Submitted:
07 May 2024
Posted:
08 May 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Measurements and Environmental Parameters
3. Results
3.1. Aerosol Concentration and Composition

4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M. Climate Change 2021: The Physical Science Basis, Cambridge, 2021.
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric Composition Change - Global and Regional Air Quality. Atmos Environ 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Brunelli, T.C.; Paiva, S.; Yara, A.; Elizeu, C.; Otávio, L.; Basso, J. ENVIRONMENTAL PARAMETERS AND RELATIONSHIPS WITH COVID-19 CASES IN CENTRAL SOUTH AMERICA. Quim Nova 2021, 44, 1236–1244. [Google Scholar] [CrossRef]
- Jacobson, L. da S.V.; de Oliveira, B.F.A.; Schneider, R.; Gasparrini, A.; Hacon, S. de S. Mortality Risk from Respiratory Diseases Due to Non-Optimal Temperature among Brazilian Elderlies. Int J Environ Res Public Health, 2021; 14. [Google Scholar] [CrossRef]
- Santos, D.M. Dos; Rizzo, L.V.; Carbone, S.; Schlag, P.; Artaxo, P. Physical and Chemical Properties of Urban Aerosols in São Paulo, Brazil: Links between Composition and Size Distribution of Submicron Particles. Atmos Chem Phys 2021, 21, 8761–8773. [Google Scholar] [CrossRef]
- Santos, A.C.A.; Finger, A.; De Souza Nogueira, J.; Curado, L.F.A.; Da Silva Palácios, R.; Pereira, V.M.R. Análise Da Concentração e Composição de Aerossóis de Queimadas Do Pantanal Mato-Grosso. Quim Nova 2016, 39, 919–924. [Google Scholar] [CrossRef]
- Pinto, O.B.; Marques, A.C.A.; Vourlitis, G.L. Aboveground Carbon Storage and Cycling of Flooded and Upland Forests of the Brazilian Pantanal. Forests 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Tomas, W.M.; de Oliveira Roque, F.; Morato, R.G.; Medici, P.E.; Chiaravalloti, R.M.; Tortato, F.R.; Penha, J.M.F.; Izzo, T.J.; Garcia, L.C.; Lourival, R.F.F.; et al. Sustainability Agenda for the Pantanal Wetland: Perspectives on a Collaborative Interface for Science, Policy, and Decision-Making. Trop Conserv Sci 2019, 12. [Google Scholar] [CrossRef]
- Caumo, S.; Lázaro, W.L.; Sobreira Oliveira, E.; Beringui, K.; Gioda, A.; Massone, C.G.; Carreira, R.; de Freitas, D.S.; Ignacio, A.R.A.; Hacon, S. Human Risk Assessment of Ash Soil after 2020 Wildfires in Pantanal Biome (Brazil). Air Qual Atmos Health 2022, 15, 2239–2254. [Google Scholar] [CrossRef] [PubMed]
- Meneses, H. do N. de M.; Oliveira-Da-costa, M.; Basta, P.C.; Morais, C.G.; Pereira, R.J.B.; de Souza, S.M.S.; Hacon, S. de S. Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. Int J Environ Res Public Health 2022, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Libonati, R.; Geirinhas, J. o. L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.C.; Nogueira, J.; Roque, F.O.; Dacamara, C.C.; Nunes, A.M.B.; et al. Assessing the Role of Compound Drought and Heatwave Events on Unprecedented 2020 Wildfires in the Pantanal. Environmental Research Letters 2022, 17. [Google Scholar] [CrossRef]
- MORAIS, F.G. Estudo Das Propriedades de Absorção de Brown Carbon e Black Carbon Utilizando Sensoriamento Remoto e Medidas in Situ Na Amazônia, Instituto de Pesquisas Energéticas e Nucleares, 2022.
- Ouf, F.X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.J.; Nicolas, C.; et al. First In-Flight Synchrotron X-Ray Absorption and Photoemission Study of Carbon Soot Nanoparticles. Sci Rep 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; 2nd ed.; John Wiley & Sons: Hoboken, USA, 2006; ISBN 978-0-471-72018-8. [Google Scholar]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A Size-Segregated Particle Dry Deposition Scheme for an Atmospheric Aerosol Module. Atmos Environ 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Köppen, G.W.; Geiger, M.R. Handbuch Der Klimatologie; Berlin, 1936.
- Guimarães, D.P.; Landau, E.C.; Santos, M.C.B.; Mendes, S.H.G. da S. Caracterização de Chuvas Do Pantanal Mato-Grossense; 2018; Vol. 15.
- Burden, F.R.; McKelvie, I.D.; Förstner, U.; Guenther, A. Environmental Monitoring Handbook; McGraw-Hill: New York, USA, 2004; ISBN 0071500286. [Google Scholar]
- ISO Air Quality: Particle Size Fraction Definitions for Health-Related Sampling; Genebra, 1995.
