Submitted:
23 September 2024
Posted:
24 September 2024
You are already at the latest version
Abstract
Adeno-associated viruses (AAVs) have been used for liver gene therapy. Hemgenix and Roctavian are AAV-based treatments for hemophilia B and A, respectively. They cost $3.5 million and $2.9 million per dose, respectively. AAV vectors may eventually be cheaper to mass produce than they are currently, but a facultative intracellular bacterium-based DNA delivery system would be much cheaper for patients at this point in time, at least. Also, this approach would allow for the delivery of much larger DNA packages than AAVs can accommodate. Such a bacterial delivery system for the liver may be feasible now, and a prototype could possibly be developed rapidly.
Keywords:
Introduction:
- It would be cheap.
- It could deliver large DNA constructs to use as homologous repair templates or large serine recombinase/CRISPR transposase cargo for individuals with genetic disorders wherein long stretches of nucleotides are affected.
- Flagellar motility of the vector allows for autonomous, widespread delivery throughout the organ or organ system[22].
Prototype for the Liver:
Other Organs and Organ Systems:
Conclusion:
Funding
Conflicts of Interest
References
- Spinner NB, Loomes KM, Krantz ID, Gilbert MA. Alagille Syndrome. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993.
- Stoller JK, Hupertz V, Aboussouan LS. Alpha-1 Antitrypsin Deficiency. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., editors. GeneReviews®, Seattle (WA): University of Washington, Seattle; 1993.
- Myerowitz R. Tay-Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 1997;9:195–208. [CrossRef]
- Butchbach MER. Genomic Variability in the Survival Motor Neuron Genes (SMN1 and SMN2): Implications for Spinal Muscular Atrophy Phenotype and Therapeutics Development. International Journal of Molecular Sciences 2021;22:7896. [CrossRef]
- Daiger S, Sullivan L, Bowne S. Genes and mutations causing retinitis pigmentosa. Clin Genet 2013;84:10.1111/cge.12203. [CrossRef]
- Duan D, Goemans N, Takeda S, Mercuri E, Aartsma-Rus A. Duchenne muscular dystrophy. Nat Rev Dis Primers 2021;7:1–19. [CrossRef]
- Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019;576:149–57. [CrossRef]
- Zheng C, Liu B, Dong X, Gaston N, Sontheimer EJ, Xue W. Template-jumping prime editing enables large insertion and exon rewriting in vivo. Nat Commun 2023;14:3369. [CrossRef]
- Collins LT, Ponnazhagan S, Curiel DT. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth Biol 2023;12:17–26. [CrossRef]
- Becker Z. Sporting a $3.5M price tag, CSL and uniQure’s hemophilia B gene therapy crosses FDA finish line. Fierce Pharma 2022. https://www.fiercepharma.com/pharma/csl-and-uniqures-hemophilia-b-gene-therapy-scores-approval-35-million-price-tag (accessed December 9, 2023).
- Bluebird Bio Secures Deal with Large Commercial Payer for Lyfgenia Amid Price Concerns. BioSpace n.d. https://www.biospace.com/article/bluebird-bio-secures-deal-with-large-commercial-payer-for-lyfgenia-amid-price-concerns/ (accessed January 4, 2024).
