Submitted:
07 May 2024
Posted:
07 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Variants preparation
| Ingredients [%] | Burger analogues | |||
|---|---|---|---|---|
| B0 | B5 | B10 | ||
| Soy chop1 | 13.6 | 6.8 | 6.8 | |
| Soy protein isolate GS5200 A2 | 10 | 7.4 | 4.4 | |
| Fiber Textured Insect Protein | - | 21.6 | 21.6 | |
| Whole Buffalo Powder | - | 5 | 10 | |
| Sodium Alginate FD 901 AR3 | 1.4 | 1.4 | 1.4 | |
| Transglutaminase ACTIVA WM4 | 1.5 | 1.5 | 1.5 | |
| Refined sunflower oil5 | 7 | 7 | 7 | |
| Beetroot juice BIO6 | 2 | 2 | 2 | |
Spices:
|
|
|
|
|
| Virgin coconut oil11 | 7 | 7 | 7 | |
| Water | 53.3 | 46.3 | 44.3 | |
2.2.2. Chemical properties
pH
Crude protein content
Fatty acids profile
2.2.3. Physical properties
Cooking yield
Color
Texture profile analysis (TPA)
2.2.4. Sensory Evaluation
2.2.5. Statistical analysis
3. Results and discussion
3.1. Chemical properties

3.2. Physical properties

3.3. Sensory evaluation

4. Conclusions
Author Contributions
Funding
Acknowledgements
Data Availability Statement
Conflict of Interest
References
- Gu, D.; Andreev, K.; E. Dupre, M. Major Trends in Population Growth Around the World. China CDC Wkly 2021, 3, 604–613. [Google Scholar] [CrossRef]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Bhandari, B. 3D Printing of Steak-like Foods Based on Textured Soybean Protein. Foods 2021, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Bernard, B.; Lux, A. How to Feed the World Sustainably: An Overview of the Discourse on Agroecology and Sustainable Intensification. Reg Environ Change 2017, 17, 1279–1290. [Google Scholar] [CrossRef]
- Ran, Y.; Lannerstad, M.; Herrero, M.; Van Middelaar, C.E.; De Boer, I.J.M. Assessing Water Resource Use in Livestock Production: A Review of Methods. Livest Sci 2016, 187, 68–79. [Google Scholar] [CrossRef]
- Sakadevan, K.; Nguyen, M.-L. Livestock Production and Its Impact on Nutrient Pollution and Greenhouse Gas Emissions. In; 2017; pp. 147–184.
- Yusuf, D.; Haryo Bimo Setiarto, R. Quality Aspects Related to Meat Analogue Based on Microbiology, Plants and Insects Protein. Reviews in Agricultural Science 2022, 10, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. European Food Research and Technology 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Milfont, T.L.; Satherley, N.; Osborne, D.; Wilson, M.S.; Sibley, C.G. To Meat, or Not to Meat: A Longitudinal Investigation of Transitioning to and from Plant-Based Diets. Appetite 2021, 166, 105584. [Google Scholar] [CrossRef]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-Based Meat Alternatives: Technological, Nutritional, Environmental, Market, and Social Challenges and Opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
- Costa-Catala, J.; Toro-Funes, N.; Comas-Basté, O.; Hernández-Macias, S.; Sánchez-Pérez, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Castell-Garralda, V.; Vidal-Carou, M.C. Comparative Assessment of the Nutritional Profile of Meat Products and Their Plant-Based Analogues. Nutrients 2023, 15, 2807. [Google Scholar] [CrossRef]
- Duque-Estrada, P.; Petersen, I.L. The Sustainability Paradox of Processing Plant Proteins. NPJ Sci Food 2023, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Duan, X.; Zhou, J.; Li, J.; Amrit, B.K.; Suleria, H.A.R. Plant Proteins and Their Digestibility. In Processing Technologies and Food Protein Digestion; Elsevier, 2023; pp. 209–232.
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J Agric Food Chem 2021, 69, 15076–15083. [Google Scholar] [CrossRef]
- Healy, L.E.; Tiwari, B.K. The Need for Future Proteins. In Future Proteins; Elsevier, 2023; pp. 3–12.
