Submitted:
08 May 2024
Posted:
09 May 2024
You are already at the latest version
Abstract
Keywords:
1. Preamble: — “What is Life?” — in Schrödinger’s Legacy
2. Biogenic Environment
3. The Hidden Path from OoL to ToL
- A personal note on basic terms: Regarding the “Irreducible Nature of Eukaryote Cells” [22] and questioning the irrationally founded assertion that all of Eukaryote complexity ‘must’ have descended from the conceptionally more simplistic modalities of bacterial/archaeal cell organization, which is intuitively associated with the conventional ‘Prokaryote’/Eukaryote distinction, I herein follow the suggestion to use a neutral, less teleologically loaded term — Akaryote — for both bacterial and archaeal cells [23,24].
4. Ready for a Superior Paradigm Shift in OoL Research?
5. There is Room for Progress to be Made
5.1. Cohesive Coalescence
5.2. Kinetic Coupling
5.3. Midway Limbo
5.4. Internal Compartmentation — The Proto-Coenocyte Scenario
- Allowing plasmid-like self-replicating genetic elements to localize in internal vesicular compartments may have paved the way to endogenous proto-organelles, such as the circumstantially inferred ‘premitochondria’ [112], some of which may have evolved further and eventually ‘escaped’ from the surrounding protoplasmic bulk as lineages of bacteria-like quasi-autonomous cells. These conjectures have led to the ‘Karyogenic Proto-Coenocyte Hypothesis’ [106].
- Internal membrane trafficking systems within the common protoplasm should also have favored eukaryote-like karyogenesis from within — as opposed to tentative endosymbiotic origins from outside [113].
- Somewhere between these two extremes, a single chromosome from the collectively coordinated, communally shared (non-plasmid) gene pool may eventually have gathered a subset of essential genes just large enough and sufficiently diverse to allow additional lineages of archaea-like cells to ‘escape’ from the residual protoplasmic bulk as well. [114].
- It has long been recognized that eukaryotic cell organization still has many characteristics that may have been generally advantageous at much earlier stages of pre-organismal evolution [115,116] and therefore may represent a more direct lineage of vertical descent from the Woesean ‘Progenote State’ of population-wide collective, RNA-directed gene pool sharing. This notion is central to Woese’s 3-domain (3D) canonical Tree of Life (ToL) [117], which is now seriously challenged by the ‘Eocyte’ version of a competing 2-domain (2D) model, nesting all the eukaryotes within the ancestral archaeal domain [25,26], but disagreement among experts is not ending there.
- Also eukaryote-like cells — or rather nuclei — may finally have emerged as modular genomic units of vertically stable inheritance out of the residual Progenote-like population. However, establishing a reliable system for the coordinate co-segregation of multiple chromosomes in the course of nuclear division may have taken considerably longer time than gathering a minimum number of essential genes on a single plasmid molecule (as suggested here for the generation of Akaryote-like cells).
5.5. Coemergence
5.6. Accretionary Growth towards Hierarchical Modularity
5.7. Integrative Networking
5.8. Innovative Transitions
5.9. From Tangled Networks to Tree-like Lineage Evolution
6. A Web-like Trunk to Bear a Tangled Tree
6.1. The Virosphere — Yet What About It?
- Recombinational hotspots: Even previral agents, such as transposable MGEs, have found use in organismal genomes as entry points for horizontal gene transfer and shuffling of exons or protein domains [225].
- RNA to DNA transitions: The modes of genomic DNA replication are generally equivalent in the organismal phylodomains. Their basic enzymology however is partly non-homologous — especially between Bacteria on the one hand versus Archaea and Eukarya on the other [226,227]. This means to me that the full transition to DNA has occurred stepwise and that the molecular diversity at different steps was potentially of critical relevance for connecting the core pattern in a residual “ToL of 1 %” to its historical roots at the organismal and/or pre-organismal levels. With tentative origins in different ancestral RNA polymerase genes of the preceding RNA-dominated era, the phylogenetically irregular distribution of replicative DNA polymerase subunits across the deepest branches of the organismal ToL [228] does not uniquely specify a single evolutionary paradigm regarding the biological history of cellular diversity. I’ll return to this aspect more specifically in the following Sections. In contrast, the phylogenetic history of replication helicases in the archaeal branch appears more regular in following the rDNA-based standard tree [229].
- Heterochromatin-like clustering: The emergence of the eukaryotic nucleus is still a mystery, which has been interpreted by two basic models: endosymbiotic theories from outside a prospective akaryote host cell versus autogenous (or endogenous) hypotheses suggesting diversifying membrane trafficking from within larger pre- or proto-eukaryotic cells [113,230,231]. The recent advances on ‘viral replication factories’ have led to the notion “that uncoupling of transcription from translation is a feature of giant viruses [and] the ability to uncouple transcription from translation potentially has a very long evolutionary history” [232] — in support of the hypothesis that the nucleus is derived from a characteristic ‘viral factory’ [233,234]. This model entertains the additional hypothesis that eukaryotic histones likewise derived from viral origins, allowing differentially compacted chromatinization for giant viruses first and for their host cells secondarily [235]. Molecular chaperones for histone assembly, too, may be related to viral proteins [236]. The intimate coevolution of viral and cellular membrane fusion proteins may likewise be relevant in this context [237], and bacterial viruses have perfected the translocation of DNA across membranes by molecular motors [238].
- Host line evolution and persistence: The interaction of bacteriophages with chromosome-borne MGEs can be reciprocal and intense at characteristic ‘Phage-inducible chromosomal islands’ scattered in the host cell genome. These gene-bearing clusters allow viral genomes to integrate in a ‘lysogenic state’ and benefit the host cell by promoting genetic variability, protecting from the lytic stage, and shielding against super-infection by other viruses from outside [239,240].
- NB — For want of a better word, I deliberatively ‘borrow’ the thylakoid term for application in a more general ancestral sense than its well established meaning for highly advanced photosynthesis as represented in ‘purple bacteria’, cyanobacteria and plastids of eukaryotic plants.
6.2. Modular Cellularization — Progenote and Lineage Aspects Reconsidered
- The founding core of intracellular genomes was a ‘protothylakoid’-associated RNA plasmid.
- It carried an operational core for independent protein synthesis, perhaps assisted by a productive combination of recombinational bypass of replication-blocking lesions and/or the superior principle of ‘rolling circle replication’ of ribosomal RNA sequences, — analogous to a commonly observed mode of differential gene amplification today [284]. Somewhat indirectly, rolling circle replication can be initiated by recombination between circularly permuted linear sequences and/or terminal redundancy [285-287]. The plasmid-based coding potential comprised one or more membrane-interacting amphiphilic proteins with directional charge transfer or other energy-converting capacity, which became vitally important for the surrounding protoplasmic system at large.
- Micellar, vesicular or cisternal protothylakoids accumulated around the associated plasmid molecules and eventually fused to form internal, organelle-like compartments [107].
- Topological closure of a surrounding envelope, however, could only be achieved in coevolution with appropriate transport systems into and out of the emerging compartments.
- The RNA-to-DNA transition of the compartmentalized plasmid was partly independent from the larger systemic whole. The process began with plasmid-specific replication origins and ancestral primase–helicase complexes — presumably similar to the metazoan mitochondrial initiation system [288]. Accordingly, the peculiar resemblance between DNA replicases in mitochondria and T7-like bacteriophages [289] and the discovery of T7-like lysogenic prophage modules, which are inferred to better represent ancestral stages than the better known, strictly virulent T7-like phages themselves [290], fall neatly in line with the case study of a lineage-defining gene exchange equilibrium between viruses and plasmids with regard to certain host-related replication specificity factors [229]. The main point here is that minimal lineage-defining modules comprised of particular sequence elements in DNA to function as preferential internal replication origins and corresponding proteins to recognize the starting sites for processive template replication.
- The nascent lineage-tracking genome modules in turn had to deal with increasingly multidimensional concerns for subsequent accretionary growth, not the least in bargaining overall genome length against the cumulative hazards of accidental damage and momentary replication infidelity. Inasmuch as the resolution of many such replication-blocking events required ‘trans-lesion synthesis’ of DNA for recombinational repair, all organismal genomes — and larger viruses too — depended on more than just a single kind of DNA polymerase and also needed more effective processivity clamps for long-term lineage persistence and stability. Arguably the most significant modular innovation in this regard is the establishment of bidirectional replication by multi-enzyme replisomes [291]. A pair of sister replisomes is set in motion at a common origin of replication — only to be dissolved after pairwise collision at certain replication-termination zones [292].
- Each replisome is assembled at a nascent replication fork after ds-DNA has been opened at a replication origin by helicase/primase deposition. The overall gearing of these composite molecular machines appears comparable in all domains of life, but many individual components are structurally non-homologous in bacteria as compared to archaea and eukaryotes [293]. As composite replisomes too (similar to ribosomes) represent an important functional module amongst “new cellular subsystems that are refractory to major evolutionary change” [4], they should resist the replacement of single components by LGT/HGT. However, while proto-ribosomes were vitally important throughout the RNA-directed early phase of collective Progenote Evolution, typical replisomes became important only during the later stage of RNA-to-DNA transitions — with a potential for multiple emergences at different proto-organismal branchpoints of the formal ToL.