- Wei T, Sun Y, Cheng Q, Chatterjee S, Traylor Z, Johnson LT, et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat Commun 2023;14:7322. [CrossRef]
- Chen K, Han H, Zhao S, Xu B, Yin B, Trinidad M, et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR-Cas9 RNP 2023:2023.11.15.566339. [CrossRef]
- Behr M, Zhou J, Xu B, Zhang H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharmaceutica Sinica B 2021;11:2150–71. [CrossRef]
- Wang X, Liu S, Sun Y, Yu X, Lee SM, Cheng Q, et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc 2023;18:265–91. [CrossRef]
- Verma M, Ozer I, Xie W, Gallagher R, Teixeira A, Choy M. The landscape for lipid-nanoparticle-based genomic medicines. Nat Rev Drug Discov 2023;22:349–50. [CrossRef]
- Shepherd SJ, Han X, Mukalel AJ, El-Mayta R, Thatte AS, Wu J, et al. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines. Proc Natl Acad Sci U S A n.d.;120:e2303567120. [CrossRef]
- Mehta M, Bui TA, Yang X, Aksoy Y, Goldys EM, Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater Au 2023;3:600–19. [CrossRef]
- Stahl EC, Sabo JK, Kang MH, Allen R, Applegate E, Kim SE, et al. Genome editing in the mouse brain with minimally immunogenic Cas9 RNPs. Molecular Therapy 2023;31:2422–38. [CrossRef]
- Tan X, Petri B, DeVinney R, Jenne CN, Chaconas G. The Lyme disease spirochete can hijack the host immune system for extravasation from the microvasculature. Mol Microbiol 2021;116:498–515. [CrossRef]
- Sun R, Liu M, Lu J, Chu B, Yang Y, Song B, et al. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat Commun 2022;13:5127. [CrossRef]
- Toley BJ, Forbes NS. Motility is Critical for Effective Distribution and Accumulation of Bacteria in Tumor Tissue. Integr Biol (Camb) 2012;4:165–76. [CrossRef]
- Harimoto T, Hahn J, Chen Y-Y, Im J, Zhang J, Hou N, et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat Biotechnol 2022;40:1259–69. [CrossRef]
- Stritzker J, Hill PJ, Gentschev I, Szalay AA. Myristoylation negative msbB-mutants of probiotic E. coli Nissle 1917 retain tumor specific colonization properties but show less side effects in immunocompetent mice. Bioeng Bugs 2010;1:139–45. [CrossRef]
- Gawish R, Maier B, Obermayer G, Watzenboeck ML, Gorki A-D, Quattrone F, et al. A neutrophil–B-cell axis impacts tissue damage control in a mouse model of intraabdominal bacterial infection via Cxcr4. eLife n.d.;11:e78291. [CrossRef]
- Yevtodiyenko A, Bazhin A, Khodakivskyi P, Godinat A, Budin G, Maric T, et al. Portable bioluminescent platform for in vivo monitoring of biological processes in non-transgenic animals. Nat Commun 2021;12:2680. [CrossRef]
- Mi Z, Yao Q, Qi Y, et al. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharmaceutica Sinica B 2023;13(2):819–833. [CrossRef]
- Dash R, Holsinger KA, Chordia MD, et al. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. ACS Infect Dis 2024. [CrossRef]
- Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. “Deadman” and “Passcode” microbial kill switches for bacterial containment. Nat Chem Biol 2016;12:82–6. [CrossRef]
- Branchini BR, Ablamsky DM, Rosenman JM, Uzasci L, Southworth TL, Zimmer M. Synergistic Mutations Produce Blue-Shifted Bioluminescence in Firefly Luciferase. Biochemistry 2007;46:13847–55. [CrossRef]
- Nash AI, McNulty R, Shillito ME, Swartz TE, Bogomolni RA, Luecke H, et al. Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. Proc Natl Acad Sci U S A 2011;108:9449–54. [CrossRef]
- Allouche-Arnon H, Khersonsky O, Tirukoti ND, Peleg Y, Dym O, Albeck S, et al. Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nat Biotechnol 2022;40:1143–9. [CrossRef]
- Yu S, Yang H, Li T, Pan H, Ren S, Luo G, et al. Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nat Commun 2021;12:5131. [CrossRef]
- Kannoly S, Gao T, Dey S, Wang I-N, Singh A, Dennehy JJ. Optimum Threshold Minimizes Noise in Timing of Intracellular Events. iScience 2020;23:101186. [CrossRef]
- Sultana A, Kumar R. Modified bactofection for efficient and functional DNA delivery using invasive E. coli DH10B vector into human epithelial cell line. Journal of Drug Delivery Science and Technology 2022;70:103159; [CrossRef]
- Grillot-Courvalin C, Goussard S, Huetz F, et al. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998;16(9):862–866; [CrossRef]