- Sabaté, J.; Soret, S. Sustainability of Plant-Based Diets: Back to the Future. Am J Clin Nutr 2014, 100, 476S–482S. [Google Scholar] [CrossRef]
- Borges, M.M.; da Costa, D.V.; Trombete, F.M.; Câmara, A.K.F.I. Edible Insects as a Sustainable Alternative to Food Products: An Insight into Quality Aspects of Reformulated Bakery and Meat Products. Curr Opin Food Sci 2022, 46, 100864. [Google Scholar] [CrossRef]
- Lee, H.J.; Yong, H.I.; Kim, M.; Choi, Y.-S.; Jo, C. Status of Meat Alternatives and Their Potential Role in the Future Meat Market — A Review. Asian-Australas J Anim Sci 2020, 33, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Caparros Megido, R.; Gierts, C.; Blecker, C.; Brostaux, Y.; Haubruge, É.; Alabi, T.; Francis, F. Consumer Acceptance of Insect-Based Alternative Meat Products in Western Countries. Food Qual Prefer 2016, 52, 237–243. [Google Scholar] [CrossRef]
- White, K.P.; Al-Shawaf, L.; Lewis, D.M.G.; Wehbe, Y.S. Food Neophobia and Disgust, but Not Hunger, Predict Willingness to Eat Insect Protein. Pers Individ Dif 2023, 202, 111944. [Google Scholar] [CrossRef]
- Karaağaç, Y.; Bellikci-Koyu, E. A Narrative Review on Food Neophobia throughout the Lifespan: Relationships with Dietary Behaviours and Interventions to Reduce It. British Journal of Nutrition 2023, 130, 793–826. [Google Scholar] [CrossRef] [PubMed]
- Sogari, G.; Riccioli, F.; Moruzzo, R.; Menozzi, D.; Tzompa Sosa, D.A.; Li, J.; Liu, A.; Mancini, S. Engaging in Entomophagy: The Role of Food Neophobia and Disgust between Insect and Non-Insect Eaters. Food Qual Prefer 2023, 104, 104764. [Google Scholar] [CrossRef]
- Hopkins, I.; Farahnaky, A.; Gill, H.; Danaher, J.; Newman, L.P. Food Neophobia and Its Association with Dietary Choices and Willingness to Eat Insects. Front Nutr 2023, 10. [Google Scholar] [CrossRef]
- Spatola, G.; Giusti, A.; Mancini, S.; Tinacci, L.; Nuvoloni, R.; Fratini, F.; Di Iacovo, F.; Armani, A. Assessment of the Information to Consumers on Insects-Based Products (Novel Food) Sold by e-Commerce in the Light of the EU Legislation: When Labelling Compliance Becomes a Matter of Accuracy. Food Control 2024, 162, 110440. [Google Scholar] [CrossRef]
- Boukid, F.; Sogari, G.; Rosell, C.M. Edible Insects as Foods: Mapping Scientific Publications and Product Launches in the Global Market (1996-2021). J Insects Food Feed 2023, 9, 353–368. [Google Scholar] [CrossRef]
- Omuse, E.R.; Tonnang, H.E.Z.; Yusuf, A.A.; Machekano, H.; Egonyu, J.P.; Kimathi, E.; Mohamed, S.F.; Kassie, M.; Subramanian, S.; Onditi, J.; et al. The Global Atlas of Edible Insects: Analysis of Diversity and Commonality Contributing to Food Systems and Sustainability. Sci Rep 2024, 14, 5045. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, A.; Palka, A.; Skotnicka, M.; Kowalski, S. Consumer Attitudes and Acceptability of Wheat Pancakes with the Addition of Edible Insects: Mealworm (Tenebrio Molitor), Buffalo Worm (Alphitobius Diaperinus), and Cricket (Acheta Domesticus). Foods 2022, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Mintah, B.K.; He, R.; Agyekum, A.A.; Dabbour, M.; Golly, M.K.; Ma, H. Edible Insect Protein for Food Applications: Extraction, Composition, and Functional Properties. J Food Process Eng 2020, 43. [Google Scholar] [CrossRef]
