhotra, I. , & Singh, G. (2022). Terahertz imaging in healthcare. In Medical Information Processing and Security: Tech niques and applications (pp. 57–86). [CrossRef]
- Chernomyrdin, N. V. , Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia, Musina, G. R., Nikitin, P. V., Dolganova, I. N., Kucheryavenko, A. S., … Institute of Precision Mechanics and Control, FRC ‘Saratov Scientific Centre of the Russian Academy of Sciences’.
- Saratov 410028, Russia. (2023). Terahertz technology in intraoperative neurodiagnostics: A review. OptoElectronic Advances, 0(0), 220071–220071. [CrossRef]
- Taday, P. F. , Pepper, M., & Arnone, D. D. (2022). Selected applications of terahertz pulses in medicine and industry. Applied Sciences (Basel, Switzerland), 12(12), 6169. [CrossRef]
- Xu, L.-J. , Zhao, X.-K., & Bai, X. (2023). Design of on-chip antennas for THz detector and source in CMOS (Invited paper). IET Microwaves Antennas & Propagation, 17(6), 454–466. [CrossRef]
- Armghan, A. , Aliqab, K., Alsharari, M., Alsalman, O., Parmar, J., & Patel, S. K. (2023). Design and development of ul trabroadband, high-gain, and high-isolation THz MIMO antenna with a complementary split-ring resonator metamaterial. Micromachines, 14(7). [CrossRef]
- Jin, Z. , Rong, Y., Yu, J., & Wu, F. (2023). Design of a compound reconfigurable terahertz antenna based on graphene. [CrossRef]
- Yordanov, P. , Priessnitz, T., Kim, M.-J., Cristiani, G., Logvenov, G., Keimer, B., & Kaiser, S. (2022). Intense terahertz radiation via the transverse thermoelectric effect. [CrossRef]
- Didi, S.-E. , Halkhams, I., Mohammed, F., Balboul, Y., Mazer, S., & Bekkali, M. E. L. (2022). Study and design of the terahertz antenna array. In Terahertz Devices, Circuits and Systems (pp. 225–242). [CrossRef]
- Khabibullin, R. A., V. G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of the Russian Academy of Sciences, Moscow, 117105, Russian Federation, Pushkarev, S. S., Galiev, R. R., Shchavruk, N. V., Dyuzhikov, I. N., … Radio-engineering and Electronics of the Russian Academy of Sciences, Moscow, 125009, Russian Federation. (2022). Spectral characteristics of terahertz quantum cascade lasers. Nano-i Mikrosistemnaya Tehnika, 24(2), 96–102. [CrossRef]
- Bucur-Portase, R.-C. (2023). Introduction to the biological effects of terahertz radiation. In Trends in Terahertz Technology. [CrossRef]
- Pant, R. , & Malviya, L. (2023). THz antennas design, developments, challenges, and applications: A review. International Journal of Communication Systems, 36(8). [CrossRef]
- Maktoomi, M. H. , Saadat, S., Momeni, O., Heydari, P., & Aghasi, H. (2023). Broadband antenna design for terahertz com munication systems. IEEE Access: Practical Innovations, Open Solutions, 11, 20897–20911. [CrossRef]
- Youssef, A. , Halkhams, I., El Alami, R., Jamil, M. O., & Qjidaa, H. (2023). Terahertz antennas: Application, research challenges and future directions. In Lecture Notes in Networks and Systems. Artificial Intelligence and Smart Environment (pp. 757–762). [CrossRef]
- Teng, F. , Wan, J., & Liu, J. (2023). Review of terahertz antenna technology for science missions in space. IEEE Aerospace and Electronic Systems Magazine, 38(2), 16–32. [CrossRef]
- Yang, T. , Li, X., Yu, B., & Gong, C. (2023). Design and print terahertz metamaterials based on electrohydrodynamic jet. Micromachines, 14(3). [CrossRef]
- Xing, H. , Fan, J., Lu, D., Gao, Z., Shum, P. P., & Cong, L. (2022). Terahertz metamaterials for free-space and on-chip applications: From active metadevices to topological photonic crystals. Advanced Devices & Instrumentation, 2022, 1–23. [CrossRef]
- Ji, W. , Chang, J., Xu, H.-X., Gao, J. R., Gröblacher, S., Urbach, H. P., & Adam, A. J. L. (2023). Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topol ogy optimization methods. Light, Science & Applications, 12(1), 169. [CrossRef]
- Whittaker, T. , Zhang, S., Powell, A., Stevens, C. J., Vardaxoglou, J. Y. C., & Whittow, W. (2023). 3D Printing Materials and Techniques for Antennas and Metamaterials: A survey of the latest advances. IEEE Antennas & Propagation Magazine, 65(3), 10–20. [CrossRef]
- Pant, R. , & Malviya, L. (2023). THz antennas design, developments, challenges, and applications: A review. International Journal of Communication Systems, 36(8). [CrossRef]
- Virdee, B. (2022). Grand challenges in metamaterial antennas. Frontiers in Antennas and Propagation, 1. [CrossRef]
