Submitted:
04 May 2024
Posted:
06 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Experimental Design and Diets
2.3. Growth Performance Measurements
2.4. Sample Collection and Carcass Characteristics Measurements
2.5. Meat Quality Measurements
2.6. Meat Conventional Nutrition
2.7. Amino Acid Composition
2.8. Fatty Acid Profile
2.9. Serum Sample Collection and Serum Biochemical Measurements
2.10. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Meat Quality
3.4. Meat Nutrition
3.5. Serum Biochemical Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makkar, H.P.S.; Ankers, P. Towards a concept of sustainable animal diets. In Animal production and Health Report no. 7; FAO: Rome, Italy, 2014. [Google Scholar]
- Tsiouni, M.; Aggelopoulos, S.; Pavloudi, A.; Siggia, D. Economic and Financial Sustainability Dependency on Subsidies: The Case of Goat Farms in Greece. Sustainability 2021, 13, 7441. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Quéré, C.L.e.; Luijkx, I.T.; Olsen, A.; Peters, G.P. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Abejón, R.; Fernández-Ríos, A.; Domínguez-Ramos, A.; Laso, J.; Margallo, M. Hydrogen Recovery from Waste Gas Streams to Feed High-Temperature PEM Fuel Cells: Environmental Performance under a Life-Cycle Thinking Approach. Appl. Sci. 2020, 10, 7461. [Google Scholar] [CrossRef]
- Food and Agriculture Organization Corporate Statistical Database. Citrus Fruits Statistical Compendium 2020, FAO: Rome, Italy, 2021.
- Pascual, J.M.; Carmona, J.F. Composition of citrus pulp. Anim. Feed Sci. Technol. 1980, 5, 1–10. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A Review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Blas, J.C.D.; Ferrer, P.; Rodríguez, C.A.; Cerisuelo, A.; Farias, C. Nutritive value of citrus co-products in rabbit feeding. World Rabbit Sci. 2018, 26, 7. [Google Scholar] [CrossRef]
- Habeeb, A.A.M.; Gad, A.E.; Mustafa, M.M. Using of Citrus By-Products in Farm Animals Feeding. Int. J. Sci. Res. Sci. Technol. 2017, 3. [Google Scholar]
- Suri1, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Behera, D.P.; Sethi, A.P.S.; Pathak, D.; Singh, U.; Wadhwa, M. Effect of Different Levels of Citrus Waste (Kinnow sp.) on Duodenal Morphology of Broiler Birds Without and With Cocktail of Enzymes. J. Anim. Res. 2018, 8, 775–782. [Google Scholar] [CrossRef]
- Rahman, A.; Kalsoom, H.; Khanum, S.; Sajid, M.; Zahid, M.Z.; Hayat, Z.; Asif, A.R.; Mahmood, M.; Ahmed, I.; Nawaz, S.; et al. Evaluation of Dried Citrus Pulp Addition to Total Mixed Ration in Replacement to Corn on Mutton Goat Performance and Health Indices. Sustainability 2023, 15, 6584. [Google Scholar] [CrossRef]
- Ferrer, P.; Calvet, S.; García-Rebollar, P.; Jiménez-Belenguer, A.I.; Hernández, P.; Piquer, O.; Cerisuelo, A. The impact of replacing barley by dehydrated orange pulp in finishing pig diets on performance, carcass quality, and gaseous emissions from slurry. Animal 2022, 16, 100659. [Google Scholar] [CrossRef] [PubMed]
