Submitted:
15 May 2024
Posted:
16 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Boundary Conditions
2.3. Numerical Scheme
2.4. Validation Case
2.5. Research Scope
3. Results and Discussion
3.1. Flow Pattern and Statistical Parameter
3.2. Small-scale Periodic Reattachment Flow (L/D=1.00~1.50)
3.3. Large-scale Periodic Reattachment Flow (L/D=2.00~2.25)
3.4. Non-periodic Reattachment Flow (L/D=2.50~3.15)
3.5. Bi-stable Flow (L/D=3.24)
3.6. Co-shedding Flow (L/D=3.30~6.00)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D.; Yang, Q.; Ma, X.; Dai, G.; Free surface characteristics of flow around two side-by-side circular cylinders. J. Mar. Sci. Eng., 2018, 6(3), 75. [CrossRef]
- Wang, W.; Mao, Z.; Tian, W.; Zhang, T.; Numerical investigation on vortex-induced vibration suppression of a circular cylinder with axial-slats. J. Mar. Sci. Eng., 2019, 7(12), 454. [CrossRef]
- Jamain, J.; Touboul, J.; Rey, V.; Belibassakis, K.; Porosity Effects on the Dispersion Relation of Water Waves through Dense Array of Vertical Cylinders. J. Mar. Sci. Eng., 2020, 8(12), 960. [CrossRef]
- Wu, J.; Liu, Y.; Zhang, D.; Cao, Z.; Guo, Z.; Numerical investigation of vortex shedding from a 5:1 rectangular cylinder at different angles of attack. J. Mar. Sci. Eng., 2022, 10(12), 1913. [CrossRef]
- Abucide-Armas, A.; Portal-Porras, K.; Fernandez-Gamiz, U.; Zulueta, E.; Teso-Fz-Betoño, A.; Convolutional Neural Network Predictions for Unsteady Reynolds-Averaged Navier–Stokes-Based Numerical Simulations. J. Mar. Sci. Eng., 2023, 11(2), 239. [CrossRef]
- Kitagawa, T.; Ohta, H.; Numerical investigation on flow around circular cylinders in tandem arrangement at a subcritical Reynolds number. J. Fluids Struct., 2008, 24(5), 680-699. [CrossRef]
- Hu, X.; Zhang, X.; You, Y.; On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers. Ocean Eng., 2019, 189, 106301. [CrossRef]
- Gao, Y.; Yang, S.; Wang, L.; Huan, C.; Zhang, J.; Numerical Investigation on Vortex-Induced Vibrations of Two Cylinders with Unequal Diameters. J. Mar. Sci. Eng., 2023, 11(2), 377. [CrossRef]
- Yao, J.; Zhen, X.; Huang, Y.; Wang, W.; Numerical investigation on hydrodynamic characteristics of immersed buoyant platform. J. Mar. Sci. Eng., 2021, 9(2), 168. [CrossRef]
- Sadri, M.; Kadivar, E.; El Moctar, O.; Numerical Simulation of Cavitation Control around a Circular Cylinder Using Porous Surface by Volume Penalized Method. J. Mar. Sci. Eng., 2024, 12(3), 423. [CrossRef]
- Mahir, N.; Rockwell, D.; Vortex formation from a forced system of two cylinders. Part I: Tandem arrangement. J. Fluids Struct., 1996, 10(5), 473-489. [CrossRef]
- Zhou, Y.; Alam, M.M.; Wake of two interacting circular cylinders: A review. Int. J. Heat Fluid Flow, 2016, 62, 510-537. [CrossRef]
- Wang, L.; Alam, M.M.; Zhou, Y.; Drag reduction of circular cylinder using linear and sawtooth plasma actuators. Phys. Fluids, 2021, 33(12), 124105. [CrossRef]