6.3. RNA-to-DNA Transitions at the Crossroads
6.4. An Unconventional Alternative View Concerning Eukaryotic Organelles
6.5. Two or three Superkingdom Phylodomains? — That’s the Question
7. The “LUCAN” Stage of Early Life
7.1. The Latest Universally Common Ancestral Network — Concluding Bird View
- Three different types derived independently from sub-lineages of a ‘protothylakoid-associated RNA plasmid’, which in turn gave rise to the surviving lineages of (1) mitochondria (in eukaryotic cells), and free-living cells of (2) bacteria (type C), and (3) archaea (type D), respectively.
- The co-occurrence of both pre-bacterial and pre-archaeal proto-organellar lineages in a common proto-coenocytic cytoplasm may have been a matter of anaerobic syntrophy between hydrogen-producing and hydrogen-consuming proto-organelles.
- In addition, the pre-mitochondrial kind of replicase (type A) diversified to also serve collective replication (type B) for (4) the entire (non-organellar) gene pool of the still communal ‘Arkarya Stemline’ (defined further above).
- Furthermore, the scattered occurrence of DNA type B polymerases in certain lineages of bacterial and archaeal cells should then be ascribed to secondary acquisition from the non-organellar common gene pool, facilitated by intimate symbiosis in the aftermath of the founding stage.
- As a historical corollary to the two of four lineage-founding principles, the cell biological entities characterized by type A and type B polymerases happened never to have separated physically, in that both mitochondria and related plastid lineages (type A) have not as such ever left the common cytoplasm directed by type B.
- Finally the common cytoplasm directed by type B DNA polymerases could have formed the “nuclear-cytoplasmic lineage” (sensu Doolittle [34]) conserved in eukaryotic cells.
7.2. On the Desirability of Comparative and Quantifiable Model Testing
- “… competitive relations are a transitional state, with multi-lineage metabolic wholes eventually outcompeting selfish competitors, and … this process sometimes leads to the emergence of new types or levels of wholes. Our view of life as a continuum of variably structured collaborative systems leaves open the possibility that a variety of forms of organized matter — from chemical systems to ecosystems — might be usefully understood as living entities.”
Funding
Acknowledgments
Conflicts of Interest
References
- Egel, R. (2012). On the misgivings of anthropomorphic consensus polling in defining the complexity of life. Journal of Biomolecular Structure and Dynamics, 29(4), 615-616. [CrossRef]
- Benner, S. A. (2010). Defining life. Astrobiology, 10(10), 1021-1030; cf. Astrobiology at NASA — Life in the Universe Internet] <https://astrobiology.nasa.gov/research/life-detection/about/>.
- Schrödinger, E. (1944). What is life? The physical aspect of the living cell and mind. Cambridge: Cambridge University Press.
- Woese C (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859.
- Dupré, M. , & O’Malley, M. (2009). Varieties of living things: life at the intersection of lineage and metabolism. Philos Theor Biol 1:e003.
- Baum, D. A. , & Lehman, N. (2017). Life’s late digital revolution and why it matters for the study of the origins of life. Life, 7(3), 34. [CrossRef]
- Marske, K. A. , Rahbek, C., & Nogués-Bravo, D. (2013). Phylogeography: spanning the ecology-evolution continuum. Ecography, 36(11), 1169-1181. [CrossRef]
- Gillespie, R. G. (2016). Island time and the interplay between ecology and evolution in species diversification. Evolutionary applications, 9(1), 53-73. [CrossRef]
- McGaughran, A. , Liggins, L., Marske, K. A., Dawson, M. N., Schiebelhut, L. M., Lavery, S. D.,... & Riginos, C. (2022). Comparative phylogeography in the genomic age: Opportunities and challenges. Journal of Biogeography, 49(12), 2130-2144. [CrossRef]
- Baum, D. A. , Peng, Z., Dolson, E., Smith, E., Plum, A. M., & Gagrani, P. (2023). The ecology–evolution continuum and the origin of life. Journal of the Royal Society Interface, 20(208), 20230346. [CrossRef]
- Harrison, S. A. , Rammu, H., Liu, F., Halpern, A., Nunes Palmeira, R., & Lane, N. (2023). Life as a Guide to its Own Origins. Annual Review of Ecology, Evolution, and Systematics, 54, 327-350. [CrossRef]
- Shapiro, J. , & Noble, D. (2021). What prevents mainstream evolutionists teaching the whole truth about how genomes evolve? Progress in Biophysics and Molecular Biology, 165, 140-152.
- THE THIRD WAY - evolution in the era of genomics and epigenomics. Available online: https://www.thethirdwayofevolution.com/ (accessed on 3rd April 2024).
- Russell, M. J., & Hall, A. J. (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society, 154(3), 377-402. [CrossRef]
- Martin, W. , & Russell, M. J. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1486), 1887-1926. [CrossRef]
- Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., & Koonin, E. V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences, 109(14), E821-E830. [CrossRef]
- Damer, B. , & Deamer, D. (2015). Coupled phases and combinatorial selection in fluctuating hydrothermal pools: A scenario to guide experimental approaches to the origin of cellular life. Life, 5(1), 872-887. [CrossRef]
- Damer, B., & Deamer, D. (2020). The hot spring hypothesis for an origin of life. Astrobiology, 20(4), 429-452. [CrossRef]
- Kompanichenko, V. N. (2012). Inversion concept of the origin of life. Origins of Life and Evolution of Biospheres, 42(2), 153-178. [CrossRef]
- Kompanichenko, V. (2019). The rise of a habitable planet: four required conditions for the origin of life in the Universe. Geosciences, 9(2), 92. [CrossRef]
- Deal, A. M. , Rapf, R. J., & Vaida, V. (2021). Water–Air Interfaces as Environments to Address the Water Paradox in Prebiotic Chemistry: A Physical Chemistry Perspective. The Journal of Physical Chemistry A, 125(23), 4929-4942. [CrossRef]
- Kurland, C. G., Collins, L. J., & Penny, D. (2006). Genomics and the irreducible nature of eukaryote cells. Science, 312(5776), 1011-1014. [CrossRef] [PubMed]
- Forterre, P. (1992). Neutral terms. Nature, 355(6358), 305-305.
- Forterre, P. , & Gribaldo, S. (2010). Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proceedings of the National Academy of Sciences, 107(29), 12739-12740.
- Spang, A. , Saw, J. H., Jørgensen, S. L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A. E.,... & Ettema, T. J. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521(7551), 173-179. [CrossRef]
- Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., ... & Ettema, T. J. (2017.). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353-358. [CrossRef]
- Harish, A. , & Morrison, D. (2020). The deep (er) roots of Eukaryotes and Akaryotes. [version 2; peer review: 2 approved, 1 approved with reservations] F1000Research 9:112.
- Da Cunha, V., Gaïa, M., & Forterre, P. (2022). The expanding Asgard archaea and their elusive relationships with Eukarya. mLife, 1(1), 3-12. [CrossRef]
- Xiao, J., Fan, L., Wu, D., Xu, Y., Lai, D., Martin, W. F., ... & Zhang, C. (2019). Archaea, the tree of life, and cellular evolution in eukaryotes. Science China Earth Sciences, 62(3), 489-506. [CrossRef]
- Koonin, E. V. , Makarova, K. S., & Wolf, Y. I. (2021). Evolution of microbial genomics: conceptual shifts over a quarter century. Trends in Microbiology, 29(7), 582-592.
- Dagan, T., & Martin, W. (2006). The tree of one percent. Genome biology, 7(10), 1-7. [CrossRef]
- Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences, 104(7), 2043-2049. [CrossRef]
- Prakash, O. , Jangid, K., & Shouche, Y. S. (2013). Carl Woese: from Biophysics to evolutionary microbiology. Indian J. Microbiol., 53(3), 247-252. [CrossRef]
- Doolittle, W. F. (1980). Revolutionary concepts in evolutionary cell biology. Trends in Biochemical Sciences, 5(6), 146-149. [CrossRef]
- Preiner, M. , Asche, S., Becker, S., Betts, H. C., Boniface, A., Camprubi, E.,... & Xavier, J. C. (2020). The future of origin of life research: bridging decades-old divisions. Life, 10(3), 20. [CrossRef]
- Spitzer, J. , Pielak, G. J., & Poolman, B. (2015). Emergence of life: Physical chemistry changes the paradigm. Biology direct, 10(1), 1-15. [CrossRef]
- Wallace, B. A. (20O7). Hidden dimensions: The unification of physics and consciousness (p.15) Columbia University Press, New York.
- Popper, Karl R. 1968. The Logic of Scientific Discovery. London: Hutchinson & Co.
