Submitted:
15 April 2024
Posted:
15 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Study Groups
Implant Socket Preparation Protocol
Statistical Analyses
3. Results
Inter-Group Implant Removal Torque Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jenny, G.; Jauernik, J.; Bierbaum, S.; Bigler, M.; Grätz, K.W.; Rücker, M.; Stadlinger, B. A Systematic Review and Meta-Analysis on the Influence of Biological Implant Surface Coatings on Periimplant Bone Formation. J. Biomed. Mater. Res. A 2016, 104, 2898–2910. [Google Scholar] [CrossRef] [PubMed]
- Leong, D. , Yap, A., Tay, J., & Tan, W. A Ptient’s Guide to. Dental Implants. First Edition. Implantdontics Pte Ltd, The Oral Maxillofacial Practice Pte Ltd and MyoHealth Asia Pte Ltd; 2006. In.
- Mathieu, V.; Vayron, R.; Richard, G.; Lambert, G.; Naili, S.; Meningaud, J.-P.; Haiat, G. Biomechanical Determinants of the Stability of Dental Implants: Influence of the Bone–Implant Interface Properties. J. Biomech. 2014, 47, 3–13. [Google Scholar] [CrossRef]
- Shemtov-Yona, K.; Rittel, D. An Overview of the Mechanical Integrity of Dental Implants. BioMed Res. Int. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Zohrabian, V.M.; Sonick, M.; Hwang, D.; Abrahams, J.J. Dental Implants.; Elsevier, 2015; Vol. 36, pp. 415–426.
- Searson, L.; Gough, M.; Hemmings, K. History and Development of Dental Implants. Implantol. Gen. Dent. Pract. Lond. Chic. Quintessence Publ. Co 2005, 19–41. [Google Scholar]
- Diz, P.; Scully, C.; Sanz, M. Dental Implants in the Medically Compromised Patient. J. Dent. 2013, 41, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Paquette, D.W.; Brodala, N.; Williams, R.C. Risk Factors for Endosseous Dental Implant Failure. Dent. Clin. 2006, 50, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Abrahamsson, I.; Albouy, J.; Lindhe, J. Bone Healing at Implants with a Fluoride-modified Surface: An Experimental Study in Dogs. Clin. Oral Implants Res. 2007, 18, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, I.; Berglundh, T.; Linder, E.; Lang, N.P.; Lindhe, J. Early Bone Formation Adjacent to Rough and Turned Endosseous Implant Surfaces: An Experimental Study in the Dog. Clin. Oral Implants Res. 2004, 15, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Kalra, P. Effect of Dental Implant Parameters on Stress Distribution at Bone-Implant Interface. Inter J Sci Res 2013, 2, 121–124. [Google Scholar]
- Triplett, R.G.; Frohberg, U.; Sykaras, N.; Woody, R.D. Implant Materials, Design, and Surface Topographies: Their Influence on Osseointegration of Dental Implants. J. Long. Term Eff. Med. Implants 2003, 13. [Google Scholar] [CrossRef]
- Sullivan, R.M. Implant Dentistry and the Concept of Osseointegration: A Historical Perspective. J. Calif. Dent. Assoc. 2001, 29, 737–744. [Google Scholar] [CrossRef]
- McNutt, M.D.; Chou, C. Current Trends in Immediate Osseous Dental Implant Case Selection Criteria. J. Dent. Educ. 2003, 67, 850–859. [Google Scholar] [CrossRef]
- Vidyasagar, L.; Apse, P. Dental Implant Design and Biological Effects on Bone-Implant Interface. Stomatologija 2004, 6, 51–54. [Google Scholar]
- Gulsahi, A. Bone Quality Assessment for Dental Implants. Rij. InTech 2011, 437–452. [Google Scholar]
- Jemt, T.; Lekholm, U. Implant Treatment in Edentulous Maxillae: A 5-Year Follow-up Report on Patients with Different Degrees of Jaw Resorption. Int. J. Oral Maxillofac. Implants 1995, 10. [Google Scholar]