- Nazvanova, A.; Yin, G.; Ong, M.C.; Numerical Investigation of Flow around Two Tandem Cylinders in the Upper Transition Reynolds Number Regime Using Modal Analysis. J. Mar. Sci. Eng., 2022, 10(10), 1501. [CrossRef]
- Chao, H.; Luo, Z.; Yang, T.; Dong, G.; Study of Hydrokinetic Energy Harvesting of Two Tandem Three Rigidly Connected Cylinder Oscillators Driven by Fluid-Induced Vibration. J. Mar. Sci. Eng., 2024, 12(3), 515. [CrossRef]
- Crowdy, D.G.; Uniform flow past a periodic array of cylinders. Eur. J. Mech. B-Fluids, 2016, 56, 120-129. [CrossRef]
- Sun, H.; Ma, C.; Kim, E.S.; Nowakowski, G.; Mauer, E.; Bernitsas, M.M.; Flow-induced vibration of tandem circular cylinders with selective roughness: Effect of spacing, damping and stiffness. Eur. J. Mech. B-Fluids, 2019, 74, 219-241. [CrossRef]
- Liu, M.M.; The predominant frequency for viscous flow past two tandem circular cylinders of different diameters at low Reynolds number. Proc. Inst. Mech. Eng. Part M- J. Eng. Marit. Environ., 2020, 234(2), 534-546. [CrossRef]
- Tasaka, Y.; Kon, S.; Schouveiler, L.; Le Gal, P.; Hysteretic mode exchange in the wake of two circular cylinders in tandem. Phys. Fluids, 2006, 18(8), 084104. [CrossRef]
- Zhang, X.F.; Yang, J.C.; Ni, M.J.; Zhang, N.M.; Yu, X.G.; Experimental and numerical studies on the three-dimensional flow around single and two tandem circular cylinders in a duct. Phys. Fluids, 2022, 34(3), 033610. [CrossRef]
- Xu, G.; Zhou, Y.; Strouhal numbers in the wake of two inline cylinders. Exp. Fluids, 2004, 37, 248-256. [CrossRef]
- Carmo, B.S.; Meneghini, J.R.; Numerical investigation of the flow around two circular cylinders in tandem. J. Fluids Struct., 2006, 22(6-7), 979-988. [CrossRef]
- Vu, H.C.; Ahn, J.; Hwang, J.H.; Numerical simulation of flow past two circular cylinders in tandem and side-by-side arrangement at low Reynolds numbers. KSCE J. Civ. Eng., 2016, 20, 1594-1604. [CrossRef]
- Uzun, A.; Hussaini, M.Y.; An application of delayed detached eddy simulation to tandem cylinder flow field prediction. Comput. Fluids, 2012, 60, 71-85. [CrossRef]
- Grioni, M.; Elaskar, S.A.; Mirasso, A.E.; A numerical study of the flow interference between two circular cylinders in tandem by scale-adaptive simulation model. J. Appl. Fluid Mech., 2020, 13(1), 169-183. [CrossRef]
- Zdravkovich, M.M.; The effects of interference between circular cylinders in cross flow. J. Fluids Struct., 1987, 1(2), 239-261. [CrossRef]
- Alam, M.M.; Moriya, M.; Takai, K.; Sakamoto, H.; Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number. J. Wind Eng. Ind. Aerodyn., 2003, 91(1-2), 139-154. [CrossRef]
- Alam, M.M.; The aerodynamics of a cylinder submerged in the wake of another. J. Fluids Struct., 2014, 51, 393-400. [CrossRef]
- Rastan, M.R.; Alam, M.M.; Transition of wake flows past two circular or square cylinders in tandem. Phys. Fluids, 2021, 33(8), 081705. [CrossRef]
- Alam, M.M.; Zhou, Y.; Strouhal numbers, forces and flow structures around two tandem cylinders of different diameters. J. Fluids Struct., 2008, 24(4), 505-526. [CrossRef]