- Olszewski, W., & Sandroni, A. (2011). Falsifiability. American Economic Review, 101(2), 788-818.
- MacKay, D. G. (1992). Problems with Popper: The initial goal is to develop viable theories, not disconfirm them. Consciousness and Cognition, 1(3), 231-240. [CrossRef]
- Egel, R. (2012). Life’s order, complexity, organization, and its thermodynamic–holistic imperatives. Life, 2(4), 323-363. [CrossRef]
- Lyon, P. (2011). To be or not to be: Where is self-preservation in evolutionary theory? In: Calcott, B., & Sterelny, K. (Eds.). (2011). The major transitions in evolution revisited. MIT Press, pp. 105-125.
- Arnoldt, H. , Strogatz, S. H., & Timme, M. (2015). Toward the Darwinian transition: switching between distributed and speciated states in a simple model of early life. Physical Review E, 92(5), 052909. [CrossRef]
- Deamer, D. (2016). Membranes and the origin of life: a century of conjecture. Journal of molecular evolution, 83(5), 159-168. [CrossRef]
- Peretó, J. (2005). Controversies on the origin of life. INTERNATIONAL MICROBIOLOGY, 8, 23-31.
- Jowett, P. , Rayne, R., & Tomas, S. (2017). Myth and fact in the origins of cellular life on Earth. Bioscience Horizons: The International Journal of Student Research, 10.
- Walker, S. I. (2017). Origins of life: a problem for physics, a key issues review. Reports on Progress in Physics, 80(9), 092601. [CrossRef]
- Muchowska, K. B. , Varma, S. J., & Moran, J. (2020). Nonenzymatic metabolic reactions and life’s origins. Chemical Reviews, 120(15), 7708-7744. [CrossRef]
- Haldane, J. B. S. (1929). The origin of life. Rationalist Annual, 148, 3-10.
- Oparin, A. I. (1938) The origin of life. Macmillan, New York.
- Benner, S. A. (2014). Paradoxes in the origin of life. Origins of Life and Evolution of Biospheres, 44(4), 339-343. [CrossRef]
- Benner, S. A. (2018). Prebiotic plausibility and networks of paradox-resolving independent models. Nature communications, 9(1), 1-3. [CrossRef]
- Shapiro, R. (1984). The improbability of prebiotic nucleic acid synthesis. Origins of life, 14, 565-570. [CrossRef]
- Shapiro, R. (2000). A replicator was not involved in the origin of life. IUBMB life, 49(3), 173-176.
- Wicken, J. S. (1985). An organismic critique of molecular Darwinism. Journal of theoretical biology, 117(4), 545-561. [CrossRef]
- Balázs, A. (2004). What does a molecule want? The myth of the self-replicating molecule (comments on the “selfish-gene” paradigm). Biosystems, 73(1), 1-11. [CrossRef]
- Lanier, K. A. , & Williams, L. D. (2017). The origin of life: models and data. Journal of Molecular Evolution, 84(2-3), 85-92. [CrossRef]
- Wächtershäuser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiological reviews, 52(4), 452-484.
- Ma, S., & Dai, Y. (2011). Principal component analysis based methods in bioinformatics studies. Briefings in bioinformatics, 12(6), 714-722. [CrossRef]
- Rogers, K. L. (2021). Reimagining Origins of Life Research: Innovation and Synthesis via Experimentation, Instrumentation, and Data Analytics. Bull. Am. Astron. Soc., 43, 215. [CrossRef]
- Simons, M. (2021). Dreaming of a universal biology: synthetic biology and the origins of life. Hyle: Inter-national Journal for Philosophy of Chemistry, 27.
- Segré, D., Ben-Eli, D., Deamer, D. W., & Lancet, D. (2001). The lipid world. Origins of Life and Evolution of the Biosphere, 31, 119-145.
- Lancet, D. , Segrè, D., & Kahana, A. (2019). Twenty years of “lipid world”: a fertile partnership with David Deamer. Life, 9(4), 77. [CrossRef]
- Russell, M. J. , & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in biochemical sciences, 29(7), 358-363.
- Butch, C. J. , Meringer, M., Gagnon, J. S., & Cleaves, H. J. (2021). Open questions in understanding life’s origins. Communications Chemistry, 4(1), 1-4. [CrossRef]
- Egel, R. (2014). Origins and emergent evolution of life: The colloid microsphere hypothesis revisited. Origins of Life and Evolution of Biospheres, 44(2), 87-110. [CrossRef]
- Baum, D. A. (2015). Selection and the origin of cells. Bioscience, 65(7), 678-684. [CrossRef]
- Pollack, G. H. (2022). EZ Water and the Origin of Life. Annual Research & Review in Biology, 18-28.
- Hwang, S. G., Hong, J. K., Sharma, A., Pollack, G. H., & Bahng, G. (2018). Exclusion zone and heterogeneous water structure at ambient temperature. PLoS One, 13(4), e0195057. [CrossRef]
- Kulkarni, P. , & Uversky, V. N. (2018). Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics, 18(21-22), 1800061. [CrossRef]
- Vieregg, J. R. , Lueckheide, M., Marciel, A. B., Leon, L., Bologna, A. J., Rivera, J. R., & Tirrell, M. V. (2018). Oligonucleotide–peptide complexes: phase control by hybridization. Journal of the American Chemical Society, 140(5), 1632-1638. [CrossRef]
- Ellis, R. J. (2001). Macromolecular crowding: obvious but underappreciated. Trends in biochemical sciences, 26(10), 597-604. [CrossRef]
- Park, S. , Barnes, R., Lin, Y., Jeon, B. J., Najafi, S., Delaney, K. T.,... & Han, S. (2020). Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Communications Chemistry, 3(1), 1-12. [CrossRef]
- Kandler, O. (1994). Cell wall biochemistry and three-domain concept of life. Systematic and applied microbiology, 16(4), 501-509. [CrossRef]
- Wächtershäuser, G. (2003). From pre-cells to Eukarya — a tale of two lipids. Molecular microbiology, 47(1), 13-22.
- Ourisson, G. , & Rohmer, M. (1992). Hopanoids. 2. Biohopanoids: a novel class of bacterial lipids. Accounts of Chemical Research, 25(9), 403-408. [CrossRef]
- Ourisson, G. , & Nakatani, Y. (1994). The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chemistry & biology, 1(1), 11-23. [CrossRef]
- Egel, R. (2009). Peptide-dominated membranes preceding the genetic takeover by RNA: latest thinking on a classic controversy. Bioessays, 31(10), 1100-1109. [CrossRef]
- Frenkel-Pinter, M. , Samanta, M., Ashkenasy, G., & Leman, L. J. (2020). Prebiotic peptides: Molecular hubs in the origin of life. Chemical Reviews, 120(11), 4707-4765. [CrossRef]
- Fiore, M., Chieffo, C., Lopez, A., Fayolle, D., ... & Buchet, R. (2022). Synthesis of Phospholipids Under Plausible Prebiotic Conditions and Analogies with Phospholipid Biochemistry for Origin of Life Studies. Astrobiology, 22(5), 598-627. [CrossRef]
- Brangwynne, C. P., Tompa, P., & Pappu, R. V. (2015). Polymer physics of intracellular phase transitions. Nature Physics, 11(11), 899-904. [CrossRef]
- Yoshizawa, T. , Nozawa, R. S., Jia, T. Z., Saio, T., & Mori, E. (2020). Biological phase separation: cell biology meets biophysics. Biophysical Reviews, 12(2), 519-539. [CrossRef]
- Carter, C. W. (2015). What RNA world? Why a peptide–RNA partnership merits renewed experimental attention. Life, 5(1), 294-320. [CrossRef]
- Guzman, M. I. , & Martin, S. T. (2009). Prebiotic metabolism: Production by mineral photoelectrochemistry of α-ketocarboxylic acids in the reductive tricarboxylic acid cycle. Astrobiology, 9(9), 833-842. [CrossRef]
- Mulkidjanian, A. Y. (2009). On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biology Direct, 4(1), 1-39. [CrossRef]
- Green, N. J. , Xu, J., & Sutherland, J. D. (2021). Illuminating life’s origins: UV photochemistry in abiotic synthesis of biomolecules. Journal of the American Chemical Society, 143(19), 7219-7236. [CrossRef]
- Muchowska, K. B. , Varma, S. J., Chevallot-Beroux, E., Lethuillier-Karl, L., Li, G., & Moran, J. (2017). Metals promote sequences of the reverse Krebs cycle. Nature ecology & evolution, 1(11), 1716-1721. [CrossRef]
- Martin, W. F. , Nagies, F. S., & do Nascimento Vieira, A. (2021). To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? Philosophies, 6(2), 33.
