Submitted:
11 April 2024
Posted:
11 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pre-Erythrocytic Plasmodium Ligands
2.1. Sporozoite Exit from the Circulation
2.2. Hepatocyte Infection
3. Plasmodium Ligands in the Mosquito
3.1. Fertilization
3.2. Traversal of the Midgut Epithelium
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kebaier, C., T. Voza, and J. Vanderberg. "Kinetics of Mosquito-Injected Plasmodium Sporozoites in Mice: Fewer Sporozoites Are Injected into Sporozoite-Immunized Mice." PLoS Pathog 5, no. 4 (2009): e1000399.
- White, N. J., S. Pukrittayakamee, T. T. Hien, M. A. Faiz, O. A. Mokuolu, and A. M. Dondorp. "Malaria." Lancet 383, no. 9918 (2014): 723-35.
- Pradel, G., S. Garapaty, and U. Frevert. "Kupffer and Stellate Cell Proteoglycans Mediate Malaria Sporozoite Targeting to the Liver." Comp Hepatol 3 Suppl 1, no. Suppl 1 (2004): S47.
- Frevert, U., S. Engelmann, S. Zougbede, J. Stange, B. Ng, K. Matuschewski, L. Liebes, and H. Yee. "Intravital Observation of Plasmodium Berghei Sporozoite Infection of the Liver." PLoS Biol 3, no. 6 (2005): e192.
- Tavares, J., P. Formaglio, S. Thiberge, E. Mordelet, N. Van Rooijen, A. Medvinsky, R. Menard, and R. Amino. "Role of Host Cell Traversal by the Malaria Sporozoite During Liver Infection." J Exp Med 210, no. 5 (2013): 905-15.
- Sturm, A., R. Amino, C. van de Sand, T. Regen, S. Retzlaff, A. Rennenberg, A. Krueger, J. M. Pollok, R. Menard, and V. T. Heussler. "Manipulation of Host Hepatocytes by the Malaria Parasite for Delivery into Liver Sinusoids." Science 313, no. 5791 (2006): 1287-90.
- Duffy, P. E. , and J. Patrick Gorres. "Malaria Vaccines since 2000: Progress, Priorities, Products." NPJ Vaccines 5, no. 1 (2020): 48.
- Tsoumani, M. E., C. Voyiatzaki, and A. Efstathiou. "Malaria Vaccines: From the Past Towards the Mrna Vaccine Era." Vaccines (Basel) 11, no. 9 (2023).
- Weiss, G. E., P. R. Gilson, T. Taechalertpaisarn, W. H. Tham, N. W. de Jong, K. L. Harvey, F. J. Fowkes, P. N. Barlow, J. C. Rayner, G. J. Wright, A. F. Cowman, and B. S. Crabb. "Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions During Plasmodium Falciparum Invasion of Erythrocytes." PLoS Pathog 11, no. 2 (2015): e1004670.
- Duffy, P. E. "Transmission-Blocking Vaccines: Harnessing Herd Immunity for Malaria Elimination." Expert Rev Vaccines 20, no. 2 (2021): 185-98.
- Smith, R. C., J. Vega-Rodríguez, and M. Jacobs-Lorena. "The Plasmodium Bottleneck: Malaria Parasite Losses in the Mosquito Vector." Mem Inst Oswaldo Cruz 109, no. 5 (2014): 644-61.
- Tadesse, F. G., L. Meerstein-Kessel, B. P. Goncalves, C. Drakeley, L. Ranford-Cartwright, and T. Bousema. "Gametocyte Sex Ratio: The Key to Understanding Plasmodium Falciparum Transmission?" Trends Parasitol 35, no. 3 (2019): 226-38.
- Ghosh, A. K., I. Coppens, H. Gardsvoll, M. Ploug, and M. Jacobs-Lorena. "Plasmodium Ookinetes Coopt Mammalian Plasminogen to Invade the Mosquito Midgut." Proc Natl Acad Sci U S A 108, no. 41 (2011): 17153-8.
- Cha, S. J., M. S. Kim, C. H. Na, and M. Jacobs-Lorena. "Plasmodium Sporozoite Phospholipid Scramblase Interacts with Mammalian Carbamoyl-Phosphate Synthetase 1 to Infect Hepatocytes." Nat Commun 12, no. 1 (2021): 6773.
- Cha, S. J., M. S. Kim, A. Pandey, and M. Jacobs-Lorena. "Identification of Gapdh on the Surface of Plasmodium Sporozoites as a New Candidate for Targeting Malaria Liver Invasion." J Exp Med 213, no. 10 (2016): 2099-112.
