Submitted:
26 April 2024
Posted:
28 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Digital Media and Cognitive Functions
2.1. Attention and Memory
2.2. Executive Functions
2.3. Higher Cognitive Functions
3. Discussion
4. Conclusions and Future Directions
References
- Li, W. Brain structures and functional connectivity associated with individual differences in Internet tendency in healthy young adults. Neuropsychologia 2015, 70, 134–144. [Google Scholar] [CrossRef]
- Brown, D. Human adaptability to biological stressors. 2019, 354–386. [CrossRef]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. Cultural Recycling of Cortical Maps. Neuron 2007, 56, 384–398. [Google Scholar] [CrossRef]
- Korte, M. The impact of the digital revolution on human brain and behavior: where do we stand? Dialogues Clin. Neurosci. 2020, 22, 101–111. [Google Scholar] [CrossRef]
- Choudhury, S.; McKinney, K.A. Digital media, the developing brain and the interpretive plasticity of neuroplasticity. Transcult. Psychiatry 2013, 50, 192–215. [Google Scholar] [CrossRef]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.J.; Frith, C.D. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. 2000, 97, 4398–4403. [Google Scholar] [CrossRef]
- Pantev, C.; Oostenveld, R.; Engelien, A.; Ross, B.; Roberts, L.E.; Hoke, M. Increased auditory cortical representation in musicians. Nature 1998, 392, 811–814. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Nguyet, D.; Brasil-Neto, J.P.; Cammarota, A.; Seidel, O.; Carius, D.; Kenville, R.; Ragert, P.; Stöckel, T.; Carroll, T.J.; et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef]
- General (OSG), O. of the S. Critical Questions Remain Unanswered. in Social Media and Youth Mental Health: The U.S. Surgeon General’s Advisory [Internet] (US Department of Health and Human Services, 2023).
- Firth, J. A. , Torous, J. & Firth, J. Exploring the Impact of Internet Use on Memory and Attention Processes. Int. J. Environ. Res. Public. Health 17, 9481 (2020).
- Bavelier, D., Green, C. S. & Dye, M. W. G. Children, wired – for better and for worse. Neuron 2010, 67, 692–701.
- Small, G.W.; Lee, J.; Kaufman, A.; Jalil, J.; Siddarth, P.; Gaddipati, H.; Moody, T.D.; Bookheimer, S.Y. Brain health consequences of digital technology use. Dialog- Clin. Neurosci. 2020, 22, 179–187. [Google Scholar] [CrossRef]
- Lodge, J.M.; Harrison, W.J. The Role of Attention in Learning in the Digital Age. Yale J. Biol. Med. 2019, 92, 21–28. [Google Scholar]
- Spitzer, M. Digital Dementia. Nervenheilkunde 2012, 31, 493–497. [Google Scholar]
- Manwell, L.A.; Tadros, M.; Ciccarelli, T.M.; Eikelboom, R. Digital dementia in the internet generation: excessive screen time during brain development will increase the risk of Alzheimer's disease and related dementias in adulthood. J. Integr. Neurosci. 2022, 21, 28. [Google Scholar] [CrossRef]
- Firth, J. The “online brain”: how the Internet may be changing our cognition. World Psychiatry 2019, 18, 119–129. [Google Scholar] [CrossRef]
- Wilcockson, T. D. W., Ellis, D. A. & Shaw, H. Determining Typical Smartphone Usage: What Data Do We Need? Cyberpsychology Behav. Soc. Netw. 2018, 21, 395–398.
- Osterhout, L.; Poliakov, A.; Inoue, K.; McLaughlin, J.; Valentine, G.; Pitkanen, I.; Frenck-Mestre, C.; Hirschensohn, J. Second-language learning and changes in the brain. J. Neurolinguistics 2008, 21, 509–521. [Google Scholar] [CrossRef]
- Scholz, J.; Klein, M.C.; Behrens, T.E.J.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Kempermann, G.; Kuhn, H.G.; Winkler, J.; Büchel, C.; May, A. Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning. J. Neurosci. 2006, 26, 6314–6317. [Google Scholar] [CrossRef]
- Shanmugasundaram, M.; Tamilarasu, A. The impact of digital technology, social media, and artificial intelligence on cognitive functions: a review. Front. Cogn. 2023, 2, 1203077. [Google Scholar] [CrossRef]
- McLaren-Gradinaru, M.; Burles, F.; Protzner, A.B.; Iaria, G. The cognitive effects of playing video games with a navigational component. Telematics Informatics Rep. 2023, 9. [Google Scholar] [CrossRef]
- Green, C.S.; Bavelier, D. Action video game modifies visual selective attention. Nature 2003, 423, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Boot, W.R.; Kramer, A.F.; Simons, D.J.; Fabiani, M.; Gratton, G. The effects of video game playing on attention, memory, and executive control. Acta Psychol. 2008, 129, 387–398. [Google Scholar] [CrossRef]
- Kross, E.; Verduyn, P.; Demiralp, E.; Park, J.; Lee, D.S.; Lin, N.; Shablack, H.; Jonides, J.; Ybarra, O. Facebook Use Predicts Declines in Subjective Well-Being in Young Adults. PLOS ONE 2013, 8, e69841. [Google Scholar] [CrossRef]
- Bubeck, S. et al. Sparks of Artificial General Intelligence: Early experiments with GPT-4. 2023. [CrossRef]
- Matei, S.A. The Shallows: What the Internet Is Doing to Our Brains, by Nicholas Carr. New York, NY: W. W. Norton, 2010. 276 pp. $26.95. ISBN 0393072223 (hardcover). Inf. Soc. 2013, 29, 130–132. [Google Scholar] [CrossRef]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Han, H.; Alam, M.M.; Rehmat, M.K.; Irshad, M.; Arraño-Muñoz, M.; Ariza-Montes, A. Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanit. Soc. Sci. Commun. 2023, 10, 1–14. [Google Scholar] [CrossRef]
- Iaria, G.; Palermo, L.; Committeri, G.; Barton, J.J. Age differences in the formation and use of cognitive maps. Behav. Brain Res. 2009, 196, 187–191. [Google Scholar] [CrossRef]
- Loh, K. K. & Kanai, R. How Has the Internet Reshaped Human Cognition? Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2016, 22, 506–520.