- Caetano-Anollés, G., Wang, M., & Caetano-Anollés, D. (2013). Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS One, 8(8), e72225. [CrossRef]
- Baum, D. A., & Vetsigian, K. (2017). An experimental framework for generating evolvable chemical systems in the laboratory. Origins of Life and Evolution of Biospheres, 47(4), 481-497. [CrossRef]
- Vincent, L. , Berg, M., Krismer, M., Saghafi, S. T., Cosby, J., Sankari, T.,... & Baum, D. A. (2019). Chemical ecosystem selection on mineral surfaces reveals long-term dynamics consistent with the spontaneous emergence of mutual catalysis. Life, 9(4), 80. [CrossRef]
- Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences, 112(33), 10104-10111.
- Grim, P. , Wardach, S., & Beltrani, V. (2006). Location, location, location: The importance of spatialization in modeling cooperation and communication. Interaction Studies, 7(1), 43-78.
- Ishida, T. (2022). Emergence Simulation of Biological Cell-like Shapes Satisfying the Conditions of Life Using a Lattice-Type Multiset Chemical Model. Life, 12(10), 1580. [CrossRef]
- Darwin, C. (1859). On the origin of species by means of natural selection. Murray, London.
- Tessera, M. (2011). Origin of evolution versus origin of life: a shift of paradigm. International journal of molecular sciences, 12(6), 3445-3458. [CrossRef]
- Tessera, M. (2018). Is pre-Darwinian evolution plausible? Biology direct, 13(1), 1-18.
- Pascal, R., & Pross, A. (2014). The nature and mathematical basis for material stability in the chemical and biological worlds. Journal of Systems Chemistry, 5(1), 1-8. [CrossRef]
- de Duve, C. (1987). Selection by differential molecular survival: a possible mechanism of early chemical evolution. Proceedings of the National Academy of Sciences, 84(23), 8253-8256. [CrossRef]
- Milner-White EJ, Russell MJ. 2011 Functional capabilities of the earliest peptides and the emergence of life. Genes 2, 671–688. [CrossRef]
- Milner-White, E. J. (2019). Protein three-dimensional structures at the origin of life. Interface Focus, 9(6), 20190057. [CrossRef]
- Suskiewicz, M. J. , Sussman, J. L., Silman, I., & Shaul, Y. (2011). Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Science, 20(8), 1285-1297. [CrossRef]
- Sibilska-Kaminski, I. K., & Yin, J. (2021). Toward Molecular Cooperation by De Novo Peptides. Origins of Life and Evolution of Biospheres, 51(1), 71-82. [CrossRef] [PubMed]
- Longo, L. M. , Jabłońska, J., Vyas, P., Kanade, M., Kolodny, R., Ben-Tal, N., & Tawfik, D. S. (2020). On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. Elife, 9.
- Raffaelli, N. (2011). Nicotinamide coenzyme synthesis: a case of ribonucleotide emergence or a byproduct of the RNA world? In Origins of life: the primal self-organization (pp. 185-208). Springer, Berlin, Hei-delberg.
- Egel, R. (2012). Primal eukaryogenesis: On the communal nature of precellular states, ancestral to modern life. Life, 2(1), 170-212. [CrossRef]
- Cavalier-Smith, T. (1975). The origin of nuclei and of eukaryotic cells. Nature, 256(5517), 463-468. [CrossRef]
- Cavalier-Smith, T. (2009). Predation and eukaryote cell origins: a coevolutionary perspective. The inter-national journal of biochemistry & cell biology, 41(2), 307-322. [CrossRef]
- Cavalier-Smith, T. (2010). Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biology direct, 5(1), 1-78. [CrossRef]
- Forterre, P. (2016). To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 59, 100-108. [CrossRef]
- Harris, H., & Hill, C. (2021). A place for viruses on the tree of life. Frontiers in Microbiology, 11, 3449. [CrossRef] [PubMed]
- Gray, M. W. (2014). The pre-endosymbiont hypothesis: a new perspective on the origin and evolution of mitochondria. Cold Spring Harbor Perspectives in Biology, 6(3), a016097. [CrossRef]
- Lake, J. A. , & Rivera, M. C. (1994). Was the nucleus the first endosymbiont? Proceedings of the National Academy of Sciences, 91(8), 2880-2881.
- Egel, R. (2017). ‘Parabiotic Evolution’: From Stochasticity in Geochemical and Subsequent Processes to Genes, Genomes and Modular Cells. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 October 2017. [CrossRef]
- Jeffares, D. C., Poole, A. M., & Penny, D. (1998). Relics from the RNA world. Journal of molecular evolution, 46(1), 18-36. [CrossRef]
- Poole, A. , Jeffares, D., & Penny, D. (1999). Early evolution: prokaryotes, the new kids on the block. Bi-oessays, 21(10), 880-889. [CrossRef]
- Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences, 97(15), 8392-8396. [CrossRef]
- Hug, L. A. , Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J.,... & Banfield, J. F. (2016). A new view of the tree of life. Nature microbiology, 1(5), 1-6.
- Woese, C. R., & Fox, G. E. (1977). The concept of cellular evolution. Journal of molecular evolution, 10(1), 1-6. [CrossRef]
- Yarus, M. (2002). Primordial genetics: phenotype of the ribocyte. Annual Review of Genetics, 36(1), 125-151. [CrossRef]
- Gilbert, W. (1986). Origin of life: The RNA world. nature, 319(6055), 618-618. [CrossRef]
- Carter, C. W., & Kraut, J. (1974). A proposed model for interaction of polypeptides with RNA. Proceedings of the National Academy of Sciences, 71(2), 283-287. [CrossRef]
- Schimmel, P, Giegé R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768.
- Rodin, S. , Rodin, A., Ohno, S. (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542. [CrossRef]
- Di Giulio, M. (2004) The origin of the tRNA molecule: implications for the origin of protein synthesis. J Theor Biol 226:89–93.
- Müller, F. , Escobar, L., Xu, F. et al. (2022). A prebiotically plausible scenario of an RNA–peptide world. Nature 605, 279–284. [CrossRef]
- Martínez Giménez, J. A. , & Tabares Seisdedos, R. (2022). A Cofactor-Based Mechanism for the Origin of the Genetic Code. Origins of Life and Evolution of Biospheres, 1-15. [CrossRef]
- Francis, B. R. (2011). An alternative to the RNA world hypothesis. Trends in Evolutionary Biology, 3(1), e2-e2. [CrossRef]
- de Farias, S. T. D. , & Prosdocimi, F. (2022). RNP-world: The ultimate essence of life is a ribonucleoprotein process. Genetics and Molecular Biology, 45.
- Wagner, N. , Pross, A., & Tannenbaum, E. (2010). Selection advantage of metabolic over non-metabolic replicators: a kinetic analysis. Biosystems, 99(2), 126-129. [CrossRef]
- Czárán, T. , Könnyű, B., & Szathmáry, E. (2015). Metabolically coupled replicator systems: overview of an RNA-world model concept of prebiotic evolution on mineral surfaces. Journal of theoretical biology, 381, 39-54. [CrossRef]
- Caetano-Anollés, D. , Caetano-Anollés, K., & Caetano-Anollés, G. (2018). Evolution of macromolecular structure: A ‘double tale’ of biological accretion and diversification. Science progress, 101(4), 360-383. [CrossRef]
- Wang, M. , Jiang, Y. Y., Kim, K. M., Qu, G., Ji, H. F., Mittenthal, J. E.,... & Caetano-Anollés, G. (2011). A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabo-lism and planet oxygenation. Molecular biology and evolution, 28(1), 567-582.
- Zanotti, G. , & Guerra, C. (2003). Is tensegrity a unifying concept of protein folds? FEBS letters, 534(1-3), 7-10.
- Azulay, H. , Lutaty, A., & Qvit, N. (2022). How Similar Are Proteins and Origami? Biomolecules, 12(5), 622.
- Kurland, C. G. , & Harish, A. (2015). The phylogenomics of protein structures: the backstory. Biochimie, 119, 284-302. [CrossRef]
- Harish, A. (2021, September 2). Peering into the Abyss with Evolutionary Telescopes: How protein struc-ture-telescopes can look further back in time (and why sequence-telescopes cannot). [CrossRef]
- Yang, S. , Doolittle, R. F., & Bourne, P. E. (2005). Phylogeny determined by protein domain content. Pro-ceedings of the National Academy of Sciences, 102(2), 373-378. [CrossRef]
- Caetano-Anollés, G. , Wang, M., Caetano-Anollés, D., & Mittenthal, J. E. (2009). The origin, evolution and structure of the protein world. Biochemical Journal, 417(3), 621-637. [CrossRef]
- Harish, A., Tunlid, A., & Kurland, C. G. (2013). Rooted phylogeny of the three superkingdoms. Biochimie, 95(8), 1593-1604. [CrossRef]
- Kim, K. M., Nasir, A., & Caetano-Anollés, G. (2014). The importance of using realistic evolutionary models for retrodicting proteomes. Biochimie, 99, 129-137. [CrossRef]
- Harish, A., & Kurland, C. G. (2017). Empirical genome evolution models root the tree of life. Biochimie, 138, 137-155.