- Fernandez-Cassi, X.; Supeanu, A.; Jansson, A.; Boqvist, S.; Vagsholm, I. Novel Foods: A Risk Profile for the House Cricket (Acheta Domesticus). EFSA Journal 2018, 16. [Google Scholar] [CrossRef]
- Pippinato, L.; Gasco, L.; Di Vita, G.; Mancuso, T. Current Scenario in the European Edible-Insect Industry: A Preliminary Study. J Insects Food Feed 2020, 6, 371–381. [Google Scholar] [CrossRef]
- El-Shafie, H.A.F. Utilization of Edible Insects as Food and Feed with Emphasis on the Red Palm Weevil. In Food and Nutrition Security in the Kingdom of Saudi Arabia, Vol. 2; Springer International Publishing: Cham, 2024; pp. 393–406. [Google Scholar]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Athanassiou, C.G. The Lesser Mealworm Alphitobius Diaperinus: A Noxious Pest or a Promising Nutrient Source? Rev Aquac 2019, 11, 1418–1437. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Frozen and Freeze-dried Formulations of the Lesser Mealworm (Alphitobius Diaperinus Larva) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA Journal 2022, 20. [Google Scholar] [CrossRef]
- Clarkson, C.; Mirosa, M.; Birch, J. Potential of Extracted Locusta Migratoria Protein Fractions as Value-Added Ingredients. Insects 2018, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta Domesticus (House Cricket) Addition on Protein Content, Colour, Texture, and Extrusion Parameters of Extruded Products. J Food Eng 2020, 282, 110032. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio Molitor, Alphitobius Diaperinus, and Hermetia Illucens. J Agric Food Chem 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Kurečka, M.; Kulma, M.; Petříčková, D.; Plachý, V.; Kouřimská, L. Larvae and Pupae of Alphitobius Diaperinus as Promising Protein Alternatives. European Food Research and Technology 2021, 247, 2527–2532. [Google Scholar] [CrossRef]
- Herdeiro, F.M.; Carvalho, M.O.; Nunes, M.C.; Raymundo, A. Development of Healthy Snacks Incorporating Meal from Tenebrio Molitor and Alphitobius Diaperinus Using 3D Printing Technology. Foods 2024, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.K.; Kang, T.W.; Kim, I.-W.; Choi, R.-Y.; Kim, H.W.; Park, H.J. Physicochemical Properties of Cricket (Gryllus Bimaculatus) Gel Fraction with Soy Protein Isolate for 3D Printing-Based Meat Analogue. Food Biosci 2023, 53, 102772. [Google Scholar] [CrossRef]
- Nowacki, D.; Martynowicz, H.; Skoczyńska, A.; Wojakowska, A.; Turczyn, B.; Bobak, Ł.; Trziszka, T.; Szuba, A. Lecithin Derived from ω-3 PUFA Fortified Eggs Decreases Blood Pressure in Spontaneously Hypertensive Rats. Sci Rep 2017, 7, 12373. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioproc Tech 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Bourne, M.C. Principles of Objective Texture Measurement. In Food Texture and Viscosity; Elsevier, 2002; pp. 107–188.