- Tinsley, D.; Watson, C.; Ogden, A. A Survey of UK Centres on Implant Failures. J. Oral Rehabil. 1999, 26, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Turkyilmaz, I.; Tözüm, T.; Tumer, C. Bone Density Assessments of Oral Implant Sites Using Computerized Tomography. J. Oral Rehabil. 2007, 34, 267–272. [Google Scholar] [CrossRef]
- Farré-Pagès, N.; Augé-Castro, M.L.; Alaejos-Algarra, F.; Mareque-Bueno, J.; Ferrés-Padró, E.; Hernández-Alfaro, F. Relation between Bone Density and Primary Implant Stability. Med Oral Patol Oral Cir Bucal 2011, 16, e62–7. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, M.M.; Wolke, J.G.; Jansen, J.A. The Effects of Implant Surface Roughness and Surgical Technique on Implant Fixation in an in Vitro Model. Clin. Oral Implants Res. 2006, 17, 172–178. [Google Scholar] [CrossRef]
- Stimmelmayr, M.; Beuer, F.; Edelhoff, D.; Güth, J. Implant Impression Techniques for the Edentulous Jaw: A Summary of Three Studies. J. Prosthodont. 2016, 25, 146–150. [Google Scholar] [CrossRef]
- Seifert, L.B.; Schnurr, B.; Herrera-Vizcaino, C.; Begic, A.; Thieringer, F.; Schwarz, F.; Sader, R. 3D-printed Patient Individualised Models vs Cadaveric Models in an Undergraduate Oral and Maxillofacial Surgery Curriculum: Comparison of Student’s Perceptions. Eur. J. Dent. Educ. 2020, 24, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Gao, Y.; Zhao, J.; Yuan, L.; Li, C.; Liu, Z.; Hou, Z. A Mild Method for Surface-Grafting PEG onto Segmented Poly (Ester-Urethane) Film with High Grafting Density for Biomedical Purpose. Polymers 2018, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xiao, M.; Yuan, L.; Zhang, J.; Hou, Z. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane. Polymers 2018, 10, 580. [Google Scholar] [CrossRef] [PubMed]
- Szperlich, P.; Toroń, B. An Ultrasonic Fabrication Method for Epoxy Resin/SbSI Nanowire Composites, and Their Application in Nanosensors and Nanogenerators. Polymers 2019, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Guirado, J.L.C.; Bettach, R.; Fabbro, M.D.; Martínez, C.P.; Shibli, J.A. Evaluation of the Insertion Torque, Implant Stability Quotient and Drilled Hole Quality for Different Drill Design: An in Vitro Investigation. Clin. Oral Implants Res. 2018, 29, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Romanos, G.E.; Delgado-Ruiz, R.A.; Sacks, D.; Calvo-Guirado, J.L. Influence of the Implant Diameter and Bone Quality on the Primary Stability of Porous Tantalum Trabecular Metal Dental Implants: An in Vitro Biomechanical Study. Clin. Oral Implants Res. 2018, 29, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Comuzzi, L.; Iezzi, G.; Piattelli, A.; Tumedei, M. An in Vitro Evaluation, on Polyurethane Foam Sheets, of the Insertion Torque (IT) Values, Pull-out Torque Values, and Resonance Frequency Analysis (RFA) of Nanoshort Dental Implants. Polymers 2019, 11, 1020. [Google Scholar] [CrossRef]
- Di Stefano, D.A.; Arosio, P.; Gastaldi, G.; Gherlone, E. The Insertion Torque-Depth Curve Integral as a Measure of Implant Primary Stability: An in Vitro Study on Polyurethane Foam Blocks. J. Prosthet. Dent. 2018, 120, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, I.N.; Tonsekar, P.P.; Najafi, B.; Drew, H.J.; Sullivan, A.J.; Petrov, S.D. Comparison of Osteotome and Conventional Drilling Techniques for Primary Implant Stability: An in Vitro Study. J. Oral Implantol. 2016, 42, 321–325. [Google Scholar] [CrossRef]