- Hoehe, M.R.; Thibaut, F. Going digital: how technology use may influence human brains and behavior. Dialog- Clin. Neurosci. 2020, 22, 93–97. [Google Scholar] [CrossRef]
- Hembrooke, H.; Gay, G. The laptop and the lecture: The effects of multitasking in learning environments. J. Comput. High. Educ. 2003, 15, 46–64. [Google Scholar] [CrossRef]
- Wood, E.; Zivcakova, L.; Gentile, P.; Archer, K.; De Pasquale, D.; Nosko, A. Examining the impact of off-task multi-tasking with technology on real-time classroom learning. Comput. Educ. 2012, 58, 365–374. [Google Scholar] [CrossRef]
- Junco, R.; Cotten, S.R. No A 4 U: The relationship between multitasking and academic performance. Comput. Educ. 2012, 59, 505–514. [Google Scholar] [CrossRef]
- Rosen, L.D.; Carrier, L.M.; Cheever, N.A. Facebook and texting made me do it: Media-induced task-switching while studying. Comput. Hum. Behav. 2013, 29, 948–958. [Google Scholar] [CrossRef]
- Rosen, L. D., Lim, A. F., Carrier, L. M. & Cheever, N. A. An Empirical Examination of the Educational Impact of Text Message-Induced Task Switching in the Classroom: Educational Implications and Strategies to Enhance Learning. Educ. Psychol. 2011, 17, 163–177.
- Dahmani, L.; Bohbot, V.D. Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Henkel, L. Point-and-Shoot Memories: The Influence of Taking Photos on Memory for a Museum Tour. Psychol. Sci. 2013, 25. [Google Scholar] [CrossRef] [PubMed]
- Bell, V.; Bishop, D.V.M.; Przybylski, A.K. The debate over digital technology and young people. BMJ 2015, 351, h3064. [Google Scholar] [CrossRef] [PubMed]
- Storm, B. C. & Stone, S. M. Saving-enhanced memory: the benefits of saving on the learning and remembering of new information. Psychol. Sci. 2015, 26, 182–188.
- Sparrow, B.; Liu, J.; Wegner, D.M. Google Effects on Memory: Cognitive Consequences of Having Information at Our Fingertips. Science 2011, 333, 776–778. [Google Scholar] [CrossRef]
- Ward, A.F. Supernormal: How the Internet Is Changing Our Memories and Our Minds. Psychol. Inq. 2013, 24, 341–348. [Google Scholar] [CrossRef]
- Wegner, D. M. , Giuliano, T. & Hertel, P. G. Cognitive Interdependence in Close Relationships. in Compatible and Incompatible Relationships (ed. Ickes, W. J.) (Springer Verlag, 1985).