- Cha, S. J., J. Vega-Rodriguez, D. Tao, H. M. Kudyba, K. Hanner, and M. Jacobs-Lorena. "Plasmodium Female Gamete Surface Hsp90 Is a Key Determinant for Fertilization." mBio (2023): e0314223.
- Bonnycastle, L. L., J. S. Mehroke, M. Rashed, X. Gong, and J. K. Scott. "Probing the Basis of Antibody Reactivity with a Panel of Constrained Peptide Libraries Displayed by Filamentous Phage." J Mol Biol 258, no. 5 (1996): 747-62.
- Cha, S. J., K. Park, P. Srinivasan, C. W. Schindler, N. van Rooijen, M. Stins, and M. Jacobs-Lorena. Cd68 Acts as a Major Gateway for Malaria Sporozoite Liver Infection. J Exp Med 2015, 212, 1391–403. [Google Scholar] [CrossRef] [PubMed]
- Cha, S. J., K. J. McLean, and M. Jacobs-Lorena. Identification of Plasmodium Gapdh Epitopes for Generation of Antibodies That Inhibit Malaria Infection. Life Sci Alliance 2018, 1, e201800111. [Google Scholar] [CrossRef] [PubMed]
- Perez-Casal, J., and A. A. Potter. Glyceradehyde-3-Phosphate Dehydrogenase as a Suitable Vaccine Candidate for Protection against Bacterial and Parasitic Diseases. Vaccine 2016, 34, 1012–7. [Google Scholar] [CrossRef] [PubMed]
- Kopeckova, M., I. Pavkova, and J. Stulik. Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to Its Multifunctionality?". Front Cell Infect Microbiol 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, J., S. Li, J. Chen, L. Gan, J. Wang, Q. Xiong, Z. Feng, Q. Li, Z. Deng, X. Yuan, and Y. Yu. Hijacking of Host Plasminogen by Mesomycoplasma (Mycoplasma) Hyopneumoniae Via Gapdh: An Important Virulence Mechanism to Promote Adhesion and Extracellular Matrix Degradation. Microbiol Spectr 023, 11, e0021823. [Google Scholar]
- Zhu, W., C. Wu, C. Kang, C. Cai, Y. Wang, J. Li, Q. Zhang, X. Sun, and M. Jin. Evaluation of the Protective Efficacy of Four Newly Identified Surface Proteins of Erysipelothrix Rhusiopathiae. Vaccine 2018, 36, 8079–83. [Google Scholar] [CrossRef] [PubMed]
- An, R., Y. Guo, M. Gao, and J. Wang. Subcutaneous Streptococcus Dysgalactiae Gapdh Vaccine in Mice Induces a Proficient Innate Immune Response. J Vet Sci 2023, 24, e72. [Google Scholar] [CrossRef]
- Alvarez-Dominguez, C., D. Salcines-Cuevas, H. Teran-Navarro, R. Calderon-Gonzalez, R. Tobes, I. Garcia, S. Grijalvo, A. Paradela, A. Seoane, F. J. Sangari, M. Fresno, J. Calvo-Montes, I. C. Perez Del Molino Bernal, and S. Yanez-Diaz. "Epitopes for Multivalent Vaccines against Listeria, Mycobacterium and Streptococcus Spp: A Novel Role for Glyceraldehyde-3-Phosphate Dehydrogenase. Front Cell Infect Microbiol 2020, 10, 573348. [Google Scholar] [CrossRef] [PubMed]
- Salcines-Cuevas, D., H. Teran-Navarro, R. Calderon-Gonzalez, P. Torres-Rodriguez, R. Tobes, M. Fresno, J. Calvo-Montes, Icpd Molino-Bernal, S. Yanez-Diaz, and C. Alvarez-Dominguez. Glyceraldehyde-3-Phosphate Dehydrogenase Common Peptides of Listeria Monocytogenes, Mycobacterium Marinum and Streptococcus Pneumoniae as Universal Vaccines. Vaccines 2021, 9. [Google Scholar] [CrossRef]
- Sheng, X., H. Zhang, M. Liu, X. Tang, J. Xing, H. Chi, and W. Zhan. Development and Evaluation of Recombinant B-Cell Multi-Epitopes of Pdha1 and Gapdh as Subunit Vaccines against Streptococcus Iniae Infection in Flounder (Paralichthys Olivaceus). Vaccines 2023, 11. [Google Scholar] [CrossRef]