- Harish, A. , & Kurland, C. G. (2017). Akaryotes and Eukaryotes are independent descendants of a uni-versal common ancestor. Biochimie, 138, 168-183.
- Aziz, M. F., & Caetano-Anollés, G. (2021). Evolution of networks of protein domain organization. Scientific reports, 11(1), 1-18. [CrossRef]
- Caetano-Anollés, D. , & Caetano-Anollés, G. (2021). Growth: Molecular accretion, growth and innovation. In Untangling Molecular Biodiversity: Explaining Unity and Diversity Principles of Organization with Molecular Structure and Evolutionary Genomics (pp. 347-393).
- Nghe, P. , Hordijk, W., Kauffman, S. A., Walker, S. I., Schmidt, F. J., Kemble, H.,... & Lehman, N. (2015). Prebiotic network evolution: six key parameters. Molecular BioSystems, 11(12), 3206-3217. [CrossRef]
- Hamley, I. W. (2010). Liquid crystal phase formation by biopolymers. Soft Matter, 6(9), 1863-1871.
- Wilson, R. M. (2017). Biological tissue can behave like a liquid crystal. Physics Today, 70(6), 19-21.
- Woese, C. R. , Olsen, G. J., Ibba, M., & Söll, D. (2000). Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiology and molecular biology reviews, 64(1), 202-236.
- Safro, M. G. , & Moor, N. A. (2009). Codases: 50 years after. Molecular biology, 43(2), 211-222. [CrossRef]
- Carter, C. W. (2014). Urzymology: experimental access to a key transition in the appearance of enzymes. Journal of Biological Chemistry, 289(44), 30213-30220. [CrossRef]
- Engelhardt, W. A. , Kisselev, L. L., & Nezlin, R. S. (1970). Das “Prinzip des fixierten Partners’ als Werkzeug auf dem Gebiet der Molekularbiologie /The Principle of "Fixed Partner" as Experimental Tool in Molecular Biology Research. Monatshefte für Chemie /Chemical Monthly, 101(5), 1510-1517.
- Rodin, S. N. , & Ohno, S. (1995). Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Origins of Life and Evolution of the Biosphere, 25(6), 565-589. [CrossRef]
- Carter, C. W. , Li, L., Weinreb, V., Collier, M., Gonzalez-Rivera, K., Jimenez-Rodriguez, M.,... & Chan-drasekharan, S. N. (2014). The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biology Direct, 9(1), 1-23. [CrossRef]
- de Pouplana, L. R. , & Schimmel, P. (2001). Two classes of tRNA synthetases suggested by sterically com-patible dockings on tRNA acceptor stem. Cell, 104(2), 191-193.
- Carter Jr, C. W. , & Wills, P. R. (2018). Hierarchical groove discrimination by Class I and II amino-acyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic acids research, 46(18), 9667-9683.
- Carter Jr, C. W. , & Wills, P. R. (2019). Class I and II aminoacyl-tRNA synthetase tRNA groove discrimi-nation created the first synthetase–tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life, 71(8), 1088-1098.
- Maizels, N. , & Weiner, A. M. (1994). Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proceedings of the National Academy of Sciences, 91(15), 6729-6734. [CrossRef]
- Chen, Q. , Zhang, X., Shi, J., Yan, M., & Zhou, T. (2021). Origins and evolving functionalities of tRNA-derived small RNAs. Trends in biochemical sciences, 46(10), 790-804.
- Murakami, H. , Saito, H., & Suga, H. (2003). A versatile tRNA aminoacylation catalyst based on RNA. Chemistry & biology, 10(7), 655-662. [CrossRef]
- Ishida, S. , Terasaka, N., Katoh, T., & Suga, H. (2020). An aminoacylation ribozyme evolved from a natural tRNA-sensing T-box riboswitch. Nature Chemical Biology, 16(6), 702-709.
- Woese, C. R. (1971). Evolution of macromolecular complexity. Journal of Theoretical Biology, 33(1), 29-34. [CrossRef]
- Woese, C. R. (2004). A new biology for a new century. Microbiology and molecular biology reviews, 68(2), 173-186. [CrossRef]
- Caetano-Anollés, D. , Kim, K. M., Mittenthal, J. E., & Caetano-Anollés, G. (2011). Proteome evolution and the metabolic origins of translation and cellular life. Journal of molecular evolution, 72, 14-33. [CrossRef]
- Caetano-Anollés, G. , Kim, K. M., & Caetano-Anollés, D. (2012). The phylogenomic roots of modern bio-chemistry: origins of proteins, cofactors and protein biosynthesis. Journal of Molecular Evolution, 74, 1-34.
- Bowman, J. C. , Petrov, A. S., Frenkel-Pinter, M., Penev, P. I., & Williams, L. D. (2020). Root of the tree: the significance, evolution, and origins of the ribosome. Chemical reviews, 120(11), 4848-4878. [CrossRef]
- Weinger, J. S. , Parnell, K. M., Dorner, S., Green, R., & Strobel, S. A. (2004). Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature structural & molecular biology, 11(11), 1101-1106. [CrossRef]
- Lütcke, H. (1995). Signal recognition particle (SRP), a ubiquitous initiator of protein translocation. European journal of biochemistry, 228(3), 531-550.
- Caetano-Anollés, G. , & Seufferheld, M. J. (2013). The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm. Microbial Physiology, 23(1-2), 152-177. [CrossRef]
- Bose, T. , Fridkin, G., Davidovich, C., Krupkin, M., Dinger, N., Falkovich, A. H.,... & Yonath, A. (2022). Origin of life: protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nu-cleic acids research, 50(4), 1815-1828. [CrossRef]
- Baram, D. , & Yonath, A. (2005). From peptide-bond formation to cotranslational folding: dynamic, regu-latory and evolutionary aspects. FEBS letters, 579(4), 948-954.
- Vetsigian, K., Woese, C., & Goldenfeld, N. (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences, 103(28), 10696-10701. [CrossRef]
- Reanney, D. C. (1974). On the origin of prokaryotes. Journal of Theoretical Biology, 48(1), 243-251. [CrossRef]
- Mariscal, C. , & Doolittle, W. F. (2015). Eukaryotes first: how could that be? Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), 20140322.
- Szathmáry, E. (1989). The integration of the earliest genetic information. Trends in Ecology & Evolution, 4(7), 200-204. [CrossRef]
- Koonin, E. V. (2009). On the origin of cells and viruses: primordial virus world scenario. Annals of the New York Academy of Sciences, 1178(1), 47-64.
- Forterre, P. (2022). Carl Woese: Still ahead of our time. mLife, 1(4), 359-367. [CrossRef]
- Vetsigian, K. , & Goldenfeld, N. (2009). Genome rhetoric and the emergence of compositional bias. Pro-ceedings of the National Academy of Sciences, 106(1), 215-220. [CrossRef]
- Doolittle, W. F. (2020). Evolution: two domains of life or three? Current Biology, 30(4), R177-R179.
- Butler, T., Goldenfeld, N., Mathew, D., & Luthey-Schulten, Z. (2009). Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement. Physical Review E, 79(6), 060901. [CrossRef]
- Aggarwal, N., Bandhu, A. V., & Sengupta, S. (2016). Finite population analysis of the effect of horizontal gene transfer on the origin of an universal and optimal genetic code. Physical biology, 13(3), 036007. [CrossRef]
- Goldenfeld, N. , Biancalani, T., & Jafarpour, F. (2017). Universal biology and the statistical mechanics of early life. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2109), 20160341.
- Froese, T. , Campos, J. I., Fujishima, K., Kiga, D., & Virgo, N. (2018). Horizontal transfer of code fragments between protocells can explain the origins of the genetic code without vertical descent. Scientific re-ports, 8(1), 1-10. [CrossRef]
- Carter, C. W., & Wills, P. R. (2018). Interdependence, reflexivity, fidelity, impedance matching, and the evolution of genetic coding. Molecular biology and evolution, 35(2), 269-286.
- Wills, P. R., & Carter Jr, C. W. (2018). Insuperable problems of the genetic code initially emerging in an RNA world. Biosystems, 164, 155-166.
- Cemin, S. C. , & Smolin, L. (1997). Coevolution of membranes and channels: A possible step in the origin of life. arXiv preprint adap-org/9709004.
- Lingwood, D. , & Simons, K. (2010). Lipid rafts as a membrane-organizing principle. science, 327(5961), 46-50. [CrossRef]
- Woese, C.R. (2005) Evolving biological organization. In: J. Sapp, ed. Microbial Phylogeny and Evolution: Concepts and Controversies. Oxford University Press, pp. 99–117.
- Egel, R. (2021). Origins: It takes a well rooted trunk to bear a tree — reductionist models of divergent evolution and further aspects of reality. In Untangling Molecular Biodiversity: Explaining Unity and Diversity Principles of Organization with Molecular Structure and Evolutionary Genomics (pp. 223-282). World Scientific, Singapore.