- Huang, Z. , Wu, W., Herrmann, E., Ma, K., Jungfleisch, B., & Wang, X. (2022, October 3). THz metamaterials based on phase-transition materials actuated MEMS. In N. Engheta, M. A. Noginov, & N. I. Zheludev (Eds.), Metamaterials, Metade vices, and Metasystems 2022. [CrossRef]
- Shahriar, B. Y. , Carnio, B. N., Hopmann, E., & Elezzabi, A. Y. (2022, March 7). Modification of the terahertz emission from spintronic emitters via 3D-printed structures. In L. P. Sadwick & T. Yang (Eds.), Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XV. [CrossRef]
- Pant, R. , & Malviya, L. (2023). THz antennas design, developments, challenges, and applications: A review. International Journal of Communication Systems, 36(8). [CrossRef]
- Abohmra, A. , Abbas, H., Alomainy, A., Ali Imran, M., & Abbasi, Q. H. (2023, March 26). Flexible terahertz antenna arrays based on graphene for body-centric wireless communication. 2023 17th European Conference on Antennas and Propagation (EuCAP). Presented at the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy. [CrossRef]
- Li, Y.-L. , & Luk, K.-M. (2023). A low-cost 3-D printed THz open resonator antenna. IEEE Antennas and Wireless Propa gation Letters, 22(1), 84–88. [CrossRef]
- Chen, J. , Guo, S., Nie, Y., Liu, S., & Wang, P. (2023). A flexible antenna array design for microwave energy transmission. In Lecture Notes in Electrical Engineering. Lecture Notes in Electrical Engineering (pp. 797– 809). [CrossRef]
- Lai, J. , & Yang, Y. (2022, October 31). A 3D printing 120 GHz lens antenna for terahertz 1D beam-scanning applications. 2022 International Symposium on Antennas and Propagation (ISAP). Presented at the 2022 International Symposium on Antennas and Propagation (ISAP), Sydney, Australia. [CrossRef]
- Abohmra, A. , Abbas, H., Imran, M. A., & Abbasi, Q. H. (2022, July 10). Flexible antenna arrays based on graphene for high-speed THz communications. 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). Presented at the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/USNC-URSI), Denver, CO, USA. [CrossRef]
- Mashayekhi, M. , Kabiri, P., Nooramin, A. S., & Soleimani, M. (2023). A reconfigurable graphene patch antenna inverse design at terahertz frequencies. Scientific Reports, 13(1), 8369. [CrossRef]
- Wang, R. , Zhu, J., Chang, C., Hou, L., Zhang, Z., Feng, Y., … Liang, X. (2023). Interdigitated photoconductive antenna pumped by reconfigurable structured light for terahertz emission and modulation. IEEE Transactions on Microwave Theory and Techniques, 71(8), 3661–3667. [CrossRef]
- Mutepfe, C. D. K. , & Srivastava, V. M. (2022). Design and implementation of graphene-based tunable microwave filter for THz applications. Nanomaterials (Basel, Switzerland), 12(24), 4443. [CrossRef]
- Abd, R. H. , & Abdulnabi, H. A. (2023). Reconfigurable graphene-based multi-input multi-output antenna design for THz applications. Bulletin of Electrical Engineering and Informatics, 12(4), 2193–2202. [CrossRef]
- Jin, Z. , Rong, Y., Yu, J., & Wu, F. (2023). Design of a compound reconfigurable terahertz antenna based on graphene. [CrossRef]
- Ibrahim, A. A. , & Gaber, S. M. (2023). Frequency reconfigurable antipodal Vivaldi 2-port antenna based on graphene for terahertz communications. Optical and Quantum Electronics, 55(9). [CrossRef]
- Yang, H. , & Ye, Z. (2023). Robust adaptive beamforming based on covariance matrix reconstruction via steering vector estimation. IEEE Sensors Journal, 23(3), 2932–2939. [CrossRef]
- Mei, Y. , Li, P., Liu, K., Wang, H., Zhang, Y., Xie, R., & Rui, Y. (2022, December 9). A novel adaptive beamforming method based on steering vector and interference estimation. 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China). Presented at the 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China. [CrossRef]
- Sadiq, M. , bin Sulaiman, N., Mohd Isa, M., & Nizar Hamidon, M. (2022). A review on machine learning in smart antenna: Methods and techniques. TEM Journal, 695–705. [CrossRef]
- Shi, D. , Lian, C., Cui, K., Chen, Y., & Liu, X. (2022). An intelligent antenna synthesis method based on machine learning. IEEE Transactions on Antennas and Propagation, 70(7), 4965–4976. [CrossRef]
- Tan, Y. J. , Zhu, C., Tan, T. C., Kumar, A., Wong, L. J., Chong, Y., & Singh, R. (2022). Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications. Optics Express, 30(15), 27763. [CrossRef]
- Shihzad, W. , Ullah, S., Ahmad, A., Abbasi, N. A., & Choi, D.-Y. (2022). Design and analysis of dual-band high-gain THz antenna array for THz space applications. Applied Sciences (Basel, Switzerland), 12(18).