- Gomez-Diaz, E., R. S. Yerbanga, T. Lefevre, A. Cohuet, M. J. Rowley, J. B. Ouedraogo, and V. G. Corces. Epigenetic Regulation of Plasmodium Falciparum Clonally Variant Gene Expression During Development in Anopheles Gambiae. Sci Rep 2017, 7, 40655. [Google Scholar] [CrossRef] [PubMed]
- Kodigepalli, K. M., K. Bowers, A. Sharp, and M. Nanjundan. Roles and Regulation of Phospholipid Scramblases. FEBS Lett 2015, 589. [Google Scholar]
- Rayala, S., V. G. Francis, U. Sivagnanam, and S. N. Gummadi. N-Terminal Proline-Rich Domain Is Required for Scrambling Activity of Human Phospholipid Scramblases. J Biol Chem, 2014; 289, 13206–18. [Google Scholar]
- Bateman, A., R. D. Finn, P. J. Sims, T. Wiedmer, A. Biegert, and J. Soding. Phospholipid Scramblases and Tubby-Like Proteins Belong to a New Superfamily of Membrane Tethered Transcription Factors. Bioinformatics 2009, 2009, 159–62. [Google Scholar]
- Haase, S., M. Condron, D. Miller, D. Cherkaoui, S. Jordan, J. M. Gulbis, and J. Baum. Identification and Characterisation of a Phospholipid Scramblase in the Malaria Parasite Plasmodium Falciparum. Mol Biochem Parasitol 2021, 243, 111374. [Google Scholar] [CrossRef] [PubMed]
- Dal Col, J., M. J. Lamberti, A. Nigro, V. Casolaro, E. Fratta, A. Steffan, and B. Montico. Phospholipid Scramblase 1: A Protein with Multiple Functions Via Multiple Molecular Interactors. Cell Commun Signal 2022, 20, 78. [Google Scholar] [CrossRef] [PubMed]
- Xu, D., W. Jiang, L. Wu, R. G. Gaudet, E. S. Park, M. Su, S. K. Cheppali, N. R. Cheemarla, P. Kumar, P. D. Uchil, J. R. Grover, E. F. Foxman, C. M. Brown, P. J. Stansfeld, J. Bewersdorf, W. Mothes, E. Karatekin, C. B. Wilen, and J. D. MacMicking. Plscr1 Is a Cell-Autonomous Defence Factor against Sars-Cov-2 Infection. Nature 2023, 619, 819–27. [Google Scholar] [CrossRef]
- Zanghi, G., S. S. Vembar, S. Baumgarten, S. Ding, J. Guizetti, J. M. Bryant, D. Mattei, A. T. R. Jensen, L. Renia, Y. S. Goh, R. Sauerwein, C. C. Hermsen, J. F. Franetich, M. Bordessoulles, O. Silvie, V. Soulard, O. Scatton, P. Chen, S. Mecheri, D. Mazier, and A. Scherf. A Specific Pfemp1 Is Expressed in P. Falciparum Sporozoites and Plays a Role in Hepatocyte Infection. Cell Rep 2018, 22, 2951–63. [Google Scholar] [CrossRef]
- Lindner, S. E., K. E. Swearingen, A. Harupa, A. M. Vaughan, P. Sinnis, R. L. Moritz, and S. H. Kappe. Total and Putative Surface Proteomics of Malaria Parasite Salivary Gland Sporozoites. Mol Cell Proteomics 2013, 12, 1127–43. [Google Scholar] [CrossRef] [PubMed]
- Schopf, F. H., M. M. Biebl, and J. Buchner. The Hsp90 Chaperone Machinery. Nat Rev Mol Cell Biol 2017, 18, 345–60. [Google Scholar] [CrossRef]
- Corigliano, M. G., V. A. Sander, E. F. Sanchez Lopez, V. A. Ramos Duarte, L. F. Mendoza Morales, S. O. Angel, and M. Clemente. Heat Shock Proteins 90 Kda: Immunomodulators and Adjuvants in Vaccine Design against Infectious Diseases. Front Bioeng Biotechnol 2020, 8, 622186. [Google Scholar]
- Calvert, M. E., L. C. Digilio, J. C. Herr, and S. A. Coonrod. Oolemmal Proteomics--Identification of Highly Abundant Heat Shock Proteins and Molecular Chaperones in the Mature Mouse Egg and Their Localization on the Plasma Membrane. Reprod Biol Endocrinol 2003, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Pires, E. S., and V. V. Khole. A Block in the Road to Fertility: Autoantibodies to Heat-Shock Protein 90-Beta in Human Ovarian Autoimmunity. Fertil Steril 2009, 92, 1395–409. [Google Scholar] [CrossRef]