- Zafar, F.; Alam, M.M.; A low Reynolds number flow and heat transfer topology of a cylinder in a wake. Phys. Fluids, 2018, 30(8), 083603. [CrossRef]
- Shan, X.; Effect of an upstream cylinder on the wake dynamics of two tandem cylinders with different diameters at low Reynolds numbers. Phys. Fluids, 2021, 33(8), 083605. [CrossRef]
- Wang, L.; Alam, M.M.; Zhou, Y.; Two tandem cylinders of different diameters in cross-flow: Effect of an upstream cylinder on wake dynamics. J. Fluid Mech., 2018, 836, 5-42. [CrossRef]
- Alam, M.M.; Elhimer, M.; Wang, L.; Jacono, D.L.; Wong, C.W.; Vortex shedding from tandem cylinders. Exp. Fluids, 2018, 59(3), 60. [CrossRef]
- Mahir, N.; Altaç, Z.; Numerical investigation of flow and heat transfer characteristics of two tandem circular cylinders of different diameters. Heat Transf. Eng., 2017, 38(16), 1367-1381. [CrossRef]
- Gao, Y.; Etienne, S.; Yu, D.; Wang, X.; Tan, S.; Bi-stable flow around tandem cylinders of different diameters at low Reynolds number. Fluid Dyn. Res., 2011, 43(5), 055506. [CrossRef]
- Papaioannou, G.V.; Yue, D.K.; Triantafyllou, M.S.; Karniadakis, G.E.; Three-dimensionality effects in flow around two tandem cylinders. J. Fluid Mech., 2006, 558, 387-413. [CrossRef]
- Hu, H.X.; Liu, C.B.; Hu, H.Z.; Zheng, Y.G.; Three-dimensional numerical simulation of the flow around two cylinders at supercritical Reynolds number. Fluid Dyn. Res., 2013, 45(5), 055504. [CrossRef]
- Deng, J.; Ren, A.L.; Zou, J.F.; Shao, X.M.; Three-dimensional flow around two circular cylinders in tandem arrangement. Fluid Dyn. Res., 2006, 38(6), 386. [CrossRef]
- Zhou, Q.; Alam, M.M.; Cao, S.; Liao, H.; Li, M.; Numerical study of wake and aerodynamic forces on two tandem circular cylinders at Re=103. Phys. Fluids, 2019, 31(4), 045103. [CrossRef]
- Tian, G.; Xiao, Z.; New insight on large-eddy simulation of flow past a circular cylinder at subcritical Reynolds number 3900. AIP Adv., 2020, 10(8), 085321. [CrossRef]
- Zhang, D.; Cheng, L.; An, H.; Draper, S.; Flow around a surface-mounted finite circular cylinder completely submerged within the bottom boundary layer. Eur. J. Mech. B-Fluids, 2021, 86, 169-197. [CrossRef]
- Zhang, D.; Cheng, L.; An, H.; Zhao, M.; Direct numerical simulation of flow around a surface-mounted finite square cylinder at low Reynolds numbers. Phys. Fluids, 2017, 29(4), 045101. [CrossRef]
- Zhang, D.; Jiang, C.; Liang, D.; Cheng, L.; A review on TVD schemes and a refined flux-limiter for steady-state calculations. J. Comput. Phys., 2015, 302, 114-154. [CrossRef]
- Zhang, D.; Jiang, C.; Cheng, L.; Liang, D.; A refined r-factor algorithm for TVD schemes on arbitrary unstructured meshes. Int. J. Numer. Methods Fluids, 2016, 80(2), 105-139. [CrossRef]
- Lourenco, L.M.; Shih, C.; Characteristics of the plane turbulent near wake of a circular cylinder. A Particle Image Velocimetry Study, 1993.