- Glauser, R.; Sennerby, L.; Meredith, N.; Rée, A.; Lundgren, A.; Gottlow, J.; Hämmerle, C.H. Resonance Frequency Analysis of Implants Subjected to Immediate or Early Functional Occlusal Loading: Successful vs. Failing Implants. Failing Implants. Clin. Oral Implants Res. 2004, 15, 428–434. [Google Scholar] [CrossRef]
- Kittur, N.; Oak, R.; Dekate, D.; Jadhav, S.; Dhatrak, P. Dental Implant Stability and Its Measurements to Improve Osseointegration at the Bone-Implant Interface: A Review. Mater. Today Proc. 2021, 43, 1064–1070. [Google Scholar] [CrossRef]
- Friberg, B.; Sennerby, L.; Roos, J.; Lekholm, U. Identification of Bone Quality in Conjunction with Insertion of Titanium Implants. A Pilot Study in Jaw Autopsy Specimens. Clin. Oral Implants Res. 1995, 6, 213–219. [Google Scholar] [CrossRef]
- Ikumi, N.; Tsutsumi, S. Assessment of Correlation between Computerized Tomography Values of the Bone and Cutting Torque Values at Implant Placement: A Clinical Study. Int. J. Oral Maxillofac. Implants 2005, 20. [Google Scholar]
- Huang, H.; Lee, S.; Yeh, C.; Lin, C. Resonance Frequency Assessment of Dental Implant Stability with Various Bone Qualities: A Numerical Approach. Clin. Oral Implants Res. 2002, 13, 65–74. [Google Scholar] [CrossRef]
- Atsumi, M.; Park, S.-H.; Wang, H.-L. Methods Used to Assess Implant Stability: Current Status. Int. J. Oral Maxillofac. Implants 2007, 22. [Google Scholar]
- Campos, F.E.; Gomes, J.B.; Marin, C.; Teixeira, H.S.; Suzuki, M.; Witek, L.; Zanetta-Barbosa, D.; Coelho, P.G. Effect of Drilling Dimension on Implant Placement Torque and Early Osseointegration Stages: An Experimental Study in Dogs. J. Oral Maxillofac. Surg. 2012, 70, e43–e50. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, H.A.; Francischone, C.E.; Fliho, H.N.; de Oliveira, R.C.G. A Comparison between Cutting Torque and Resonance Frequency in the Assessment of Primary Stability and Final Torque Capacity of Standard and TiUnite Single-Tooth Implants under Immediate Loading. Int. J. Oral Maxillofac. Implants 2004, 19. [Google Scholar]
- Neugebauer, J.; Traini, T.; Thams, U.; Piattelli, A.; Zöller, J.E. Peri-implant Bone Organization under Immediate Loading State. Circularly Polarized Light Analyses: A Minipig Study. J. Periodontol. 2006, 77, 152–160.
- Duyck, J.; Corpas, L.; Vermeiren, S.; Ogawa, T.; Quirynen, M.; Vandamme, K.; Jacobs, R.; Naert, I. Histological, Histomorphometrical, and Radiological Evaluation of an Experimental Implant Design with a High Insertion Torque. Clin. Oral Implants Res. 2010, 21, 877–884. [Google Scholar] [CrossRef]
- Goswami, M.; Kumar, M.; Vats, A.; Bansal, A. Evaluation of Dental Implant Insertion Torque Using a Manual Ratchet. Med. J. Armed Forces India 2015, 71, S327–S332. [Google Scholar] [CrossRef]
- Yang, B.; Irastorza-Landa, A.; Heuberger, P.; Ploeg, H.-L. Effect of Insertion Factors on Dental Implant Insertion Torque/Energy-Experimental Results. J. Mech. Behav. Biomed. Mater. 2020, 112, 103995. [Google Scholar] [CrossRef]
- Farronato, D.; Manfredini, M.; Stocchero, M.; Caccia, M.; Azzi, L.; Farronato, M. Influence of Bone Quality, Drilling Protocol, Implant Diameter/Length on Primary Stability: An in Vitro Comparative Study on Insertion Torque and Resonance Frequency Analysis. J. Oral Implantol. 2020, 46, 182–189. [Google Scholar] [CrossRef]