- Luzardo, S.; Banchero, G.; Ferrari, V.; Ibáñez, F.; Roig, G.; Aznárez, V.; Clariget, J.; La Manna, A. Effect of Fresh Citrus Pulp Supplementation on Animal Performance and Meat Quality of Feedlot Steers. Animals (Basel) 2021, 11, 3338. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.L.; Zhang, X.H.; Yu, W.W.; Zhao, L.G.; Wang, T. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult. Sci. 2012, 91, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Huang, Z.; Mao, X.; Zheng, P.; Chen, D. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J. Anim. Sci. Biotechnol. 2015, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, H.; Wen, Z.; Hou, Y.; Wang, G.; Fan, J.; Qian, L. Effects of Fermented Tea Residue on Fattening Performance, Meat Quality, Digestive Performance, Serum Antioxidant Capacity, and Intestinal Morphology in Fatteners. Animals (Basel) 2020, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Du, M.; Tu, Y.; You, W.; Chen, W.; Liu, G.; Li, J.; Wang, Y.; Lu, Z.; Wang, T.; et al. Fermented mixed feed alters growth performance, carcass traits, meat quality and muscle fatty acid and amino acid profiles in finishing pigs. Anim. Nutr. 2023, 12, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Tu, Y.; Sun, J.; Cai, P.; Zhou, Y.; Huang, Y.; Zhang, S.; Chen, W.; Wang, L.; Du, M.; et al. Fermented mixed feed regulates intestinal microbial community and metabolism and alters pork flavor and umami. Meat Sci. 2023, 201, 109177. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, X.; Zhang, K. Effects of Microbial Fermented Feed on Serum Biochemical Profile, Carcass Traits, Meat Amino Acid and Fatty Acid Profile, and Gut Microbiome Composition of Finishing Pigs. Front. Vet. Sci. 2021, 8, 744630. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Wu, J.P.; Li, Y.Z. Exploration of Low-Cost Balanced Nutritional Feed for Scaled Breeding of Tibetan Pigs. Sichuan Anim. Vet. Sci. 2010, 37, 34–35. (in Chinese). [Google Scholar]
- Li, D.F.; Wang, K.N.; Qiao, S.Y.; Jia, G.; Jiang, Z.Y.; Chen, Z.L.; Lin, Y.C.; Wu, D.; Zhu, X.M.; Xiong, B.H.; et al. Feeding standard of swine: NY/T 65-2004. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2004.
- Chinese Feed Database. Tables of Feed Composition and Nutritional Values in China (2022). China Feed 2022, 63–68. [Google Scholar]
- Noblet, J.; Perez, J.M. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 1993, 71, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Nong, Q.; Wang, L.; Zhou, Y.; Sun, Y.; Chen, W.; Xie, J.; Zhu, X.; Shan, T. Low Dietary n-6/n-3 PUFA Ratio Regulates Meat Quality, Reduces Triglyceride Content, and Improves Fatty Acid Composition of Meat in Heigai Pigs. Animals (Basel) 2020, 10, E1543. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, J.; Saro, C.; Mateos, I.; González, J.S.; Carro, M.D.; Ranilla, M.J. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals (Basel) 2020, 10, E1316. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabró, S.; Liotta, L.; Musco, N.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals (Basel) 2019, 9, 556. [Google Scholar] [CrossRef]
- Uerlings, J.; Bindelle, J.; Schroyen, M.; Richel, A.; Bruggeman, G.; Willems, E.; Everaert, N. Fermentation capacities of fructan- and pectin-rich by-products and purified fractions via an in vitro piglet faecal model. J. Sci. Food. Agric. 2019, 99, 5720–5733. [Google Scholar] [CrossRef]