- Norberg, C.; An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio. J. Fluid Mech., 1994, 258, 287-316. [CrossRef]
- Ma, X.; Karamanos, G.S.; Karniadakis, G.E.; Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech., 2000, 410, 29-65. [CrossRef]
- Kravchenko, A.G.; Moin, P.; Numerical studies of flow over a circular cylinder at ReD=3900. Phys. Fluids, 2000, 12(2), 403-417. [CrossRef]
- Parnaudeau, P.; Carlier, J.; Heitz, D.; Lamballais, E.; Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids, 2008, 20(8), 085101. [CrossRef]
- Meyer, M.; Hickel, S.; Adams, N.A.; Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Flow, 2010, 31(3), 368-377. [CrossRef]
- Young, M.E.; Ooi, A.; Comparative assessment of LES and URANS for flow over a cylinder at a Reynolds number of 3900. 16th Australasian Fluid Mechanics Conference, Australia, 2007, 1063-1070.
- Dong, S.; Karniadakis, G.E.; Ekmekci, A.; Rockwell, D.; A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake. J. Fluid Mech., 2006, 569, 185-207. [CrossRef]
- Rajani, B.N.; Kandasamy, A.; Majumdar, S.; LES of flow past circular cylinder at Re= 3900. J. Appl. Fluid Mech., 2016, 9(3), 1421-1435. [CrossRef]
- Jiang, H.; Cheng, L.; Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Phys. Fluids, 2021, 33(3), 034119. [CrossRef]
- Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E.; Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust., 2012, 89, 491-518. [CrossRef]
- Wornom, S.; Ouvrard, H.; Salvetti, M.V.; Koobus, B.; Dervieux, A.; Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids, 2011, 47(1), 44-50. [CrossRef]
- Franke, J.; Frank, W.; Large eddy simulation of the flow past a circular cylinder at ReD=3900. J. Wind Eng. Ind. Aerodyn., 2002, 90(10), 1191-1206. [CrossRef]
- Khorrami, M.R.; Choudhari, M.M.; Lockard, D.P.; Jenkins, L.N.; McGinley, C.B.; Unsteady flowfield around tandem cylinders as prototype component interaction in airframe noise. AIAA J., 2007, 45(8), 1930-1941. [CrossRef]
- Gopalan, H.; Jaiman, R.; Numerical study of the flow interference between tandem cylinders employing non-linear hybrid URANS–LES methods. J. Wind Eng. Ind. Aerodyn., 2015, 142, 111-129. [CrossRef]
- Carmo, B.S.; Meneghini, J.R.; Sherwin, S.J.; Possible states in the flow around two circular cylinders in tandem with separations in the vicinity of the drag inversion spacing. Phys. Fluids, 2010, 22(5), 054101. [CrossRef]
- Jester, W.; Kallinderis, Y.; Numerical study of incompressible flow about fixed cylinder pairs. J. Fluids Struct., 2003, 17(4), 561-577. [CrossRef]
- Carmo, B.S.; Meneghini, J.R.; Sherwin, S.J.; Secondary instabilities in the flow around two circular cylinders in tandem. J. Fluid Mech., 2010, 644, 395-431. [CrossRef]
- Alam, M.M.; Rastan, M.R.; Wang, L.; Zhou, Y.; Flows around two nonparallel tandem circular cylinders. J. Wind Eng. Ind. Aerodyn., 2022, 220, 104870. [CrossRef]