- Bassi, M.A.; Arosio, P.; Alessio Di Stefano, D. Evaluation of Peri-Implant Bone Stress on D1 Bone Using a Computerized Torque-Measuring Implant Motor: A Study on Photoelastic Resin Blocks. Int. J. Oral Maxillofac. Implants 2018, 33. [Google Scholar] [CrossRef]
- Kim, G.-T.; Jin, J.; Mangal, U.; Lee, K.-J.; Kim, K.-M.; Choi, S.-H.; Kwon, J.-S. Primary Stability of Orthodontic Titanium Miniscrews Due to Cortical Bone Density and Re-Insertion. Materials 2020, 13, 4433. [Google Scholar] [CrossRef]
- Fanali, S.; Tumedei, M.; Pignatelli, P.; Inchingolo, F.; Pennacchietti, P.; Pace, G.; Piattelli, A. Implant Primary Stability with an Osteocondensation Drilling Protocol in Different Density Polyurethane Blocks. Comput. Methods Biomech. Biomed. Engin. 2021, 24, 14–20. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Pontes, A.E.; Piattelli, A.; Iezzi, G. Primary Stability of Dental Implants in Low-Density (10 and 20 Pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants. Int. J. Environ. Res. Public. Health 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Al-Tarawneh, S.K.; Thalji, G.; Cooper, L.F. Macrogeometric Differentiation of Dental Implant Primary Stability: An In Vitro Study. Int. J. Oral Maxillofac. Implants 2022, 37. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Di Pietro, N.; Romasco, T.; Montesani, L.; Piattelli, A.; Covani, U. Are Implant Threads Important for Implant Stability? An In Vitro Study Using Low-Density Polyurethane Sheets. Eng 2023, 4, 1167–1178. [Google Scholar] [CrossRef]
- Comuzzi, L.; Tumedei, M.; Romasco, T.; Petrini, M.; Afrashtehfar, K.I.; Inchingolo, F.; Piattelli, A.; Di Pietro, N. Insertion Torque, Removal Torque, and Resonance Frequency Analysis Values of Ultrashort, Short, and Standard Dental Implants: An in Vitro Study on Polyurethane Foam Sheets. J. Funct. Biomater. 2022, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E. Bone Density: A Key Determinant for Clinical Success. Contemp. Implant Dent. 1999, 109–118. [Google Scholar]
- Puisys, A.; Schlee, M.; Linkevicius, T.; Petrakakis, P.; Tjaden, A. Photo-Activated Implants: A Triple-Blinded, Split-Mouth, Randomized Controlled Clinical Trial on the Resistance to Removal Torque at Various Healing Intervals. Clin. Oral Investig. 2020, 24, 1789–1799. [Google Scholar] [CrossRef]
- Nary Filho, H.; Calvo Guirado, J.L.; Matsumoto, M.A.; Bresaola, M.D.; Aur, R. Biomechanical Evaluation of Resistance to Insertion Torque of Different Implant Systems and Insertion Driver Types. Implant Dent. 2015, 24, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Baldi, D.; Lombardi, T.; Colombo, J.; Cervino, G.; Perinetti, G.; Di Lenarda, R.; Stacchi, C. Correlation between Insertion Torque and Implant Stability Quotient in Tapered Implants with Knife-Edge Thread Design. BioMed Res. Int. 2018, 2018, 7201093. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.; Khocht, A.; Suzuki, J.B.; Gaughan, J. Effect of Implant Design on Initial Stability of Tapered Implants. J. Oral Implantol. 2009, 35, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Khayat, P.G.; Milliez, S.N. Prospective Clinical Evaluation of 835 Multithreaded Tapered Screw-Vent Implants: Results after Two Years of Functional Loading. J. Oral Implantol. 2007, 33, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Aspenberg, P.; Goodman, S. ; Toksvig-Larsen, Sør.; Ryd, L.; Albrektsson, T. Intermittent Micromotion Inhibits Bone Ingrowth: Titanium Implants in Rabbits. Acta Orthop. Scand. 1992, 63, 141–145.