- Mayr, E. (2000). The biological species concept. Species concepts and phylogenetic theory: a debate. Co-lumbia University Press, New York, 17-29.
- Doolittle, W. F. (2018). Speciation without species: a final word. Philosophy, Theory, and Practice in Biology, 11(014). [CrossRef]
- Ragan, M. A. , McInerney, J. O., & Lake, J. A. (2009). The network of life: genome beginnings and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1527), 2169-2175. [CrossRef]
- Mallet, J. , Besansky, N., & Hahn, M. W. (2016). How reticulated are species?
- Atkinson, H. J., Morris, J. H., Ferrin, T. E., & Babbitt, P. C. (2009). Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PloS one, 4(2), e4345. [CrossRef] [PubMed]
- Copp, J. N. , Akiva, E., Babbitt, P. C., & Tokuriki, N. (2018). Revealing unexplored sequence-function space using sequence similarity networks. Biochemistry, 57(31), 4651-4662. [CrossRef]
- Hanawalt, P. C. (2007). Paradigms for the three Rs: DNA replication, recombination, and repair. Molecular cell, 28(5), 702-707. [CrossRef]
- Lisby, M. , & Mortensen, U. H. (2017). 3Rs tightly intertwined to maintain genome stability. FEMS Yeast Research, 17(1). [CrossRef]
- Kuzminov, A. (1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiology and molecular biology reviews, 63(4), 751-813.
- Weterings, E. , & Chen, D. J. (2008). The endless tale of non-homologous end-joining. Cell research, 18(1), 114-124. [CrossRef]
- Dagan, T., Artzy-Randrup, Y., & Martin, W. (2008). Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proceedings of the National Academy of Sciences, 105(29), 10039-10044. [CrossRef]
- Dagan, T., Roettger, M., Bryant, D., & Martin, W. (2010). Genome networks root the tree of life between prokaryotic domains. Genome Biology and Evolution, 2, 379-392. [CrossRef]
- Bapteste, E., O'Malley, M. A., Beiko R. G., Ereshefsky, M., ... & Martin, W. (2009). Prokaryotic evolution and the tree of life are two different things. Biology direct, 4(1), 1-20. [CrossRef]
- Thiergart, T., Landan, G., Schenk, M., Dagan, T., & Martin, W. F. (2012). An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biology and Evolution, 4(4), 466-485. [CrossRef]
- Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular biology and evolution, 23(2), 254-267. [CrossRef]
- Morrison, D. A. (2010). Using data-display networks for exploratory data analysis in phylogenetic studies. Molecular Biology and Evolution, 27(5), 1044-1057.
- Harish, A. (2018). What is an archaeon and are the Archaea really unique? Peer J, 6, e5770.
- Di Giulio, M. (2018). On Earth, there would be a number of fundamental kinds of primary cells — cellular domains — greater than or equal to four. Journal of Theoretical Biology, 443, 10-17.
- Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Sciences, 99(13), 8742-8747.
- Gouy, R. , Baurain, D., & Philippe, H. (2015). Rooting the tree of life: the phylogenetic jury is still out. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), 20140329. [CrossRef]
- Spence, M. A., Mortimer, M. D., Buckle, A. M., Minh, B. Q., & Jackson, C. J. (2021). A comprehensive phylogenetic analysis of the serpin superfamily. Molecular Biology and Evolution, 38(7), 2915-2929.
- Burnim, A. A., Spence, M. A., Xu, D., Jackson, C. J., & Ando, N. (2022). Comprehensive phylogenetic analysis of the ribonucleotide reductase family reveals an ancestral clade. Elife, 11, e79790.
- Himmel, N. J., Moi, D., & Benton, R. (2023). Remote homolog detection places insect chemoreceptors in a cryptic protein superfamily spanning the tree of life. Current Biology, 33(22), 5023-5033. [CrossRef]
- Koonin, E. V. (2009). Darwinian evolution in the light of genomics. Nucleic acids research, 37(4), 1011-1034.
- Moreira, D., & López-García, P. (2009). Ten reasons to exclude viruses from the tree of life. Nature Reviews Microbiology, 7(4), 306-311. [CrossRef]
- Hegde, N. R., Maddur, M. S., Kaveri, S. V., & Bayry, J. (2009). Reasons to include viruses in the tree of life. Nature Reviews Microbiology, 7(8), 615-615. [CrossRef]
- Doolittle, W. F., & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature, 284(5757), 601-603. [CrossRef]
- Brown, N. , & Bhella, D. (2016). Are viruses alive? Microbiol. Today, 43, 58-61.
- Van Regenmortel, M. H. (2016). The metaphor that viruses are living is alive and well, but it is no more than a metaphor. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 59, 117-124. [CrossRef]
- Yolles, M. , & Frieden, R. (2022). Viruses as Living Systems — A Metacybernetic View. Systems, 10(3), 70.
- Forterre, P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus research, 117(1), 5-16. [CrossRef]
- Forterre, P. (2010). Giant viruses: conflicts in revisiting the virus concept. Intervirology, 53(5), 362-378. [CrossRef]
- Forterre, P. (2013). The virocell concept and environmental microbiology. The ISME journal, 7(2), 233-236. [CrossRef]
- Forterre, P. (2017). The Origin, Nature and Definition of Viruses (and Life): New Concepts and Contro-versies. In: Evolutionary Biology of the Virome, and Impacts in Human Health and Disease.
- Villarreal, L. P. (2009). Persistence pays: how viruses promote host group survival. Current opinion in microbiology, 12(4), 467-472. [CrossRef]
- Nicolau, M. , Picault, N., & Moissiard, G. (2021). The evolutionary volte-face of transposable elements: From harmful jumping genes to major drivers of genetic innovation. Cells, 10(11), 2952. [CrossRef]
- Leipe, D. D. , Aravind, L., & Koonin, E. V. (1999). Did DNA replication evolve twice independently? Nucleic acids research, 27(17), 3389-3401.
- Forterre, P. (2006). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sci-ences, 103(10), 3669-3674. [CrossRef]
- Koonin, E. V. , Krupovič, M., Ishino, S., & Ishino, Y. (2020). The replication machinery of LUCA: common origin of DNA replication and transcription. BMC biology, 18(1), 1-8. [CrossRef]
- Krupovič, M. , Gribaldo, S., Bamford, D. H., & Forterre, P. (2010). The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Molecular Biology and Evolution, 27(12), 2716-2732. [CrossRef]
- Martin, W. F. , Garg, S., & Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), 20140330. [CrossRef]
- López-García, P. , & Moreira, D. (2015). Open questions on the origin of eukaryotes. Trends in ecology & evolution, 30(11), 697-708. [CrossRef]
- Bell, P. J. (2020). Evidence supporting a viral origin of the eukaryotic nucleus. Virus Research, 289, 198168. [CrossRef]
- Forterre, P., & Raoult, D. (2017). The transformation of a bacterium into a nucleated virocell reminds the viral eukaryogenesis hypothesis. Virologie, 21(4), 28-30.
- Takemura, M. (2020). Medusavirus ancestor in a proto-eukaryotic cell: updating the hypothesis for the viral origin of the nucleus. Frontiers in Microbiology, 2169. [CrossRef]
- Liu, Y. , & Krupovič, M. (2022). Genome chromatinization in giant double-stranded DNA viruses. Trends in Biochemical Sciences, 47(1), 3-5. [CrossRef]
- Nasir, A. , & Caetano-Anollés, G. (2015). A phylogenomic data-driven exploration of viral origins and evolution. Science advances, 1(8), e1500527. [CrossRef]
- Livingstone Bell, P. J. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 53, 251-256.
- Rao, V. B., & Feiss, M. (2008). The bacteriophage DNA packaging motor. Annual review of genetics, 42, 647-681. [CrossRef]
- Chiang, Y. N. , Penadés, J. R., & Chen, J. (2019). Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS pathogens, 15(8), e1007878. [CrossRef]
- Ibarra-Chávez, R. , Brady, A., Chen, J., Penadés, J. R., & Haag, A. F. (2022). Phage-inducible chromosomal islands promote genetic variability by blocking phage reproduction and protecting transductants from phage lysis. PLoS pathogens, 15(8), e1007878. [CrossRef]
- Abrescia, N. G., Bamford, D. H., Grimes, J. M., & Stuart, D. I. (2012). Structure unifies the viral universe. Annual review of biochemistry, 81, 795-822.
- Mughal, F., Nasir, A., & Caetano-Anollés, G. (2020). The origin and evolution of viruses inferred from fold family structure. Archives of virology, 165(10), 2177-2191. [CrossRef]
- Nasir, A. , & Caetano-Anollés, G. (2021). Panspermia: An early cellular origin of viruses. In Untangling Molecular Biodiversity: Explaining Unity and Diversity Principles of Organization with Molecular Structure and Evolutionary Genomics (pp. 421-452). World Scientific, Singapore.