- Mahir, N.; Altaç, Z.; Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int. J. Heat Fluid Flow, 2008, 29(5), 1309-1318. [CrossRef]
- Williamson, C.H.; Brown, G. L.; A series in 1/√ Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct., 1998, 12(8), 1073-1085. [CrossRef]
- Norberg, C.; Flow around a circular cylinder: Aspects of fluctuating lift. J. Fluids Struct., 2001, 15(3-4), 459-469. [CrossRef]
- Ljungkrona, L.; Sundén, B.; Flow visualization and surface pressure measurement on two tubes in an inline arrangement. Exp. Therm. Fluid Sci., 1993, 6(1), 15-27. [CrossRef]
- Igarashi, T.; Characteristics of the flow around two circular cylinders arranged in tandem: 1st report. Bulletin of JSME, 1981, 24(188), 323-331. [CrossRef]
- Igarashi, T.; Characteristics of the flow around two circular cylinders arranged in tandem: 2nd report, unique phenomenon at small spacing. Bulletin of JSME, 1984, 27(233), 2380-2387. [CrossRef]













| Case | Computational domain | Time step ∆t (s) | δ/D | NC | NLu | NL | NLd | NZ | Total node number (✕106) |
| Single Cylinder | 30.00D×20D×4D | 0.0020 | 0.002 | 280 | 113 | / | 230 | 61 | 5.74 |
| L/D=1.00 | 31.00D×20D×8D | 0.0015 | 0.002 | 280 | 134 | 98 | 230 | 121 | 15.45 |
| L/D=1.10 | 31.10D×20D×8D | 0.0015 | 0.002 | 280 | 134 | 106 | 230 | 121 | 17.16 |
| L/D=1.15 | 31.15D×20D×8D | 0.0015 | 0.002 | 280 | 134 | 106 | 230 | 121 | 17.16 |
| L/D=1.20 | 31.20D×20D×8D | 0.0015 | 0.002 | 280 | 134 | 112 | 230 | 121 | 17.45 |
| L/D=1.25 | 31.25D×20D×8D | 0.0015 | 0.002 | 280 | 134 | 112 | 230 | 121 | 17.45 |
| L/D=1.50 | 31.50D×20D×8D | 0.0015 | 0.002 | 280 | 136 | 131 | 230 | 121 | 17.49 |
| L/D=2.00 | 32.00D×20D×8D | 0.0015 | 0.002 | 280 | 113 | 186 | 230 | 121 | 16.03 |
| L/D=2.25 | 32.25D×20D×8D | 0.0015 | 0.002 | 280 | 113 | 208 | 230 | 121 | 16.69 |
| L/D=2.50 | 32.50D×20D×8D | 0.0015 | 0.002 | 280 | 113 | 217 | 230 | 121 | 16.93 |
| L/D=3.00 | 33.00D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 237 | 230 | 61 | 8.81 |
| L/D=3.15 | 33.15D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 244 | 230 | 61 | 8.90 |
| L/D=3.24 | 33.24D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 248 | 230 | 61 | 8.96 |
| L/D=3.30 | 33.30D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 249 | 230 | 61 | 8.97 |
| L/D=3.50 | 33.50D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 255 | 230 | 61 | 9.05 |
| L/D=4.00 | 34.00D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 272 | 230 | 61 | 9.28 |
| L/D=5.00 | 35.00D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 307 | 230 | 61 | 9.75 |
| L/D=6.00 | 36.00D×20D×4D | 0.0015 | 0.002 | 280 | 113 | 342 | 230 | 61 | 10.23 |
| Case | Re | St | Lr/D | |||||
| Present (LES) | 3900 | 0.210 | 1.030 | 0.170 | -0.917 | 1.374 | 87.25° | -0.299 |
| Zhou et al. [40] (LES) | 3900 | 0.217 | 1.000 | / | -0.890 | 1.550 | / | / |