- Burnie, J. P., W. Brooks, M. Donohoe, S. Hodgetts, A. al-Ghamdi, and R. C. Matthews. Defining Antibody Targets in Streptococcus Oralis Infection. Infect Immun 1996, 64, 1600–8. [Google Scholar] [CrossRef] [PubMed]
- Chung, E. J., Y. I. Jeong, M. R. Lee, Y. J. Kim, S. E. Lee, S. H. Cho, W. J. Lee, M. Y. Park, and J. W. Ju. Heat Shock Proteins 70 and 90 from Clonorchis Sinensis Induce Th1 Response and Stimulate Antibody Production. Parasit Vectors 2017, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Denikus, N., F. Orfaniotou, G. Wulf, P. F. Lehmann, M. Monod, and U. Reichard. Fungal Antigens Expressed During Invasive Aspergillosis. Infect Immun 2005, 73, 4704–13. [Google Scholar] [CrossRef]
- Nowalk, A. J., R. D. Gilmore, Jr., and J. A. Carroll. Serologic Proteome Analysis of Borrelia Burgdorferi Membrane-Associated Proteins. Infect Immun 2006, 74, 3864–73. [Google Scholar] [CrossRef]
- Wang, G., M. Sun, J. Fang, Q. Yang, H. Tong, and L. Wang. Protective Immune Responses against Systemic Candidiasis Mediated by Phage-Displayed Specific Epitope of Candida Albicans Heat Shock Protein 90 in C57bl/6j Mice. Vaccine 2006, 24, 6065–73. [Google Scholar] [CrossRef]
- Li, X., Y. Yang, F. Yang, F. Wang, H. Li, H. Tian, and G. Wang. Chitosan Hydrogel Loaded with Recombinant Protein Containing Epitope C from Hsp90 of Candida Albicans Induces Protective Immune Responses against Systemic Candidiasis. Int J Biol Macromol 2021, 173, 327–40. [Google Scholar] [CrossRef]
- Florens, L., X. Liu, Y. Wang, S. Yang, O. Schwartz, M. Peglar, D. J. Carucci, J. R. Yates, 3rd, and Y. Wu. Proteomics Approach Reveals Novel Proteins on the Surface of Malaria-Infected Erythrocytes. Mol Biochem Parasitol 2004, 135, 1–11. [Google Scholar] [CrossRef]
- Florens, L., M. P. Washburn, J. D. Raine, R. M. Anthony, M. Grainger, J. D. Haynes, J. K. Moch, N. Muster, J. B. Sacci, D. L. Tabb, A. A. Witney, D. Wolters, Y. Wu, M. J. Gardner, A. A. Holder, R. E. Sinden, J. R. Yates, and D. J. Carucci. A Proteomic View of the Plasmodium Falciparum Life Cycle. Nature 2002, 419, 520–6. [Google Scholar] [CrossRef]
- Swearingen, K. E., S. E. Lindner, L. Shi, M. J. Shears, A. Harupa, C. S. Hopp, A. M. Vaughan, T. A. Springer, R. L. Moritz, S. H. Kappe, and P. Sinnis. "Interrogating the Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of Glycosylation on Csp and Trap by Mass Spectrometry-Based Proteomics. PLoS Pathog 2016, 12, e1005606.
- Bayih, A. G., A. Folefoc, A. N. Mohon, S. Eagon, M. Anderson, and D. R. Pillai. In Vitro and in Vivo Anti-Malarial Activity of Novel Harmine-Analog Heat Shock Protein 90 Inhibitors: A Possible Partner for Artemisinin. Malar J 2016, 15, 579. [Google Scholar] [CrossRef] [PubMed]
- Shahinas, D., G. Macmullin, C. Benedict, I. Crandall, and D. R. Pillai. Harmine Is a Potent Antimalarial Targeting Hsp90 and Synergizes with Chloroquine and Artemisinin. Antimicrob Agents Chemother 2012, 56, 4207–13. [Google Scholar] [CrossRef]