- Harish, A. , Abroi, A., Gough, J., & Kurland, C. (2016). Did viruses evolve as a distinct supergroup from common ancestors of cells? Genome biology and evolution, 8(8), 2474-2481.
- Nasir, A., Kim, K. M., & Caetano-Anollés, G. (2017). Phylogenetic tracings of proteome size support the gradual accretion of protein structural domains and the early origin of viruses from primordial cells. Frontiers in microbiology, 8, 1178. [CrossRef]
- Koonin, E. V. (2014). The origins of cellular life. Antonie Van Leeuwenhoek, 106, 27-41.
- Kazlauskas, D. , Varsani, A., Koonin, E. V., & Krupovič, M. (2019). Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nature communications, 10(1), 3425. [CrossRef]
- Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2017). Insights into circular RNA biology. RNA biology, 14(8), 1035-1045. [CrossRef]
- Forterre, P. (1995). Thermoreduction, a hypothesis for the origin of prokaryotes. Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie, 318(4), 415-422.
- Forterre, P. (2013). The common ancestor of archaea and eukarya was not an archaeon. Archaea, 2013. [CrossRef]
- Andersson, S. G., & Kurland, C. G. (1998). Reductive evolution of resident genomes. Trends in microbiology, 6(7), 263-268.
- Wächtershäuser, G. (2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eu-karya. Phil. Trans. R. Soc. B, 361, 1787-1808. [CrossRef]
- Eme, L., Tamarit, D., Caceres, E. F., Stairs, C. W., De Anda, V., Schön, M. E., ... & Ettema, T. J. (2023). Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature, 1-8. [CrossRef] [PubMed]
- Boyer, M., Yutin, N., Pagnier, I., Barrassi, L., ... & Raoult, D. (2009). Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proceedings of the National Academy of Sciences, 106(51), 21848-21853. [CrossRef] [PubMed]
- Thomas, V. , & Greub, G. (2010). Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology, 53(5), 254-267. [CrossRef]
- Maumus, F.; Blanc, G. Study of gene trafficking between Acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 2016, 8, 3351–336.
- Travis, J. L., Welnhofer, E. A., & Orokos, D. D. (2002). Autonomous reorganization of foraminiferan reticulopodia. Journal of Foraminiferal Research, 32(4), 425-433. [CrossRef]
- Guttes, S. , & Guttes, E. (1968). Regulation of DNA replication in the nuclei of the slime mold Physarum polycephalum: Transplantation of nuclei by plasmodial coalescence. The Journal of Cell Biology, 37(3), 761-772.
- Raff, R. A. , & Mahler, H. R. (1972). The Nonsymbiotic Origin of Mitochondria: The question of the origin of the eucaryotic cell and its organelles is reexamined. Science, 177(4049), 575-582.
- Reijnders, L. (1975). The origin of mitochondria. Journal of molecular evolution, 5(3), 167-176. [CrossRef]
- Martin, W. F. , & Müller, M. (Eds.). (2007). Origin of mitochondria and hydrogenosomes. New York, NY, USA: Springer.
- Lane, N., & Martin, W. (2010). The energetics of genome complexity. Nature, 467(7318), 929-934. [CrossRef]
- Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harbor perspectives in biology, 4(9), a011403.
- Gray, M. W. (2015). Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proceedings of the National Academy of Sciences, 112(33), 10133-10138. [CrossRef]
- Gabaldón, T. (2018). Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbio-ses” hypothesis. IUBMB life, 70(12), 1188-1196.
- Speijer, D. (2020). Debating Eukaryogenesis — Part 1: Does Eukaryogenesis Presuppose Symbiosis Before Uptake? BioEssays, 42(4), 1900157.
- Speijer, D. (2020). Debating Eukaryogenesis — Part 2: How Anachronistic Reasoning Can Lure Us into Inventing Intermediates. BioEssays, 42(5), 1900153. [CrossRef]
- Eigen, M. , & Schuster, P. (1977). A principle of natural self-organization: Part A: Emergence of the hy-percycle. Naturwissenschaften, 64, 541-565.
- Eigen, M. , McCaskill, J., & Schuster, P. (1988). Molecular quasi-species. The Journal of Physical Chemistry, 92(24), 6881-6891. [CrossRef]
- Kazlauskas, D. , Krupovič, M., Guglielmini, J., Forterre, P., & Venclovas, Č. (2020). Diversity and evolution of B-family DNA polymerases. Nucleic acids research, 48(18), 10142-10156. [CrossRef]
- Di Giulio, M. (2021). The late appearance of DNA, the nature of the LUCA and ancestors of the domains of life. Biosystems, 202, 104330.
- Branscomb, E. , & Russell, M. J. (2013). Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(2), 62-78. [CrossRef]
- Eberhard, W. G. (1990). Evolution in bacterial plasmids and levels of selection. The Quarterly review of biology, 65(1), 3-22. [CrossRef]
- Krupovič, M. , & Koonin, E. V. (2016). Self-synthesizing transposons: unexpected key players in the evolu-tion of viruses and defense systems. Current opinion in microbiology, 31, 25-33.
- Kim, J. W. , Bugata, V., Cortés-Cortés, G., Quevedo-Martínez, G., & Camps, M. (2020). Mechanisms of Theta plasmid replication in Enterobacteria and implications for adaptation to its host. EcoSal Plus, 9(1). [CrossRef]
- Espinosa, E. , Barre, F. X., & Galli, E. (2017). Coordination between replication, segregation and cell division in multi-chromosomal bacteria: lessons from Vibrio cholerae. Int. Microbiol, 20, 121-129.
- Forterre, P. , & Krupovič, M. (2012). The origin of virions and virocells: the escape hypothesis revisited. Viruses: essential agents of life, 43-60.
- Wolf, Y. I., Kazlauskas, D., Iranzo, J., Lucía-Sanz, A., Kuhn, J. H., Krupovič, M., ... & Koonin, E. V. (2018). Origins and evolution of the global RNA virome. MBio, 9(6), e02329-18.
- Trakselis, M.A. , Murakami, K.S. (2014). Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. [CrossRef]
- Ahmad, M. , Xu, D., & Wang, W. (2017). Type IA topoisomerases can be “magicians” for both DNA and RNA in all domains of life. RNA biology, 14(7), 854-864.
- Forterre, Patrick; Da Cunha, Violette; and Gaïa, Morgan (June 2018) Universal Tree of Life. In: eLS. John Wiley & Sons, Ltd: Chichester. [CrossRef]
- Forterre, P. (2002). The origin of DNA genomes and DNA replication proteins. Current opinion in micro-biology, 5(5), 525-532. [CrossRef]
- de Farias, S. T. , Furtado, A. N. M., dos Santos Junior, A. P., & José, M. V. (2023). Natural History of DNA-Dependent DNA Polymerases: Multiple Pathways to the Origins of DNA. Viruses, 15(3), 749. [CrossRef]
- Hourcade, D., Dressler, D., & Wolfson, J. (1973). The amplification of ribosomal RNA genes involves a rolling circle intermediate. Proceedings of the National Academy of Sciences, 70(10), 2926-2930. [CrossRef]
- Maniloff, J. , & Ackermann, H. W. (1998). Taxonomy of bacterial viruses: establishment of tailed virus genera and the other Caudovirales. Archives of virology, 143, 2051-2063. [CrossRef]
- Oldenburg, D. J. , & Bendich, A. J. (2001). Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. Journal of molecular biology, 310(3), 549-562. [CrossRef]
- Piano, A. L. , Martínez-Jiménez, M. I., Zecchi, L., & Ayora, S. (2011). Recombination-dependent concatemeric viral DNA replication. Virus research, 160(1-2), 1-14. [CrossRef]
- Sarfallah, A., Zamudio-Ochoa, A., Anikin, M., & Temiakov, D. (2021). Mechanism of transcription initiation and primer generation at the mitochondrial replication origin OriL. The EMBO Journal, 40(19), e107988. [CrossRef]
- Shutt, T. E., & Gray, M. W. (2006). Bacteriophage origins of mitochondrial replication and transcription proteins. Trends in Genetics, 22(2), 90-95. [CrossRef]
- Boeckman, J. , Korn, A., Yao, G., Ravindran, A., Gonzalez, C., & Gill, J. (2022). Sheep in wolves’ clothing: Temperate T7-like bacteriophages and the origins of the Autographiviridae. Virology, 568, 86-100. [CrossRef]
- Yao, N. Y. , & O'Donnell, M. (2010). SnapShot: the replisome. Cell, 141(6), 1088-1088. [CrossRef]
- Claussin, C. , Vazquez, J., & Whitehouse, I. (2022). Single-molecule mapping of replisome progression. Molecular Cell, 82(7), 1372-1382. [CrossRef]
- Yao, N. Y., & O’Donnell, M. E. (2016). Evolution of replication machines. Critical reviews in biochemistry and molecular biology, 51(3), 135-149. [CrossRef]
- McInerney, P., Johnson, A., Katz, F., & O'Donnell, M. (2007). Characterization of a triple DNA polymerase replisome. Molecular cell, 27(4), 527-538. [CrossRef]
- Yao, N. Y. , & O’Donnell, M. E. (2021). The DNA replication machine: structure and dynamic function. Macromolecular Protein Complexes III: Structure and Function, 233-258.