- Zare M, Farhadi A, Zare F, et al. Genetically engineered E. coli invade epithelial cells and transfer their genetic cargo into the cells: an approach to a gene delivery system. Biotechnol Lett 2023;45(7):861–871; [CrossRef]
- Schembri MA, Dalsgaard D, Klemm P. Capsule Shields the Function of Short Bacterial Adhesins. J Bacteriol 2004;186(5):1249–1257; [CrossRef]
- Hickey AM, Bhaskar U, Linhardt RJ, et al. Effect of eliminase gene (elmA) deletion on heparosan production and shedding in Escherichia coli K5. J Biotechnol 2013;165(3–4):175–177; [CrossRef]
- Raman V, Van Dessel N, Hall CL, Wetherby VE, Whitney SA, Kolewe EL, et al. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. Nat Commun 2021;12:6116. [CrossRef]
- Brumell JH, Tang P, Zaharik ML, Finlay BB. Disruption of the Salmonella-Containing Vacuole Leads to Increased Replication of Salmonella enterica Serovar Typhimurium in the Cytosol of Epithelial Cells. Infect Immun 2002;70:3264–70. [CrossRef]
- Pilgrim S, Stritzker J, Schoen C, et al. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 2003;10(24):2036–2045. [CrossRef]
- Johansson P, Lindgren T, Lundström M, et al. PCR-generated linear DNA fragments utilized as a hantavirus DNA vaccine. Vaccine 2002;20(27):3379–3388; [CrossRef]
- Zhu J, Batra H, Ananthaswamy N, et al. Design of bacteriophage T4-based artificial viral vectors for human genome remodeling. Nat Commun 2023;14(1):2928; [CrossRef]
- Molinari S, Shis DL, Bhakta SP, et al. A synthetic system for asymmetric cell division in Escherichia coli. Nat Chem Biol 2019;15(9):917–924; [CrossRef]
- Eswarappa SM, Negi VD, Chakraborty S, et al. Division of the Salmonella-Containing Vacuole and Depletion of Acidic Lysosomes in Salmonella-Infected Host Cells Are Novel Strategies of Salmonella enterica To Avoid Lysosomes. Infect Immun 2010;78(1):68–79; [CrossRef]
- Singer ZS, Pabón J, Huang H, et al. Engineered bacteria launch and control an oncolytic virus. bioRxiv 2023;2023.09.28.559873; [CrossRef]
- Mc Cafferty S, De Temmerman J, Kitada T, et al. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Molecular Therapy 2021;29(3):1164–1173; [CrossRef]
- Perkovic M, Gawletta S, Hempel T, et al. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol Ther 2023;31(6):1636–1646; [CrossRef]
- Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma. J Clin Oncol 2002;20:142–52.
- Heimann DM, Rosenberg SA. Continuous Intravenous Administration of Live Genetically Modified Salmonella Typhimurium in Patients With Metastatic Melanoma. J Immunother 2003;26:179–80.
- Le DT, Picozzi VJ, Ko AH, et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clinical Cancer Research 2019;25(18):5493–5502; [CrossRef]
- Heinrich J, Wiegert T. Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Research in Microbiology 2009;160:696–703. [CrossRef]
- Brink KR, Hunt MG, Mu AM, et al. An E. coli display method for characterization of peptide-sensor kinase interactions. Nat Chem Biol 2023;19(4):451–459. [CrossRef]
- Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 2023;380:eadg6518. [CrossRef]
- Mofford DM, Adams STJr, Reddy GSKK, Reddy GR, Miller SC. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity. J Am Chem Soc 2015;137:8684–7. [CrossRef]
- Antas P, Carvalho C, Cabral-Teixeira J, Lemos L de, Seabra MC. Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends in Molecular Medicine 2023;0. [CrossRef]
- Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and Subretinal Injections of AAV Using Transscleral Microneedles for Retinal Gene Delivery in Nonhuman Primates. Mol Ther Methods Clin Dev 2020;16:179–191. [CrossRef]
- Chuah J-A, Matsugami A, Hayashi F, et al. Self-Assembled Peptide-Based System for Mitochondrial-Targeted Gene Delivery: Functional and Structural Insights. Biomacromolecules 2016;17(11):3547–3557; [CrossRef]
- Than A, Liu C, Chang H, et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun 2018;9(1):4433; [CrossRef]
- Yang RY, Quan J, Sodaei R, Aguet F, Segrè AV, Allen JA, et al. A systematic survey of human tissue-specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation 2018:311563. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).