- Ghosh, A. K., P. E. Ribolla, and M. Jacobs-Lorena. Targeting Plasmodium Ligands on Mosquito Salivary Glands and Midgut with a Phage Display Peptide Library. Proc Natl Acad Sci U S A 2001, 98, 13278–81. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, V. Multifunctional Alpha-Enolase: Its Role in Diseases. Cell Mol Life Sci 2001, 58, 902–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, S. M., Z. Zou, S. Y. Guo, W. T. Hou, X. R. Qiu, Y. Zhang, L. J. Song, X. Y. Hu, Y. Y. Jiang, H. Shen, and M. M. An. Preventing Candida Albicans from Subverting Host Plasminogen for Invasive Infection Treatment. Emerg Microbes Infect 2020, 9, 2417–32. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M., C. Kohler, and K. Becker. Enolase of Staphylococcus Lugdunensis Is a Surface-Exposed Moonlighting Protein That Binds to Extracellular Matrix and the Plasminogen/Plasmin System. Front Microbiol 2022, 13, 837297. [Google Scholar] [CrossRef]
- Han, S., Y. Wang, W. Chang, L. Wang, J. Fang, J. Han, X. Hou, X. Qi, and J. Wang. Evaluation of the Protective Efficacy of Six Major Immunogenic Proteins of Mycoplasma Synoviae. Front Vet Sci 2023, 10, 1334638. [Google Scholar]
- Haque, M. S., M. S. Islam, and M. J. You. Efficacy of Recombinant Enolase as a Candidate Vaccine against Haemaphysalis Longicornis Tick Infestation in Mice. Parasites Hosts Dis 2023, 61, 439–48. [Google Scholar] [CrossRef]
- Quiroz-Castaneda, R. E., H. Aguilar-Diaz, and I. Amaro-Estrada. An Alternative Vaccine Target for Bovine Anaplasmosis Based on Enolase, a Moonlighting Protein. Front Vet Sci 2023, 10, 1225873. [Google Scholar] [CrossRef]
- Diaz-Hernandez, A., M. C. Gonzalez-Vazquez, M. Arce-Fonseca, O. Rodriguez-Morales, M. L. Cedillo-Ramirez, and A. Carabarin-Lima. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life, 2022; 12. [Google Scholar]
- Franco-Serrano, L., J. Cedano, J. A. Perez-Pons, A. Mozo-Villarias, J. Piñol, I. Amela, and E. Querol. A Hypothesis Explaining Why So Many Pathogen Virulence Proteins Are Moonlighting Proteins. Pathog Dis 2018, 76. [Google Scholar]
- Langowski, M. D., F. A. Khan, A. A. Bitzer, C. J. Genito, A. J. Schrader, M. L. Martin, K. Soto, X. Zou, S. Hadiwidjojo, Z. Beck, G. R. Matyas, M. C. Livingstone, A. H. Batchelor, and S. Dutta. Optimization of a Plasmodium Falciparum Circumsporozoite Protein Repeat Vaccine Using the Tobacco Mosaic Virus Platform. Proc Natl Acad Sci U S A 2020, 117, 3114–22. [Google Scholar] [CrossRef] [PubMed]
| Ligand | P. falciparum gene | Human gene | ||||
| # gene, isoforms | Amino acids | Genetic variation | # gene, isoforms | Maximum identity (%) | ||
| NS-SNPs (%) | strains | |||||
| GAPDH | 1, 1 | 337 | 140Q-K (33) | 275 | 1, 2 | 64 |
| PLSCR | 1, 1 | 275 | 50S-N (1>), 52M-I (1) | 301 | 5, 10 | 21 |
| HSP90 | 1, 1 | 745 | 58A-S (2), 229G-R (4), 231R-E (3), 233G-E (1), 235E-G (6), 239K-E (25), 256N-K (1) | 301 | 2, 3 | 75 |
| Enolase | 1, 1 | 446 | 301V-I (1) | 300 | 4, 10 | 69 |
| Ligand | Position | Peptide sequence | % identity |
|---|---|---|---|
| GAPDH | 102-111 | FLTKELASSH | 0 |
| 189-199 | VDGPSKGGKDW | 0 | |
| 283-292 | EVVSQDFVHD | 60 | |
| PLSCR | 5-26 | NIHMQPNINYSYRNPNMYNMNY | 0 |
| 35-43 | QQQMQLFVN | 0 | |
| 72-79 | MGFKLDFN | 0 | |
| HSP90 | 156-169 | FTVTKDETNEKLGR | 0 |
| 211-340 | RQNEKEITASEEEEGEGEGEREGEEEEEKKKKTGEDKNADESKEENEDEEKKEDNEEDDNKTDHPKVEDVTEELENAEKKKKEKRKKKIHTVEHEWEELNKQKPLWMRKPEEVTNEEYASFYKSLTNDWE | 28 | |
| 562-590 | CCTKEGLDIDDSEEAKKDFETLKAEYEGL | 48 | |
| 716-742 | SIDEEENNDIDLPPLEETVDATDSKME | 33 | |
| Enolase | 83-90 | NCTEQKKI | 0 |
| 99-112 | DGSKNEWGWSKSKL | 0 | |
| 142-150 | QLAGKKSDQ | 0 | |
| 260-290 | YNSENKTYDLDFKTPNNDKSLVKTGAQLVDL | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).