- Meredith, N. Assessment of Implant Stability as a Prognostic Determinant. Int. J. Prosthodont. 1998, 11. [Google Scholar]
- Huang, H.-L.; Hsu, J.-T.; Fuh, L.-J.; Tu, M.-G.; Ko, C.-C.; Shen, Y.-W. Bone Stress and Interfacial Sliding Analysis of Implant Designs on an Immediately Loaded Maxillary Implant: A Non-Linear Finite Element Study. J. Dent. 2008, 36, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Bolind, P.K.; Johansson, C.B.; Becker, W.; Langer, L.; Sevetz Jr, E.B.; Albrektsson, T.O. A Descriptive Study on Retrieved Non-threaded and Threaded Implant Designs. Clin. Oral Implants Res. 2005, 16, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Brink, J.; Meraw, S.J.; Sarment, D.P. Influence of Implant Diameter on Surrounding Bone. Clin. Oral Implants Res. 2007, 18, 563–568. [Google Scholar] [CrossRef]
- Eraslan, O.; İnan, Ö. The Effect of Thread Design on Stress Distribution in a Solid Screw Implant: A 3D Finite Element Analysis. Clin. Oral Investig. 2010, 14, 411–416. [Google Scholar] [CrossRef]
- Chun, H.; Cheong, S.; Han, J.; Heo, S.; Chung, J.; Rhyu, I.; Choi, Y.; Baik, H.; Ku, Y.; Kim, M. Evaluation of Design Parameters of Osseointegrated Dental Implants Using Finite Element Analysis. J. Oral Rehabil. 2002, 29, 565–574. [Google Scholar] [CrossRef]
- Chaksupa, C.; Pimkhaokham, A. A Comparison of Implant Stability between Aggressive and Non-Aggressive Dental Implant Design Using Two Different Stability Measuring Techniques: In Vitro.; 2022.
- McCullough, J.J.; Klokkevold, P.R. The Effect of Implant Macro-thread Design on Implant Stability in the Early Post-operative Period: A Randomized, Controlled Pilot Study. Clin. Oral Implants Res. 2017, 28, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Martinez, H.; Davarpanah, M.; Missika, P.; Celletti, R.; Lazzara, R. Optimal Implant Stabilization in Low Density Bone. Clin. Oral Implants Res. 2001, 12, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Wilson Jr, T.; Miller, R.; Trushkowsky, R.; Dard, M. Tapered Implants in Dentistry: Revitalizing Concepts with Technology: A Review. Adv. Dent. Res. 2016, 28, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Rokn, A.; Ghahroudi, A.R.; Mesgarzadeh, A.; Miremadi, A.; Yaghoobi, S. Evaluation of Stability Changes in Tapered and Parallel Wall Implants: A Human Clinical Trial. J. Dent. Tehran Iran 2011, 8, 186. [Google Scholar]
- Lozano-Carrascal, N.; Salomó-Coll, O.; Gilabert-Cerdà, M.; Farré-Pagés, N.; Gargallo-Albiol, J.; Hernández-Alfaro, F. Effect of Implant Macro-Design on Primary Stability: A Prospective Clinical Study. Med. Oral Patol. Oral Cirugia Bucal 2016, 21, e214. [Google Scholar] [CrossRef]
- Ivanova, V.; Chenchev, I.; Zlatev, S.; Mijiritsky, E. Correlation between Primary, Secondary Stability, Bone Density, Percentage of Vital Bone Formation and Implant Size. Int. J. Environ. Res. Public. Health 2021, 18, 6994. [Google Scholar] [CrossRef]
- Barikani, H.; Rashtak, S.; Akbari, S.; Badri, S.; Daneshparvar, N.; Rokn, A. The Effect of Implant Length and Diameter on the Primary Stability in Different Bone Types. J. Dent. Tehran Iran 2013, 10, 449–455. [Google Scholar]