- 9231. [CrossRef]
- Che, M. , Kondo, K., & Kato, K. (2023). Generating and enhancing THz pulses via an antenna-coupled unitraveling-carrier photodiode array. IEEE Transactions on Terahertz Science and Technology, 13(3), 280– 285. [CrossRef]
- Koyama, Y. , Kitazawa, Y., Yukimasa, K., Uchida, T., Yoshioka, T., Fujimoto, K., … Ichikawa, T. (2022). A high-power terahertz source over 10 mW at 0.45 THz using an active antenna array with integrated patch antennas and resonant-tun neling diodes. IEEE Transactions on Terahertz Science and Technology, 12(5), 510–519. [CrossRef]
- Zarini, H. , Mili, M. R., Rasti, M., Andreev, S., Nardelli, P. H. J., & Bennis, M. (2023). Intelligent analog beam selection and beamspace channel tracking in THz massive MIMO with lens antenna array. IEEE.
- Transactions on Cognitive Commu nications and Networking, 9(3), 629–646. [CrossRef]
- Kundu, N. K. , McKay, M. R., Conti, A., Mallik, R. K., & Win, M. Z. (2023). MIMO terahertz quantum key distribution under restricted eavesdropping. IEEE Transactions on Quantum Engineering, 4, 1–15.
- . [CrossRef]
- Magbool, A. , Sarieddeen, H., Kouzayha, N., Alouini, M.-S., & Al-Naffouri, T. Y. (2023). Terahertz-band non-orthogonal multiple access: System- and link-level considerations. IEEE Wireless Communications, 30(1), 142–149. [CrossRef]
- Chen, Y. , Li, R., Han, C., & Tao, M. (2022, May 16). Hybrid spherical- and planar-wave channel modeling and spatial multiplexing analysis for terahertz integrated UM-MIMO and IRS systems. ICC 2022 - IEEE International Conference on Communications. Presented at the ICC 2022 - IEEE International Conference on Communications, Seoul, Korea, Republic of. [CrossRef]
- Bodet, D. M. , & Jornet, J. M. (2022, May 29). Impact of antenna element directivity and reflectioninterference on line-of- sight multiple input multiple output terahertz systems. 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC). Presented at the 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain. [CrossRef]
- Wang, Q. , Chen, Y., Mao, J., Yang, F., & Wang, N. (2023). Metasurface-assisted terahertz sensing. Sensors (Basel, Swit zerland), 23(13). [CrossRef]
- Sharma, K. , Rao, A., Kumar, K., & Rao, T. R. (2023, March 29). Terahertz imaging for aerospace applications. 2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). Presented at the 2023 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India. [CrossRef]
- Morohashi, I. , Irimajiri, Y., Kawakami, A., Kishimoto, T., Dat, P. T., Kanno, A., … Hosako, I. (2023). Wireless signal transmission at the 2 and 3 THz-band enabled by photonics-based transmitter and hot electron bolometer mixer. IEEE Journal of Selected Topics in Quantum Electronics: A Publication of the IEEE Lasers and Electro-Optics Society, 29(5: Terahertz Photonics), 1–7. [CrossRef]
- Chaccour, C. , Soorki, M. N., Saad, W., Bennis, M., & Popovski, P. (2022). Can terahertz provide high-rate reliable low-latency communications for wireless VR? IEEE Internet of Things Journal, 9(12), 9712–9729. [CrossRef]
- Thami, L. , & Ghzaoui, M. E. L. (2022). A circularly polarized wideband high gain antenna for THz wireless applications. [CrossRef]
- Pant, R. , & Malviya, L. (2023). THz antennas design, developments, challenges, and applications: A review. International Journal of Communication Systems, 36(8). [CrossRef]
- Teng, F. , Wan, J., & Liu, J. (2023). Review of terahertz antenna technology for science missions in space. IEEE Aerospace and Electronic Systems Magazine, 38(2), 16–32. [CrossRef]
- Mohankumar, D. S. , CMR University, Bangalore, Karnataka, India., Bhairanatti, S., & CMR University, Bangalore, Kar nataka, India. (2022). Reconfigurable Antenna Design for THz B and 6G Applications. [CrossRef]
- Tripathi, U. , Solanki, D., Malviya, P., Parmar, A., & Malviya, L. (2023, March 24). MIMO antenna design with PBG structure for THz communication. 2023 First International Conference on Microwave, Antenna and Communication (MAC). Presented at the 2023 First International Conference on Microwave, Antenna and Communication (MAC), Prayagraj, India. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