- Rothmund, L.D.; Palácios, R.D.S.; Marques, J.B.; Oliveira, L.G.B.; Rodrigues, T.R.; Curado, L.F.A.; Nogueira, J.D.S. Characterization of Physical Properties of Aerosols Atmospheric on Regions Affected by Burning Biomass in Brazil. Holos Environment 2018, 18, 68. [Google Scholar] [CrossRef]
- Artaxo, P.; Martins, J.V.; Yamasoe, M.A.; Procópio, A.S.; Pauliquevis, T.M.; Andreae, M.O.; Guyon, P.; Gatti, L. V.; Leal, A.M.C. Physical and Chemical Properties of Aerosols in the Wet and Dry Seasons in Rondônia, Amazonia. Journal of Geophysical Research: Atmospheres 2002, 107, LBA–49. [Google Scholar] [CrossRef]
- Maenhaut, W.; Raes, N.; Chi, X.; Cafmeyer, J.; Wang, W.; Salma, I. Chemical Composition and Mass Closure for Fine and Coarse Aerosols at a Kerbside in Budapest, Hungary, in Spring 2002. X-Ray Spectrometry 2005, 34, 290–296. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET - A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens Environ 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; 2nd ed.; Lawrence Erlbaum Associates: New York, 1988; ISBN 0805802835.
- Maenhaut, W.; Fernández-Jiménez, M.T.; Rajta, I.; Artaxo, P. Two-Year Study of Atmospheric Aerosols in Alta Floresta, Brazil: Multielemental Composition and Source Apportionment. Nucl Instrum Methods Phys Res B 2002, 189, 243–248. [Google Scholar] [CrossRef]
- Garba, S.T.; Abubakar, M.A. Source and Distribution of The Heavy Metals: Pb, Cd, Cu, Zn, Fe, Cr, and Mn in Soils of Bauchi Metropolis, Nigeria. American Journal of Engineering Research (AJER) 2018, 7, 13–22. [Google Scholar]
- Holanda, B.A.; Pöhlker, M.L.; Walter, D.; Saturno, J.; Sörgel, M.; Ditas, J.; Ditas, F.; Schulz, C.; Aurélio Franco, M.; Wang, Q.; et al. Influx of African Biomass Burning Aerosol during the Amazonian Dry Season through Layered Transatlantic Transport of Black Carbon-Rich Smoke. Atmos Chem Phys 2020, 20, 4757–4785. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for Reporting Black Carbon Measurements. Atmos Chem Phys 2013, 13, 8365–8379. [Google Scholar] [CrossRef]






| Fine particulate matter BAPP - UFMT | ||||
| Avg | σ | Min | Max | |
| PM | 36.62 | 31.69 | 7.02 | 83.66 |
| BC | 1.83 | 1.65 | 0.37 | 4.52 |
| Na | 94.05 | 95.33 | 19.68 | 279.87 |
| Mg | 28.12 | 27.45 | 0.86 | 81.81 |
| Al | 167.60 | 113.47 | 53.82 | 377.72 |
| Si | 243.52 | 181.99 | 71.59 | 500.15 |
| P | 33.54 | 38.88 | 5.74 | 98.82 |
| S | 688.32 | 627.43 | 200.90 | 1693.09 |
| Cl | 2.19 | 3.13 | 0.05 | 8.55 |
| K | 582.71 | 524.06 | 106.69 | 1392.17 |
| Ca | 49.07 | 45.44 | 11.56 | 132.15 |
| Ti | 18.93 | 21.01 | 0.02 | 53.30 |
| Cr | 2.05 | 1.71 | 0.42 | 4.62 |
| Mn | 3.86 | 3.30 | 0.74 | 8.65 |
| Fe | 238.28 | 172.63 | 56.47 | 582.40 |
| Ni | 0.53 | 0.49 | 0.11 | 1.45 |
| Cu | 2.65 | 3.15 | 0.69 | 9.16 |
| Zn | 7.66 | 7.22 | 1.33 | 22.49 |
| As | 0.14 | 0.10 | 0.01 | 0.31 |
| Se | 0.12 | 0.16 | 0.00 | 0.45 |
| Br | 8.62 | 7.47 | 2.36 | 18.84 |
| Rb | 0.98 | 0.80 | 0.20 | 2.53 |
| Sr | 2.27 | 3.96 | 0.00 | 11.00 |
| Cd | 8.56 | 8.48 | 0.85 | 22.37 |
| Sb | 5.47 | 4.55 | 1.78 | 13.39 |
| Pb | 4.28 | 9.16 | 0.08 | 24.93 |
| PM2,5 | BC | AODtotal | AODfina | AODcourse | FRP | UR | AC | Rn | Ta | |
| PM2,5 | 1 | |||||||||
| BC | 0.929* | 1 | ||||||||
| AODtotal | -0.214 | -0.214 | 1 | |||||||
| AODfine | -0.214 | -0.214 | 1 | 1 | ||||||
| AODcourse | 0.500 | 0.357 | 0.071 | 0.071 | 1 | |||||
| FRP | 0.393 | 0.321 | -0.357 | -0.357 | 0.286 | 1 | ||||
| RH | -0.036 | 0.214 | -0.536 | -0.536 | -0.571 | -0.143 | 1 | |||
| AR | -0.297 | -0.185 | -0.556 | -0.556 | -0.852* | -0.148 | 0.704 | 1 | ||
| Rn | -0.429 | -0.643 | -0.357 | -0.357 | -0.107 | -0.179 | -0.214 | 0.259 | 1 | |
| AT | -0.143 | -0.143 | 0.143 | 0.143 | -0.536 | 0.429 | -0.107 | 0.593 | -0.071 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