- Darriba, I.; Seidel, A.; Moreno, F.; Botelho, J.; Machado, V.; Mendes, J.J.; Leira, Y.; Blanco, J. Influence of Low Insertion Torque Values on Survival Rate of Immediately Loaded Dental Implants: A Systematic Review and Meta-Analysis. J. Clin. Periodontol. 2023, 50, 158–169. [Google Scholar] [CrossRef]
- Barone, A.; Alfonsi, F.; Derchi, G.; Tonelli, P.; Toti, P.; Marchionni, S.; Covani, U. The Effect of Insertion Torque on the Clinical Outcome of Single Implants: A Randomized Clinical Trial. Clin. Implant Dent. Relat. Res. 2016, 18, 588–600. [Google Scholar] [CrossRef]
- Hsu, Y.-Y.; Huang, H.-L.; Fuh, L.-J.; Tsai, M.-T.; Hsu, J.-T. The Effects of Insertion Approach on the Stability of Dental Implants. Appl. Bionics Biomech. 2022, 2022. [Google Scholar] [CrossRef]
- Misch, C. Bone Augmentation of the Atrophic Posterior Mandible for Dental Implants Using rhBMP-2 and Titanium Mesh: Clinical Technique and Early Results. Int. J. Periodontics Restorative Dent. 2011, 31, 581–589. [Google Scholar] [PubMed]
- Chugh, T.; Jain, A.K.; Jaiswal, R.K.; Mehrotra, P.; Mehrotra, R. Bone Density and Its Importance in Orthodontics. J. Oral Biol. Craniofacial Res. 2013, 3, 92–97. [Google Scholar] [CrossRef] [PubMed]

| n (%) | ||
| Implant placement status | Bone level | 182 (56,9) |
| Not fully inserted | 138 (43,1) | |
| Implant removal torque | Mean±Sd | 80,81±19,22 |
| (Min-Max) | (40-100) | |
| Group | 30 Rpm | 160 (50,0) |
| 50 Rpm | 160 (50,0) | |
| Torque subgroup | 25 torque | 40 (12,5) |
| 30 torque | 40 (12,5) | |
| 35 torque | 40 (12,5) | |
| 40 torque | 40 (12,5) | |
| 45 torque | 40 (12,5) | |
| 50 torque | 40 (12,5) | |
| 55 torque | 40 (12,5) | |
| 60 torque | 40 (12,5) |
| 30 Rpm (n=160) | 50 Rpm (n=160) | ap | ||
| Total | Bone level | 66 (41,3) | 116 (72,5) | a0,001** |
| Not fully inserted | 94 (58,8) | 44 (27,5) | ||
| 25 torque | Bone level | - | - | - |
| Not fully inserted | 20 (100) | 20 (100) | ||
| 30 torque | Bone level | - | - | - |
| Not fully inserted | 20 (100) | 20 (100) | ||
| 35 torque | Bone level | 0 (0) | 16 (80,0) | a0,001** |
| Not fully inserted | 20 (100) | 4 (20,0) | ||
| 40 torque | Bone level | 2 (10) | 20 (100) | a0,001** |
| Not fully inserted | 18 (90) | 0 (0) | ||
| 45 torque | Bone level | 4 (20) | 20 (100) | a0,001** |
| Not fully inserted | 16 (80) | 0 (0) | ||
| 50 torque | Bone level | 20 (100) | 20 (100) | - |
| Not fully inserted | - | - | ||
| 55 torque | Bone level | 20 (100) | 20 (100) | - |
| Not fully inserted | - | - | ||
| 60 torque | Bone level | 20 (100) | 20 (100) | - |
| Not fully inserted | - | - | ||
| Implant removal torque | Mean±Sd | 75,31±21,49 | 86,31±14,75 | b0,001** |
| (Min-Max) | (40-100) | (50-100) | ||
| Torque subgroup | Mean±Sd | (Min-Max) | cp | ||||||||||
| Total (n=320) | 25 torque | 56,00±9,14 | (40-70) | c0,001** | |||||||||
| 30 torque | 61,50±11,67 | (40-80) | |||||||||||
| 35 torque | 70,50±12,50 | (45-100) | |||||||||||
| 40 torque | 76,00±17,44 | (45-100) | |||||||||||
| 45 torque | 92,00±10,55 | (75-100) | |||||||||||
| 50 torque | 95,00±8,77 | (80-100) | |||||||||||
| 55 torque | 96,00±8,10 | (80-100) | |||||||||||