- Strong, C.M.; Brendemuhl, J.H.; Johnson, D.D.; Carr, C.C. The effect of elevated dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. Prof. Anim. Sci. 2015, 31, 191–200. [Google Scholar] [CrossRef]
- Bakare, A.G.; Ndou, S.P.; Madzimure, J.; Chimonyo, M. Nutritionally related blood metabolites and performance of finishing pigs fed on graded levels of dietary fibre. Trop. Anim. Health. Prod. 2016, 48, 1065–1069. [Google Scholar] [CrossRef]
- Belloumi, D.; Calvet, S.; Roca, M.I.; Ferrer, P.; Jiménez-Belenguer, A.; Cambra-López, M.; García-Rebollar, P.; Climent, E.; Martínez-Blanch, J.; Tortajada, M.; et al. Effect of providing citrus pulp-integrated diet on fecal microbiota and serum and fecal metabolome shifts in crossbred pigs. Sci. Rep. 2023, 13, 17596. [Google Scholar] [CrossRef]
- Cui, Y.; Tian, Z.; Wang, G.; Ma, X.; Chen, W. Citrus Extract Improves the Absorption and Utilization of Nitrogen and Gut Health of Piglets. Animals (Basel) 2020, 10, 112. [Google Scholar] [CrossRef]
- Noh, H.S.; Ingale, S.L.; Lee, S.H.; Kim, K.H.; Kwon, I.K.; Kim, Y.H.; Chae, B.J. Effects of citrus pulp, fish by-product and Bacillus subtilis fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs. J. Anim. Sci. Technol. 2014, 56, 10. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Ma, D.; Setyabrata, D.; Farouk, M.M.; Lonergan, S.M.; Huff-Lonergan, E.; Hunt, M.C. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci. 2018, 144, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Zduńczyk, W.; Tkacz, K.; Modzelewska-Kapituła, M. The Effect of Superficial Oregano Essential Oil Application on the Quality of Modified Atmosphere-Packed Pork Loin. Foods 2023, 12, 2013. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Liu, C.; Yang, Z.; Su, R.; Chen, X.; Hou, Y.; Hu, G.; Yao, D.; Zhao, L.; Su, L.; et al. Effects of oxidative stability variation on lamb meat quality and flavor during postmortem aging. J. Food. Sci. 2022, 87, 2578–2594. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Clarke, F.; Li, Y.; Purslow, P.; Warner, R. Differences in light scattering between pale and dark beef longissimus thoracis muscles are primarily caused by differences in the myofilament lattice, myofibril and muscle fibre transverse spacings. Meat Sci. 2019, 149, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Clarke, F.; Purslow, P.; Warner, R. High pH in beef longissimus thoracis reduces muscle fibre transverse shrinkage and light scattering which contributes to the dark colour. Food Res. Int. 2017, 101, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Lenighan, Y.M.; McNulty, B.A.; Roche, H.M. Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Proc. Nutr. Soc. 2019, 78, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Wang, H.H.; Zhou, G.H.; Xu, X.L.; Li, X.; Bai, Y.; Yu, X.B. Evaluation of the taste-active and volatile compounds in stewed meat from the Chinese yellow-feather chicken breed. Int. J. Food Prop. 2018, 20, S2579–S2595. [Google Scholar] [CrossRef]
- Asahara, T.; Mori, Y.; Zakataeva, N.P.; Livshits, V.A.; Yoshida, K.; Matsuno, K. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Appl. Microbiol. Biotechnol. 2010, 87, 2195–2207. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yan, Z.Y.; Liu, X.N.; Zhou, J.; Wu, X.Y.; Wei, P.; Jia, H.H.; Yong, X.Y. Increased fermentative adenosine production by gene-targeted Bacillus subtilis mutation. J Biotechnol. 2019, 298, 1–4. [Google Scholar] [CrossRef] [PubMed]
