Submitted:
23 April 2024
Posted:
24 April 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Geological Setting
Preceding Rainfall
Materials and Methods
Field Investigation
Laboratory Experiments
LS-RAPID Program
Results and Discussion
Controlling Factors
Parameters Setting
Conclusion
- 1)
- Controlling factors, including apparent friction angle, slope angle, hydrological condition, change in sliding direction, and liquefaction mechanism, contributed to significant differences in failure destructiveness, sliding speed, motion features, and sliding distance between these two landslides.
- 2)
- The simulation result demonstrated that motion features of the entire traveling path of these two landslides were consistent with those that of the field investigation.
Funding
Data Available Statement
Acknowledges
Conflicts of Interest
References
- Wang, F.W.; Cheng, Q.G.; Highland, L.; Miyajima, M.; Wang, H.B.; Yan, C.G. Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan province, China. Landslides 2009, 6, 47–54. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, F.W.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Keefer, D.K. (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions. Geomorphology and Natural Hazards, Elsevier, 1994: 265-284.
- Harp, E.L.; Jibson, R.W. Landslides triggered by the 1994 Northridge, California, earthquake. Bulletin of the Seismological Society of America 1996, 86, S319–S332. [Google Scholar] [CrossRef]
- Hung, J.J. Chi-Chi earthquake induced landslides in Taiwan. Earthquake Engineering and Engineering Seismology 2000, 2, 25–33. [Google Scholar]
- Sassa, K. Landslide disasters triggered by the 2004 Mid-Niigata Prefecture earthquake in Japan. Landslides 2005, 2, 135–142. [Google Scholar] [CrossRef]
- Dai, Z.L.; Huang, Y.; Cheng, H.L.; Xu, Q. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Engineering Geology 2014, 180, 21–33. [Google Scholar] [CrossRef]
- Tang, C.; Ma, G.C.; Chang, M.; Li, W.L.; Zhang, D.D.; Jia, T.; Zhou, Z.Y. Landslides triggered by the 20 April 2013 Lushan earthquake, Sichuan Province, China. Engineering Geology 2015, 187, 45–55. [Google Scholar] [CrossRef]
- Kiyota, T.; Ikeda, T.; Konagai, K.; Shiga, M. Geotechnical damage caused by the 2016 Kumamoto earthquake, Japan. International Journal of Geoengineering Case Histories 2017, 4, 78–94. [Google Scholar]
- Zhang, S.; Li, R.; Wang, F.W.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Bao, Y.J.; Huang, Y.; Liu, G.R.; Zeng, W. SPH simulation of high-volume rapid landslide triggered by earthquakes based on a unified constitutive model. Part II: Solid-liquid-like phase transition and flow-like landslide. International Journal of computational methods 2020, 17, 1850149. [Google Scholar]
- FDMA. Summary of the 2016 Kumamoto earthquake. Fire and Disaster Management Agency, Ministry of Internal Affairs and Communications. Available online: https://www.fdma.go.jp/dis-aster/info/items/kumamoto.pdf (accessed on 1 July 2022).
- Xu, C.; Ma, S.; Tan, Z.; Xie, C.; Toda, S.; Huang, X. Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides 2018, 15, 551–564. [Google Scholar]
- New Zealand Society for Earthquake Engineering “Learning from Earthquakes Mission: Kumamoto Earthquake 2016, Japan”. In-Country Report No. 2 of 14th May 2016, 19 pp. Microsoft Word - NZSEE Kumamoto_LFE_In-country_repot no 2_ final (learningfromearthquakes.org).
- Dai, Z.L.; Wang, F.W.; Song, K.; Iio, A. A first look at a landslide triggered by the 2016 Kumamoto earthquake near the Aso Volcanological Laboratory. Quarterly Journal of Engineering Geology and Hydrogeology 2017, 50, 111–116. [Google Scholar] [CrossRef]
- FDMA. Summary of the 2018 Shimane Western earthquake. Fire and Disaster Management Agency, Ministry of Internal Affairs and Communications. Available online: https://www.fdma.go.jp/disaster/info/items/190820simanekennseibujisinn17.pdf (accessed on 20 August 2019).