- Dong, G.; Potenza, M.N. Behavioural and brain responses related to Internet search and memory. Eur. J. Neurosci. 2015, 42, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.F.; Duke, K.; Gneezy, A.; Bos, M.W. Brain Drain: The Mere Presence of One’s Own Smartphone Reduces Available Cognitive Capacity. J. Assoc. Consum. Res. 2017, 2, 140–154. [Google Scholar] [CrossRef]
- Montag, C.; Markowetz, A.; Blaszkiewicz, K.; Andone, I.; Lachmann, B.; Sariyska, R.; Trendafilov, B.; Eibes, M.; Kolb, J.; Reuter, M.; et al. Facebook usage on smartphones and gray matter volume of the nucleus accumbens. Behav. Brain Res. 2017, 329, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lin, F.-C.; Du, Y.-S.; Qin, L.-D.; Zhao, Z.-M.; Xu, J.-R.; Lei, H. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study. Eur. J. Radiol. 2011, 79, 92–95. [Google Scholar] [CrossRef]
- Tao, R.; Huang, X.; Wang, J.; Zhang, H.; Zhang, Y.; Li, M. Proposed diagnostic criteria for internet addiction. Addiction 2010, 105, 556–564. [Google Scholar] [CrossRef]
- Błachnio, A.; Przepiorka, A.; Pantic, I. Association between Facebook addiction, self-esteem and life satisfaction: A cross-sectional study. Comput. Hum. Behav. 2016, 55, 701–705. [Google Scholar] [CrossRef]
- Eppler, M. J. & Mengis, J. The Concept of Information Overload - A Review of Literature from Organization Science, Accounting, Marketing, MIS, and Related Disciplines (2004). in Kommunikationsmanagement im Wandel: Beiträge aus 10 Jahren =mcminstitute (eds. Meckel, M. & Schmid, B. F.) 271–305 (Gabler, Wiesbaden, 2008). [CrossRef]
- Carr, N. The Shallows: What the Internet Is Doing to Our Brains. (W. W. Norton & Company, 2020).
- Pariser, E. The Filter Bubble: What The Internet Is Hiding From You. (Penguin UK, 2011).

| Reference | Finding Summary |
|---|---|
| Attention | |
| Hembrooke, H. & Gay, G., 2003 | Attendance to lectures with divided attention might decrease academic performance |
| Bavelier, D. et al., 2010 | Excessive use of videogames might reduce sustained attention; videogames are associated with a high level of distractibility Video games are associated with the improvement of selective attention |
| Firth, J. et al., 2019 | Attentional overload might decrease cognitive tests |
| Junco, R. & Cotten, S. R., 2012 | Attentional overload might decrease academic achievement |
| Rosen, L. et al., 2013 | Attentional overload might decrease focus time |
| Alzahabi, R. & Becker, M. W., 2013 | Frequent media multitaskers are better at task switching |
| Memory | |
| Dahmani, L. & Bohbot, V.D., 2020 | GPS is linked to a decline in hippocampal-dependent spatial memory Searching online may represent a form of mental exercise that can strengthen neural circuits |
| Henkel, L., 2013 | Taking digital photographs might decrease accuracy recall for details of images |
| Bell, V. et al., 2015 | Internet search tasks is associated with reduce regional homogeneity, functional connectivity and synchronisation in brain regions associated with long-term memory (e.g., temporal gyrus) Internet search tasks increase white matter integrity of the fiber tracts connecting frontal, occipital, parietal and temporal lobes Relying on the internet for factual memory storage may produce cognitive benefits by “freeing up” cognitive resources |
| Korte, M., 2020 | Individuals who believe that the facts they had been asked to memorise would be stored in online cloud storage, perform more poorly than subjects who expect to rely on their brains |
| Pariser, E., 2011 | Cognitive offloading via digital devices improved people’s ability to focus on aspects that are not immediately retrievable, remembering these better in the future |
| Sparrow, B. et al., 2011 Ward, A. F., 2013 Wegner, D. et al., 1985 |
The internet might serve as an efficient form of external transactive memory (rather than retaining information internally, people remember where information can be accessed) |
| Executive functions and learning | |
| Ward, A. et al., 2017 | The mere presence of consumers’ smartphones may affect inhibitory control even when consumers are not consciously attending to them |
| Firth, J. et al., 2019 | Long days in an online role-playing game might lead to significant reductions in grey matter volume within the orbitofrontal cortex, impairing impulse control and decision-making process |
| Small, G. W. et al., 2020 | Prior experience with internet searching may alter brain’s responsiveness in neural circuits controlling decision making and complex reasoning |
| Junco, R. & Cotten, S. R., 2012 | Individuals who spend more time on social networks show a higher level of cognitive overload, decreasing their ability to make decisions |
| Emotional regulation, social cognition and novely seeking | |
| Montag, C. et al., 2017 | Excessive use of social media can decrease grey matter volume in the limbic system, increase emotional reactivity, and delay emotional recovery |
| Zhou, Y. et al., 2011 | Excessive use of social media might lead to an emotional attachment to online friends which might contribute to their addictive desire to maintain their online presence |
| Tao, R. et al., 2010 | Interactions with social robots or chatbots can disrupt individuals’ perceptions and social interactions |
| Błachnio, A. et al., 2016 | Excessive use of social networks might decrease social skills and impair the ability to recognise facial emotions |
| Firth, J. et al., 2019 | Online social networks were linked to structural changes in the posterior regions of the middle temporal gyrus, entorhinal cortex and superior temporal sulcus, unlike real-world social networks |
| Eppler, M. J. & Mengis, J., 2004 | Virtually infinite availability of engaging content can lead to cognitive fatigue and restricted perception of reality Digital platforms provide an abundance of novel stimuli, foster curiosity and broad intellectual horizons |
| Pariser, E., 2011 | Social media platforms might act as altered perceptual filters, distorting perception and reinforcing biases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