| 60 torque | 99,50±3,16 | (80-100) | |||||||||||
| 30 Rpm (n=160) | 25 torque | 49,25±6,13 | (40-60) | c0,001** | |||||||||
| 30 torque | 52,50±10,07 | (40-80) | |||||||||||
| 35 torque | 61,00±10,08 | (45-80) | |||||||||||
| 40 torque | 65,25±15,85 | (45-100) | |||||||||||
| 45 torque | 92,50±10,58 | (75-100) | |||||||||||
| 50 torque | 90,00±10,26 | (80-100) | |||||||||||
| 55 torque | 93,00±9,79 | (80-100) | |||||||||||
| 60 torque | 99,00±4,47 | (80-100) | |||||||||||
| 50 Rpm (n=160) | 25 torque | 62,75±6,17 | (50-70) | c0,001** | |||||||||
| 30 torque | 70,50±2,76 | (65-75) | |||||||||||
| 35 torque | 80,00±5,38 | (70-100) | |||||||||||
| 40 torque | 86,75±11,39 | (70-100) | |||||||||||
| 45 torque | 91,50±10,77 | (75-100) | |||||||||||
| 50 torque | 100,00±0,00 | (100-100) | |||||||||||
| 55 torque | 99,00±4,47 | (80-100) | |||||||||||
| 60 torque | 100,00±0,00 | (100-100) | |||||||||||
| Post-hoc | 25 torque | 30 torque | 35 torque | 40 torque | 45 torque | 50 torque | 55 torque | 60torque | |||||
| Total | 25 torque | ||||||||||||
| 30 torque | 1,000 | ||||||||||||
| 35 torque | 0,001** | 1,000 | |||||||||||
| 40 torque | 0,001** | 0,007* | 0,678 | ||||||||||
| 45 torque | 0,001** | 0,001** | 0,001** | 0,004** | |||||||||
| 50 torque | 0,001** | 0,001** | 0,001** | 0,001** | 1,000 | ||||||||
| 55 torque | 0,001** | 0,001** | 0,001** | 0,001** | 1,000 | 1,000 | |||||||
| 60 torque | 0,001** | 0,001** | 0,001** | 0,001** | 1,000 | 1,000 | 1,000 | ||||||
| 30 Rpm | 25 torque | ||||||||||||
| 30 torque | 1,000 | ||||||||||||
| 35 torque | 1,000 | 1,000 | |||||||||||
| 40 torque | 0,372 | 1,000 | 1,000 | ||||||||||
| 45 torque | 0,001** | 0,001** | 0,001** | 0,004** | |||||||||
| 50 torque | 0,001** | 0,001** | 0,001** | 0,012* | 1,000 | ||||||||
| 55 torque | 0,001** | 0,001** | 0,001** | 0,002** | 1,000 | 1,000 | |||||||
| 60 torque | 0,001** | 0,001** | 0,001** | 0,001** | 1,000 | 1,000 | 1,000 | ||||||
| 50 Rpm | 25 torque | ||||||||||||
| 30 torque | 1,000 | ||||||||||||
| 35 torque | 0,006** | 0,347 | |||||||||||
| 40 torque | 0,001** | 0,003** | 1,000 | ||||||||||
| 45 torque | 0,001** | 0,001** | 0,490 | 1,000 | |||||||||
| 50 torque | 0,001** | 0,001** | 0,001** | 0,138 | 1,000 | ||||||||
| 55 torque | 0,001** | 0,001** | 0,002** | 0,256 | 1,000 | 1,000 | |||||||
| 60 torque | 0,001** | 0,001** | 0,001** | 0,138 | 1,000 | 1,000 | 1,000 | ||||||
| Torque subgroup | 30 Rpm (n=160) Mean±Sd (Min-Max) |
50 Rpm (n=160) Mean±Sd (Min-Max) |
bp |
| 25 torque | 49,25±6,13 | 62,75±6,17 | 0,001** |
| (40-60) | (50-70) | ||
| 30 torque | 52,50±10,07 | 70,50±2,76 | 0,001** |
| (40-80) | (65-75) | ||
| 35 torque | 61,00±10,08 | 80,00±5,38 | 0,001** |
| (45-80) | (70-100) | ||
| 40 torque | 65,25±15,85 | 86,75±11,39 | 0,001** |
| (45-100) | (70-100) | ||
| 45 torque | 92,50±10,58 | 91,5±10,77 | 0,769 |
| (75-100) | (75-100) | ||
| 50 torque | 90,00±10,26 | 100,00±0,00 | 0,001** |
| (80-100) | (100-100) | ||
| 55 torque | 93,00±9,79 | 99,00±4,47 | 0,017** |
| (80-100) | (80-100) | ||
| 60 torque | 99,00±4,47 | 100,00±0,00 | 0,329 |
| (80-100) | (100-100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).