- Mulye, M. , Singh, M. I., & Jain, V. (2022). From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes, 13(11), 2058. [CrossRef]
- Weigel, C., & Seitz, H. (2006). Bacteriophage replication modules. FEMS microbiology reviews, 30(3), 321-381. [CrossRef]
- Kazlauskas, D. , Krupovič, M., & Venclovas, Č. (2016). The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes. Nucleic acids research, 44(10), 4551-4564. [CrossRef]
- Koonin, E. V. , Dolja, V. V., & Krupovič, M. (2022). The logic of virus evolution. Cell Host & Microbe, 30(7), 917-929. [CrossRef]
- Carlile, M. (1982). Prokaryotes and eukaryotes: strategies and successes. Trends in Biochemical Sciences, 7(4), 128-130. [CrossRef]
- Pianka, E. R. (1970). On r-and K-selection. The American naturalist, 104(940), 592-597.
- Stenseth, N. C., & Ugland, K. I. (1985). On the evolution of demographic strategies in populations with equilibrium and cyclic densities. Mathematical biosciences, 74(1), 89-109. [CrossRef]
- Reanney, D. C. (1987, January). Genetic error and genome design. In Cold Spring Harbor symposia on quantitative biology (Vol. 52, pp. 751-757). Cold Spring Harbor Laboratory Press.
- Gray, M. W. , Lukeš, J., Archibald, J. M., Keeling, P. J., & Doolittle, W. F. (2010). Irremediable complexity? Science, 330(6006), 920-921.
- Yu, R. Y. , & Martin, W. F. (2016). Symbiotic Associations: All About Chemistry. The Mechanistic Benefits of Microbial Symbionts, 3-11.
- McInerney, M. J., Sieber, J. R., & Gunsalus, R. P. (2009). Syntrophy in anaerobic global carbon cycles. Current opinion in biotechnology, 20(6), 623-632.
- Nozhevnikova, A. N. , Russkova, Y. I., Litti, Y. V., Parshina, S. N., Zhuravleva, E. A., & Nikitina, A. A. (2020). Syntrophy and interspecies electron transfer in methanogenic microbial communities. Micro-biology, 89, 129-147. [CrossRef]
- Margulis, L. (1971). Symbiosis and evolution. Scientific American, 225(2), 48-61.
- Gray, M. W., Burger, G., & Lang, B. F. (2001). The origin and early evolution of mitochondria. Genome biology, 2, 1-5. [CrossRef]
- Keeling, P. J. (2010). The endosymbiotic origin, diversification and fate of plastids. Philosophical Transac-tions of the Royal Society B: Biological Sciences, 365(1541), 729-748. [CrossRef]
- Filée, J. , & Forterre, P. (2005). Viral proteins functioning in organelles: a cryptic origin? Trends in microbiology, 13(11), 510-513.
- Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1701), 20150442. [CrossRef]
- Baum, B., & Baum, D. A. (2020). The merger that made us. BMC biology, 18(1), 1-4.
- Gray, M. W. , & Doolittle, W. F. (1982). Has the endosymbiont hypothesis been proven? Microbiological Reviews, 46(1), 1-42.
- Braymer, J. J. , & Lill, R. (2017). Iron–sulfur cluster biogenesis and trafficking in mitochondria. Journal of Biological Chemistry, 292(31), 12754-12763. [CrossRef]
- Tachezy, J. , & Doležal, P. (2007). Iron–sulfur proteins and iron–sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin W, Müller M (eds) Origin of mitochondria and hy-drogenosomes (pp. 105-133). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Nelson-Sathi, S., Dagan, T., Landan, G., Janssen, A., Steel, M., McInerney, J. O., ... & Martin, W. F. (2012). Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proceedings of the National Academy of Sciences, 109(50), 20537-20542. [CrossRef]
- Méheust, R. , Watson, A. K., Lapointe, F. J., Papke, R. T., Lopez, P., & Bapteste, E. (2018). Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution. Ge-nome Biology, 19(1), 1-12. [CrossRef]
- Gray, M. W. (2017). Lynn Margulis and the endosymbiont hypothesis: 50 years later. Molecular biology of the cell, 28(10), 1285-1287. [CrossRef]
- Lazcano, A. , & Peretó, J. (2021). Prokaryotic symbiotic consortia and the origin of nucleated cells: A critical review of Lynn Margulis hypothesis. Biosystems, 204, 104408. [CrossRef]
- Liu, Y. , Makarova, K. S., Huang, W. C., Wolf, Y. I., Nikolskaya, A. N., Zhang, X.,... & Li, M. (2021). Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature, 593(7860), 553-557. [CrossRef]
- Di Giulio, M. (2021). Errors of the ancestral translation, LUCA, and nature of its direct descendants. Biosystems, 206, 104433.
- Di Giulio, M. (2021). The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA. Biosystems, 210, 104563.
- Di Giulio, M. (2022). The RNase P, LUCA, the ancestors of the life domains, the progenote, and the tree of life. Biosystems, 212, 104604.
- Di Giulio, M. (2022). The origins of the cell membrane, the progenote, and the universal ancestor (LUCA). Biosystems, 104799.
- Di Giulio, M. (2020). LUCA as well as the ancestors of archaea, bacteria and eukaryotes were progenotes: Inference from the distribution and diversity of the reading mechanism of the AUA and AUG codons in the domains of life. Biosystems, 198, 104239.
- Di Giulio, M. (2020). Common ancestry of eukaryotes and Asgardarchaeota: Three, two or more cellular domains of life? Journal of Theoretical Biology, 486, 110083.
- Prosdocimi, F., & de Farias, S. T. (2023). Origin of life: Drawing the big picture. Progress in Biophysics and Molecular Biology, Volumes 180–181, July–August 2023, Pages 28-36.
- Staley, J. T. (2017). Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and Archaea and the Nuclear Compartment Commonality hypothesis. Open Biology, 7(6), 170041. [CrossRef]
- Da Cunha, V., Gaïa, M., Gadelle, D., Nasir, A., & Forterre, P. (2017). Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS genetics, 13(6), e1006810.
- Garg, S. G. , Kapust, N., Lin, W., Knopp, M., Tria, F. D., Nelson-Sathi, S.,... & Martin, W. F. (2021). Anomalous phylogenetic behavior of ribosomal proteins in metagenome-assembled Asgard archaea. Genome biology and evolution, 13(1), evaa238. [CrossRef]
- Forterre, P. (2015). The universal tree of life: an update. Frontiers in microbiology, 6, 717. [CrossRef]
- van der Gulik, P. T. S. , Hoff, W. D., & Speijer, D. (2017). In defence of the three-domains of life paradigm. BMC evolutionary biology, 17, 1-5. [CrossRef]
- Poole, A., & Penny, D. (2007). Engulfed by speculation. Nature, 447(7147), 913-913. [CrossRef]
- Glansdorff, N. , Xu, Y., & Labedan, B. (2008). The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biology direct, 3, 1-35.
- Koonin, E. V. (2015). Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), 20140333.
- Caetano-Anollés, G. (Ed.). (2020). Untangling molecular biodiversity: Explaining unity and diversity principles of organization with molecular structure and evolutionary genomics. World Scientific.
- Makarova, K. S., Krupovič, M., & Koonin, E. V. (2014). Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Frontiers in Microbiology, 5, 354.
- Trakselis, M. A. , & Bauer, R. J. (2014). Archaeal DNA polymerases: Enzymatic abilities, coordination, and unique properties. Nucleic Acid Polymerases, 139-162.
- Mönttinen, H. A. , Ravantti, J. J., Stuart, D. I., & Poranen, M. M. (2014). Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Molecular biology and evolution, 31(10), 2741-2752. [CrossRef]
- Mönttinen, H. A. , Ravantti, J. J., & Poranen, M. M. (2016). Common structural core of three-dozen residues reveals intersuperfamily relationships. Molecular Biology and Evolution, 33(7), 1697-1710. [CrossRef]
- Theriot, J. A. (2013). Why are bacteria different from eukaryotes? BMC biology, 11(1), 1-17.
- Thomas, B. (1984). Evolutionary stability: states and strategies. Theoretical Population Biology, 26(1), 49-67. [CrossRef]
- Koch, AL. 1990. Diffusion: the crucial process in many stages of the biology of bacteria. Adv. Microbiol. Ecol. 3: 11.
- Koch, A. L. (1996). What size should a bacterium be? A question of scale. Annual review of microbiology, 50(1), 317-348.
- Dey, G., Thattai, M., & Baum, B. (2016). On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends in Cell Biology, 26(7), 476-485. [CrossRef]
- Baum, D. A. (2018). The origin and early evolution of life in chemical composition space. Journal of theoretical biology, 456, 295-304.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