| Tian and Xiao [41] (LES) | 3900 | / | 1.040 | 0.170 | -0.890 | 1.400 | 87.0° | / |
| Kravchenko and Moin [49] (LES) | 3900 | 0.210 | 1.040 | / | -0.940 | 1.350 | 88.0° | -0.370 |
| Parnaudeau et al. [50] (Expt.) | 3900 | 0.208 | / | / | / | 1.510 | / | -0.340 |
| Meyer et al. [51] (LES) | 3900 | 0.210 | 1.050 | / | -0.920 | 1.380 | 88.0° | / |
| Young and Ooi [52] (LES) | 3900 | 0.212 | 1.030 | 0.177 | -0.908 | / | / | / |
| Dong et al. [53] (Expt.) | 4000 | / | / | / | / | 1.470 | / | -0.252 |
| Dong et al. [53] (DNS) | 3900 | 0.208 | / | / | -0.930 | 1.360 | / | -0.291 |
| Rajani et al. [54] (LES, SSM) | 3900 | 0.214 | 1.050 | / | -0.928 | 1.211 | 87.5° | -0.270 |
| Rajani et al. [54] (LES, DSM) | 3900 | 0.210 | 1.010 | / | -0.900 | 1.198 | 87.5° | -0.280 |
| Jiang and Cheng [55] (LES) | 3900 | 0.212 | 0.994 | 0.161 | -0.893 | 1.444 | / | / |
| Lysenko et al. [56] (LES, SMAG) | 3900 | 0.190 | 1.180 | 0.440 | -0.800 | 0.900 | 89.0° | -0.260 |
| Lysenko et al. [56] (LES, TKE) | 3900 | 0.209 | 0.970 | 0.090 | -0.910 | 1.670 | 88.0° | -0.270 |
| Wornom et al. [57] (LES) | 3900 | 0.210 | 0.990 | 0.108 | -0.880 | 1.450 | 89.0° | / |
| Franke and Frank [58] (LES) | 3900 | 0.209 | 0.978 | / | -0.850 | 1.640 | 88.2° | / |
| Flow Regime | Case | Pz/D | Std | StD | |||||
| Small-scale Periodic Reattachment | L/D=1.00 | 1.06 | 0.257 | 0.257 | 0.751 | 0.237 | 86.10° | 57.86° | 98.55° |
| L/D=1.10 | 1.67 | 0.262 | 0.262 | 0.757 | 0.201 | 86.21° | 60.05° | 98.93° | |
| L/D=1.15 | 2.12 | 0.263 | 0.263 | 0.762 | 0.186 | 86.24° | 60.15° | 100.08° | |
| L/D=1.20 | 2.59 | 0.264 | 0.264 | 0.765 | 0.173 | 86.25° | 60.30° | 100.26° | |
| L/D=1.25 | 2.78 | 0.266 | 0.266 | 0.766 | 0.156 | 86.26° | 60.46° | 100.40° | |
| L/D=1.50 | 3.74 | 0.263 | 0.263 | 0.777 | 0.129 | 86.26° | 59.01° | 101.92° | |
| Large-scale Periodic Reattachment | L/D=2.00 | 4.90 | / | 0.244 | 0.759 | 0.136 | 86.14° | 55.04° | 104.31° |
| L/D=2.25 | 5.73 | / | 0.230 | 0.748 | 0.134 | 86.11° | 53.97° | 105.15° | |
| Non-periodic Reattachment | L/D=2.50 | / | / | 0.213 | 0.738 | 0.146 | 86.08° | 53.74° | 105.46° |
| L/D=3.00 | / | / | 0.196 | 0.724 | 0.170 | 86.05° | 52.78° | 106.91° | |
| L/D=3.15 | / | / | 0.196 | 0.721 | 0.186 | 86.04° | 52.54° | 107.51° | |
| Bi-stable Flow | L/D=3.24 | / | / (0.246)a |
0.193 (0.246)b |
0.719 | 0.188 | 86.03° | 51.45° | 107.54° |
|
Intermittent Lock-in Co-shedding |
L/D=3.30 | 2.32 | 0.300 | 0.300 & 0.168 |
1.048 | 0.698 | 91.00° | / | 97.97° |
| L/D=3.50 | 2.14 | 0.308 | 0.308 & 0.169 |
1.050 | 0.702 | 91.00° | / | 97.76° | |
|
Subharmonic Lock-in Co-shedding |
L/D=4.00 | 2.27 | 0.319 | 0.319 & 0.167 |
1.098 | 0.707 | 91.23° | / | 96.49° |
| L/D=5.00 | 2.14 | 0.330 | 0.330 & 0.168 |
1.104 | 0.764 | 91.21° | / | 96.29° | |
| L/D=6.00 | 2.27 | 0.334 | 0.334 & 0.167 |
1.115 | 0.787 | 91.22° | / | 96.11° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