- Li, R.; Wang, F.W.; Zhang, S. Failure mechanism of a flow-like landslide triggered by the 2018 western Shimane earthquake. Landslides 2020, 17, 2359–2371. [Google Scholar] [CrossRef]
- Wang, F.W. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long run out landslides triggered by earthquake. Journal of Engineering Geology 2019, 27, 98–107. [Google Scholar]
- Sassa, K. Geotechnical model for the motion of landslides. In Proceedings of the 5th International Symposium on Landslides, 1988; Volume 1, pp. 37–65. [Google Scholar]
- Wang, F.W.; Sassa, K. A modified geotechnical simulation model for the areal prediction of landslide motion. In: Proceedings of the. First European Conference. on Landslides, Pargue 2002, pp.735-740.
- Wang, F.W.; Sassa, K. Landslide simulation by a geotechnical model combined with a model for apparent friction angle. Physics and Chemistry of the Earth, Parts A/B/C 2010, 35, 149–161. [Google Scholar] [CrossRef]
- Sassa, K.; Nagai, O.; Solidum, R.; Yamazaki, Y.; Ohta, H. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslides. Landslides 2010, 7, 219–236. [Google Scholar] [CrossRef]
- Gradiški, K.; Sassa, K.; He, B.; Željko, A.; Snježana, M.A.; Martin, K.; Predrag, K.; Maja, O. Application of integrated landslide simulation model LS-Rapid to the to the Kostanjek Landslide, Zagreb, Croatia. In: Proceedings of the 1st regional symposium on landslides in the Adriatic Balkan Region. 2013: 11-16.
- Wang, F.W.; Sassa, K.; Matsumoto, T.; Okuno, T. Sliding mechanism and motion prediction of flowslides in crushable soils. Journal of the landslide society 2014, 40, 377–388, (In Japanese with English abstract). [Google Scholar] [CrossRef] [PubMed]
- Sassa, K.; Dang, K.; Yanagisawa, H.; He, B. A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides 2016, 13, 1405–1419. [Google Scholar] [CrossRef]
- Dang, K.; Sassa, K.; Fukuoka, H.; Sakai, N.; Sato, Y.; Takara, K.; Quang, L.H.; Loi, D.H.; Tien, P.V.; Ha, N.D. Mechanism of two rapid and long-runout landslides in the 16 April 2016 Kumamoto earthquake using a ring-shear apparatus and computer simulation (LS-RAPID). Landslides 2016, 13, 1525–1534. [Google Scholar] [CrossRef]
- Loi, D.H.; Quang, L.H.; Sassa, K.; Taraka, K.; Dang, K.; Thanh, N.K.; Tien, P.V. The 28 July 2015 rapid landslide at Ha Long City, Quang Ninh, Vietnam. Landslides 2017, 14, 1207–1215. [Google Scholar] [CrossRef]
- Huy, L.D.; Sassa, K.; Fukuoka, H. Initiation mechanism of rapid and long run-out landslide and simulation of Hiroshima landslide disasters using the integrated simulation model (LS-RAPID). Landslide dynamics: 2018, ISDR-ICL landslide.
- Setiawan, H.; Wilopo, W.; Fathani, T.F.; Kamawati, D. Analysis of potential landslide and its motion behavior in Salem District, Brebes Regency, Central Java of Indonesia by using the LS-RAPID numerical simulation. Landslides 2019, 16, 2219–2232. [Google Scholar] [CrossRef]
- Loi, D.H.; Sassa, K.; Dang, K.; Le Luong, H. Landslide Hazard Zoning Based on the Integrated Simulation Model (LS-Rapid) . Understanding and Reducing Landslide Disaster Risk: Volume 4 Testing, Modeling and Risk Assessment 5th, 2021: 259-266.