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP |
|---|---|---|---|---|
| Ingredient,% | ||||
| Corn | 35.55 | 33.77 | 32.00 | 30.22 |
| Soybean meal | 6.20 | 5.89 | 5.58 | 5.27 |
| Rice bran meal | 45.00 | 42.75 | 40.50 | 38.25 |
| Wheat bran | 8.34 | 7.92 | 7.51 | 7.09 |
| FNOP | 0.00 | 5.00 | 10.00 | 15.00 |
| Calcium hydrogen phosphate | 0.87 | 0.83 | 0.78 | 0.74 |
| Calcium carbonate | 1.09 | 1.04 | 0.98 | 0.93 |
| Salt | 0.35 | 0.33 | 0.32 | 0.30 |
| Baking soda | 0.20 | 0.19 | 0.18 | 0.17 |
| L-lysine sulfate (70%) | 0.15 | 0.14 | 0.14 | 0.13 |
| L-threonine (98.5%) | 0.15 | 0.14 | 0.14 | 0.13 |
| Choline chloride | 0.05 | 0.05 | 0.05 | 0.04 |
| Bentonite | 1.00 | 0.95 | 0.90 | 0.85 |
| Mildewcide1 | 0.05 | 0.05 | 0.05 | 0.04 |
| Premix2 | 1.00 | 0.95 | 0.90 | 0.85 |
| Calculated composition3 | ||||
| DE, Mcal/kg4 | 2.70 | 2.66 | 2.62 | 2.58 |
| CP,% | 13.69 | 13.56 | 13.43 | 13.30 |
| NDF,% | 19.73 | 21.47 | 23.21 | 24.95 |
| ADF,% | 7.83 | 8.34 | 8.85 | 9.35 |
| SID Lys,% | 0.53 | 0.52 | 0.52 | 0.51 |
| Ca, % | 0.67 | 0.68 | 0.69 | 0.70 |
| STTD phosphorus, % | 0.38 | 0.37 | 0.35 | 0.34 |
| Analysed composition | ||||
| CP,% | 13.58 | 13.28 | 13.21 | 13.18 |
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP | P-value |
|---|---|---|---|---|---|
| ADFI, kg /d | 1.73 ± 0.33 | 1.75 ± 0.33 | 1.77 ± 0.34 | 1.77 ± 0.31 | 0.635 |
| Initial weight, kg | 31.12 ± 0.58 | 30.39 ± 1.16 | 30.94 ± 1.03 | 30.67 ± 1.49 | 0.802 |
| Final weight, kg | 46.76 ± 0.84 | 46.10 ± 1.61 | 46.91 ± 1.22 | 45.89 ± 1.14 | 0.602 |
| ADG, g/d | 319.26 ± 10.52 | 320.63 ± 10.21 | 325.83 ± 13.39 | 310.75 ± 11.33 | 0.352 |
| F:G | 5.44 ± 0.18 | 5.47 ± 0.18 | 5.45 ± 0.20 | 5.70 ± 0.23 | 0.251 |
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP | P-value |
|---|---|---|---|---|---|
| Liver weight, kg | 47.76 ± 5.01ab | 50.54 ± 3.29b | 49.79 ± 0.38b | 43.16 ± 1.51a | 0.023 |
| Carcass weight, kg | 30.41 ± 4.14 | 34.15 ± 2.77 | 32.10 ± 1.03 | 29.34 ± 1.97 | 0.121 |
| Carcass yield, % | 63.51 ± 2.42 | 67.57 ± 3.07 | 64.46 ± 1.72 | 67.97 ± 4.00 | 0.127 |
| Body length, cm | 77.00 ± 3.56 | 77.00 ± 7.70 | 75.50 ± 3.7 | 75.75 ± 4.99 | 0.963 |
| Chest circumference, cm | 83.00 ± 3.74 | 83.63 ± 7.65 | 83.70 ± 1.01 | 80.75 ± 1.71 | 0.756 |
| BFT at thickest part of the shoulder, mm | 36.24 ± 3.13 | 33.44 ± 5.52 | 34.38 ± 6.42 | 30.9 ± 3.41 | 0.688 |
| BFT at thoracolumbar junction, mm | 15.32 ± 1.73 | 15.99 ± 3.36 | 18.40 ± 6.79 | 14.64 ± 4.95 | 0.886 |
| BFT at lumbar sacral junction, mm | 20.86 ± 0.59 | 22.41 ± 5.79 | 22.73 ± 2.41 | 19.85 ± 3.70 | 0.864 |
| BFT, mm | 24.14 ± 1.49 | 23.94 ± 4.29 | 25.17 ± 4.34 | 21.80 ± 3.19 | 0.910 |
| Eye muscle area, cm2 | 8.42 ± 0.72a | 9.20 ± 1.16ab | 12.23 ± 1.71b | 8.94 ± 1.17ab | 0.017 |
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP | P-value |
|---|---|---|---|---|---|
| pH45min | 6.74 ± 0.16 | 6.55 ± 0.16 | 6.53 ± 0.09 | 6.62 ± 0.18 | 0.274 |
| pH24h | 6.33 ± 0.21 | 5.82 ± 0.41 | 5.64 ± 0.24 | 6.14 ± 0.49 | 0.067 |