- Kim, T.-K.; Yong, H.I.; Cha, J.Y.; Park, S.-Y.; Jung, S.; Choi, Y.-S. Drying-Induced Restructured Jerky Analog Developed Using a Combination of Edible Insect Protein and Textured Vegetable Protein. Food Chem 2022, 373, 131519. [Google Scholar] [CrossRef]
- Kiiru, S.M.; Kinyuru, J.N.; Kiage, B.N.; Marel, A.K. Partial Substitution of Soy Protein Isolates with Cricket Flour during Extrusion Affects Firmness and in Vitro Protein Digestibility. J Insects Food Feed 2020, 6, 169–177. [Google Scholar] [CrossRef]
- Mohsen, S.M.; Fadel, H.H.M.; Bekhit, M.A.; Edris, A.E.; Ahmed, M.Y.S. Effect of Substitution of Soy Protein Isolate on Aroma Volatiles, Chemical Composition and Sensory Quality of Wheat Cookies. Int J Food Sci Technol 2009, 44, 1705–1712. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; de Pril, I.; van de Voorde, I.; Fraeye, I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods 2023, 12, 4090. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Taghi Gharibzahedi, S.; Altintas, Z. Lesser Mealworm (Alphitobius Diaperinus L.) Larvae Oils Extracted by Pure and Binary Mixed Organic Solvents: Physicochemical and Antioxidant Properties, Fatty Acid Composition, and Lipid Quality Indices. Food Chem 2023, 408, 135209. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.J.; Homco-Ryan, C.L.; Jenson, J.; Robbins, K.L.; Prestat, C.; Brewer, M.S. Lipid Extraction Process on Texturized Soy Flour and Wheat Gluten Protein-Protein Interactions in a Dough Matrix. Cereal Chem 2002, 79, 434–438. [Google Scholar] [CrossRef]
- Fawole, F.J.; Labh, S.N.; Hossain, M.S.; Overturf, K.; Small, B.C.; Welker, T.L.; Hardy, R.W.; Kumar, V. Insect (Black Soldier Fly Larvae) Oil as a Potential Substitute for Fish or Soy Oil in the Fish Meal-Based Diet of Juvenile Rainbow Trout (Oncorhynchus Mykiss). Animal Nutrition 2021, 7, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Narayanan Nair, M. Nutritional Composition of Novel Plant-Based Meat Alternatives and Traditional Animal-Based Meats. Food Sci Nutr 2021, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, K.; Banu, L.; Khan, S.; Latif, A. Studies on the Fatty Acid Composition of Edible Oil. Bangladesh Journal of Scientific and Industrial Research 2007, 42, 311–316. [Google Scholar] [CrossRef]
- Çabuk, B.; Yılmaz, B. Fortification of Traditional Egg Pasta (Erişte) with Edible Insects: Nutritional Quality, Cooking Properties and Sensory Characteristics Evaluation. J Food Sci Technol 2020, 57, 2750–2757. [Google Scholar] [CrossRef] [PubMed]
- Lamsal, B.; Wang, H.; Pinsirodom, P.; Dossey, A.T. Applications of Insect-Derived Protein Ingredients in Food and Feed Industry. J Am Oil Chem Soc 2019, 96, 105–123. [Google Scholar] [CrossRef]
- Wendin, K.; Berg, J.; Jönsson, K.I.; Andersson, P.; Birch, K.; Davidsson, F.; Gerberich, J.; Rask, S.; Langton, M. Introducing Mealworm as an Ingredient in Crisps and Pâtés – Sensory Characterization and Consumer Liking. Future Foods 2021, 4, 100082. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Cruz, T. da M.P.; da Silva, M.C.A. Cricket (Acheta Domesticus) Flour as Meat Replacer in Frankfurters: Nutritional, Technological, Structural, and Sensory Characteristics. Innovative Food Science & Emerging Technologies 2023, 83, 103245. [Google Scholar] [CrossRef]
- Pasqualin Cavalheiro, C.; Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Avelar de Sousa, C.C.; Sant’Ana Falcão Leite, J.; Costa Alves da Silva, M. Potential of Cricket (Acheta Domesticus) Flour as a Lean Meat Replacer in the Development of Beef Patties. Foods 2024, 13, 286. [Google Scholar] [CrossRef] [PubMed]