- Tan, Q.; Sassa, K.; Dang, K.; Konagai, K.; Karunawardena, A.; Bandara, R.M.S.; Tang, H.; Sato, G. Estimation of the past and future landslide hazards in the neighboring slopes of the 2016 Aranayake landslide, Sri Lanka. Landslides 2020, 17, 1727–1738. [Google Scholar] [CrossRef]
- Dai, Z.L.; Wang, F.W.; Huang, Y.; Song, K.; Iio, A. SPH-based numerical modeling for the post-failure behavior of the landslides triggered by the 2016 Kumamoto earthquake. Geoenvironmental Disaster 2016, 3, 24. [Google Scholar] [CrossRef]
- Song, K.; Wang, F.W.; Dai, ZL.; Iio, A.; Osaka, O.; Sakata, S. Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bulletin of Engineering Geology and the Environment 2019, 78, 167–186. [Google Scholar] [CrossRef]
- Miyabuchi, Y. A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan. Sedimentary Geology 2009, 220, 169–189. [Google Scholar] [CrossRef]
- Ono, K.; Watanabe, K.; Hoshizumi, H.; Ikebe, S. Ash eruption of the Naka-dake crater, Aso volcano, southwestern Japan. Journal of volcanology and geothermal research 1995, 66, 137–148. [Google Scholar] [CrossRef]
- Chiaro G., Alexander G., Brabhaharan, P., Massey C., Koseki J., Yamada S.; Aoyagi Y. Reconnissance report on geotechnical and geological aspects of the 14-16 April 2016 Kumamoto earthquakes, Japan. Bulletin of the New Zealand Society for Earthquake Engineering 2017, 50, 365–393. [CrossRef]
- Yang, H.F.; Wang, F.W.; Vilímek, V.; Araiba, K.; Asano, S. Investigation of rainfall-induced shallow landslides on the northeastern rim of Aso caldera, Japan, in July 2012. Geoenvironmental Disasters, 2, 20.
- Legros, F. The mobility of long-runout landslides. Engineering geology 2002, 63, 301–331. [Google Scholar] [CrossRef]
- Qureshi, M.U.; Towhata, I.; Yamada, S.; Aziz, M.; Aoyama, S. Geotechnical risk assessment of highly weathered slopes using seismic refraction technique. Prediction and simulation methods for geohazard mitigation, 2009, Taylor & Francis Group, London.
- Tanaka, Y.; Wang, F.W.; Nakamura, K.; Matsumoto, T. Feature and sliding mechanism of a flowslide triggered by continual rainfall in Yamashina area, Kanazawa City, Japan. Journal of the Japan Landslide Society 2005, 42, 136–145, (In Japanese with English abstract) https://www.jstage.jst.go.jp/article/jls2003/42/2/42_2_136/_article/‐char/ja/. [Google Scholar] [CrossRef]
- The Japanese Geotechnical Society (JGS) Soil test (2010): Basic and guidance, 2nd ed, Japan, Maruzen press (in Japanese).
- Sassa, K. The geotechnical classification of landslides. In: Proceedings of the Forth International Conference and Field Workshop on Landslides, 1985, 31-40. https://www.issmge.org/uploads/publications/1/34/1985_05_0010.pdf.
- Scheidegger A., E. On the Prediction of the Reach and Velocity of Catastrophic Landslides, Rock Mechanics 1973, 5, 231–236. https://link.springer.com/article/10.1007/BF01301796. [CrossRef]
- Varnes, D.J. Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) landslides, analysis and control, special report 186: Transportation research board, National Academy of Sciences, Washington, DC., 1978, pp.11-33. https://onlinepubs.trb.org/onlinepubs/sr/sr176/176-002.pdf.
- Zhang, D.; Sassa, K. A study of the apparent friction angle after failure during undrained shear of loess soils. Journal of Japan Society for Erosion Control Engineering 1996, 49, 20–27, (In Japanese with English abstract) https://www.jstage.jst.go.jp/article/sabo1973/49/3/49_3_20/_pdf/‐char/en. [Google Scholar]
- Sassa, K. A new intelligent type dynamic loading ring shear apparatus. Landslide new (Japan Landslide Society) 1997, 10, 33. [Google Scholar]
- Hung, C.; Liu, C.H.; Lin, G.W.; Leshchinsky, B. The Aso-Bridge coseismic landslide: A numerical investigation of failure and runout behavior using finite and discrete element methods. Bulletin of Engineering Geology and the Environment 2019, 78, 2459–2472. [Google Scholar] [CrossRef]
- Goda K.; Campbell G.; Hulme L.; Ismael B., Ke L., Marsh R., ... & Wilkinson S. The 2016 Kumamoto earthquakes: Cascading geological hazards and compounding risks. Frontiers in built environment 2016, 2, 19. [Google Scholar]
- Sassa, K.; Wang, G.H.; Fukuoka, H.; Ochiai, T.; Sugiyama, M.; Sakiguchi, T. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides 2004, 1, 221–235. [Google Scholar] [CrossRef]
- Jaky, J. State of stress at great depth. In Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering 1948; pp. 103–107.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).