| L*45min | 34.95 ± 0.70 | 36.05 ± 0.52 | 35.06 ± 1.15 | 34.64 ± 1.44 | 0.286 |
| a*45min | 15.41 ± 0.71 | 16.76 ± 1.28 | 15.18 ± 0.47 | 16.25 ± 1.29 | 0.148 |
| b*45min | 0.38 ± 0.22a | 1.16 ± 0.52b | 0.30 ± 0.36a | 0.41 ± 0.41a | 0.032 |
| L*24h | 36.73 ± 3.29a | 38.51 ± 1.08a | 43.30 ± 2.94b | 37.17 ± 2.7a | 0.016 |
| a*24h | 15.40 ± 0.72 | 17.72 ± 1.11 | 16.62 ± 1.69 | 16.13 ± 0.78 | 0.079 |
| b*24h | 1.16 ± 0.53 | 1.45 ± 0.26 | 1.90 ± 0.17 | 1.30 ± 0.36 | 0.121 |
| ΔE*(45min-24h) | 2.51 ± 2.08A | 2.98 ± 1.38A | 8.70 ± 2.18B | 2.98 ± 2.11A | 0.002 |
| Drip loss, % | 1.38 ± 0.29b | 0.86 ± 0.26a | 0.98 ± 0.31a | 1.26 ± 0.10b | 0.010 |
| Shearing force, kgf | 5.95 ± 1.25 | 5.66 ± 1.07 | 5.73 ± 0.84 | 6.34 ± 0.76 | 0.777 |
| Marbling score | 2.88 ± 1.03 | 2.5 ± 0.41 | 2.5 ± 0.71 | 2.88 ± 0.75 | 0.806 |
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP | P-value |
|---|---|---|---|---|---|
| C10:0 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.02 | 0.277 |
| C12:0 | 0.05 ± 0.01A | 0.09 ± 0.02B | 0.06 ± 0.01A | 0.05 ± 0.01A | 0.009 |
| C14:0 | 1.26 ± 0.05 | 1.25 ± 0.08 | 1.14 ± 0.08 | 1.21 ± 0.05 | 0.085 |
| C16:0 | 26.15 ± 0.21 | 25.73 ± 0.40 | 26.05 ± 0.07 | 25.85 ± 0.19 | 0.244 |
| C17:0 | 0.20 ± 0.02 | 0.17 ± 0.02 | 0.17 ± 0.02 | 0.18 ± 0.04 | 0.267 |
| C18:0 | 12.97 ± 0.22C | 12.40 ± 0.12B | 11.78 ± 0.19A | 11.76 ± 0.27A | <0.001 |
| C20:0 | 0.42 ± 0.03 | 0.37 ± 0.03 | 0.40 ± 0.05 | 0.44 ± 0.02 | 0.053 |
| C16:1 | 5.78 ± 0.12 | 6.08 ± 0.11 | 5.91 ± 0.38 | 5.95 ± 0.12 | 0.285 |
| C17:1 | 0.23 ± 0.01 | 0.21 ± 0.04 | 0.23 ± 0.03 | 0.19 ± 0.03 | 0.227 |
| C18:1n7 | 0.92 ± 0.04 | 1.00 ± 0.05 | 1.01 ± 0.10 | 1.01 ± 0.05 | 0.180 |
| C18:1n9 | 38.00 ± 0.29a | 38.84 ± 0.45b | 38.80 ± 0.22b | 38.97 ± 0.49b | 0.014 |
| C20:1 | 0.48 ± 0.03ab | 0.52 ± 0.03b | 0.46 ± 0.04a | 0.42 ± 0.04a | 0.010 |
| C18:2n6 | 10.30 ± 0.21A | 10.06 ± 0.10A | 10.70 ± 0.23B | 10.80 ± 0.18B | <0.001 |
| C18:3n3 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.12 ± 0.01 | 0.262 |
| C18:3n6 | 0.27 ± 0.02 | 0.32 ± 0.02 | 0.30 ± 0.03 | 0.30 ± 0.03 | 0.071 |
| C20:3 | 0.14 ± 0.02 | 0.15 ± 0.02 | 0.14 ± 0.01 | 0.16 ± 0.02 | 0.355 |
| C20:4 | 2.60 ± 0.09 | 2.58 ± 0.13 | 2.63 ± 0.11 | 2.46 ± 0.07 | 0.168 |
| MUFA1 | 45.39 ± 0.29A | 46.65 ± 0.46B | 46.40 ± 0.18B | 46.53 ± 0.50B | 0.002 |
| PUFA2 | 13.43 ± 0.27ab | 13.24 ± 0.19a | 13.90 ± 0.35c | 13.85 ± 0.26bc | 0.013 |
| SFA3 | 41.18 ± 0.37B | 40.12 ± 0.30A | 39.70 ± 0.19A | 39.62 ± 0.38A | <0.001 |
| UFA:SFA4 | 1.43 ± 0.02A | 1.49 ± 0.02B | 1.52 ± 0.01BC | 1.52 ± 0.02C | <0.001 |
| Item | CON | 5% FNOP | 10% FNOP | 15% FNOP | P-value |
|---|---|---|---|---|---|
| TP, ug/uL | 73.46 ± 8.18A | 89.17 ± 9.36B | 82.33 ± 9.02B | 84.42 ± 9.59B | 0.001 |
| BUN, mmol/L | 7.59 ± 1.48 | 7.30 ± 1.71 | 7.59 ± 1.03 | 7.80 ± 1.35 | 0.865 |
| UA, mmol/L | 23.72 ± 12.47A | 42.24 ± 16.13B | 43.11 ± 10.35B | 49.20 ± 25.73B | 0.007 |
| TG, mmol/L | 0.59 ± 0.24a | 0.69 ± 0.29ab | 0.78 ± 0.13ab | 0.92 ± 0.37b | 0.036 |
| GH, ug/L | 11.85 ± 1.62C | 10.84 ± 2.69BC | 9.66 ± 1.58B | 7.48 ± 1.00A | 0.002 |
| IGF-1, μg/L | 9.33 ± 1.43b | 9.69 ± 1.35b | 9.06 ± 1.69ab | 7.82 ± 1.19a | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