- Talens, C.; Llorente, R.; Simó-Boyle, L.; Odriozola-Serrano, I.; Tueros, I.; Ibargüen, M. Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer’s Spent Grain and Insect Flours. Foods 2022, 11, 3396. [Google Scholar] [CrossRef] [PubMed]
- Mshayisa, V.V.; Van Wyk, J.; Zozo, B. Nutritional, Techno-Functional and Structural Properties of Black Soldier Fly (Hermetia Illucens) Larvae Flours and Protein Concentrates. Foods 2022, 11, 724. [Google Scholar] [CrossRef]
- Aguilera, Y.; Pastrana, I.; Rebollo-Hernanz, M.; Benitez, V.; Álvarez-Rivera, G.; Viejo, J.L.; Martín-Cabrejas, M.A. Investigating Edible Insects as a Sustainable Food Source: Nutritional Value and Techno-Functional and Physiological Properties. Food Funct 2021, 12, 6309–6322. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Marangoni, A.G.; Barbut, S. The Influence of Particle Size and Protein Content in Particle-Filled Myofibrillar Protein Gels. Meat and Muscle Biology 2017, 1. [Google Scholar] [CrossRef]
- Cho, S.Y.; Ryu, G.H. Effects of Mealworm Larva Composition and Selected Process Parameters on the Physicochemical Properties of Extruded Meat Analog. Food Sci Nutr 2021, 9, 4408–4419. [Google Scholar] [CrossRef]
- Smetana, S.; Ashtari Larki, N.; Pernutz, C.; Franke, K.; Bindrich, U.; Toepfl, S.; Heinz, V. Structure Design of Insect-Based Meat Analogs with High-Moisture Extrusion. J Food Eng 2018, 229, 83–85. [Google Scholar] [CrossRef]
- Smetana, S.; Pernutz, C.; Toepfl, S.; Heinz, V.; Van Campenhout, L. High-Moisture Extrusion with Insect and Soy Protein Concentrates: Cutting Properties of Meat Analogues under Insect Content and Barrel Temperature Variations. J Insects Food Feed 2019, 5, 29–34. [Google Scholar] [CrossRef]
- DI MONACO, R.; CAVELLA, S.; MASI, P. PREDICTING SENSORY COHESIVENESS, HARDNESS AND SPRINGINESS OF SOLID FOODS FROM INSTRUMENTAL MEASUREMENTS. J Texture Stud 2008, 39, 129–149. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Physicochemical Properties and Consumer Acceptance of Bread Enriched with Alternative Proteins. Foods 2020, 9, 933. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.; Garzón, R.; Rosell, C.M. Insects as Ingredients for Bakery Goods. A Comparison Study of H. Illucens, A. Domestica and T. Molitor Flours. Innovative Food Science & Emerging Technologies 2019, 51, 205–210. [Google Scholar] [CrossRef]
- Smetana, S.; Profeta, A.; Voigt, R.; Kircher, C.; Heinz, V. Meat Substitution in Burgers: Nutritional Scoring, Sensorial Testing, and Life Cycle Assessment. Future Foods 2021, 4, 100042. [Google Scholar] [CrossRef]
| Variant | pH [-] | Protein content [%] |
|---|---|---|
| B0 | 6.78a ± 0.03 | 20.17a ± 0.79 |
| B5 | 6.37b ± 0.02 | 18.41ab ± 1.08 |
| B10 | 6.34b ± 0.03 | 17.99b ± 0.24 |
| Variant | Lipids Total [% w/w] | SFA [g/100g] | MUFA [g/100g] | PUFA [g/100g] |
|---|---|---|---|---|
| B0 | 31.00c ± 0.20 | 11.28c ± 0.013 | 8.31a ± 0.003 | 11.41a ± 0.016 |
| B5 | 33.12b ± 0.17 | 14.69b ± 0.038 | 7.78b ± 0.004 | 10.67b ± 0.002 |
| B10 | 35.26a ± 0.14 | 21.28a ± 0.004 | 5.24c ± 0.003 | 8.74c ± 0.003 |
| Variant | Raw | Grilled | ||||
|---|---|---|---|---|---|---|
| L* | a* | b* | L* | a* | b* | |
| B0 | 44.44a ± 0.28 | 12.15a ± 0.16 | 16.21a ± 0.13 | 35.65a ± 0.16 | 15.63a ± 0.16 | 15.63a ± 0.16 |
| B5 | 42.43b ± 0.20 | 8.30b ± 0.27 | 13.50b ± 0.27 | 32.78b ± 0.36 | 9.65b ± 0.45 | 13.97b ± 0.14 |
| B10 | 39.41c ± 0.12 | 7.04c ± 0.12 | 11.41c ± 0.40 | 28.53c ± 0.38 | 8.96b ± 0.36 | 10.67c ± 0.21 |
| Variant | Hardness [N] | Cohesiveness [-] | Chewiness [N x mm] |
|---|---|---|---|
| B0 | 9.69a ± 1.04 | 0.40b ± 0.04 | 3.88a ± 0.15 |
| B5 | 7.74a ± 0.85 | 0.52a ± 0.04 | 4.00a ± 0.60 |
| B10 | 7.85a ± 1.01 | 0.41b ± 0.06 | 3.29a ± 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
