Submitted:
04 April 2024
Posted:
04 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. The January 2013 Solar and Geomagnetic Conditions



3.2. The January 2013 Major Stratospheric Warming: Temperatures and Dynamics

3.3. The January 2013 Dynamics of the Ionosphere

4. Discussion
5. Conclusions
- The ionosonde observations show no significant ionospheric storms to the 17 and 26-27 January minor (-100 < Dst < -50 nT) geomagnetic storms that indicates the development of geomagnetic storms does not correspond to the accepted in [5] scheme for the formation of ionospheric storms during geomagnetic disturbances.
- Large foF2 (up to 60%) deviations from the running median observed at the night/morning periods on 13-15 and 20-23 January which cannot be associated with either solar or geomagnetic activity. Spread and forked F traces observed in the ionograms at the periods indicate appearance of different scale irregularities and tilts in the ionosphere.
- Wave-like disturbances in ΔfoF2, Δh’F and daily averaged foF2 values with quasi-period of 5-8 hours and peak-to-peak amplitude from about 1MHz to 2 MHz (~from 20% to ~40%) are observed during the 9-28 January, after registration the occurrence of the major SSW event on 6 January.
- The observed variations in the OH emission rate are found to be quite similar to those observed in the ionosheric parameters that assume a community of processes in the stratoshere/mesosphere/ionosphere system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Forbes J.M., S.E. Palo, and X. Zhang (2000). Variability of the ionosphere. J. Atmos. Sol.-Terr. Phys. 2000, 62, 685-693. [CrossRef]
- Danilov, A.D. and Morozova, L.D. Ionospheric storms in the F2 region: Morphology and physics (Review). Geomagn. Aeron. 1985, 25, 593-605.
- Buonsanto, M.J. Ionospheric Storms – A Review. Space Sci. Rev. 1999, 88, 563-601.
- Mikhailov, A.V. 2000. Ionospheric F region storms. Fisica de la Tierra 2000, 12, 223-262.
- Danilov and Lastovicka. Effects of geomagnetic storms on the ionosphere and atmosphere. Geomagn. Aeron. 2001, 2(3), 209-224.
- Echer, E.; Gonzalez, W. D.; and Tsurutani, B. T.. Interplanetary conditions leading to superintense geomagnetic storms (Dst 250 nT) during solar cycle 23. Geophys. Res. Lett. 2008, 35, L06S03. [CrossRef]
- Echer, E.; Gonzalez, W.D.; Tsurutani, B.T. 2011. Statistical studies of geomagnetic storms with peak Dst 50 nT from 1957 to 2008. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1454–1459. [CrossRef]
- Paznukhov, V. V.; Altadill, D.; and Reinisch, B. W. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes, J. Geophys. Res. 2009, 114, A12319. [CrossRef]
- Danilov, A.D. Ionospheric F-region response to geomagnetic disturbances. Adv. Space Res. 2013, 52, 343–366. [CrossRef]
- Perrone, L.; Mikhailov, A.V.; Sabbagh, D. Thermospheric Parameters during Ionospheric G-Conditions. Remote Sens. 2021, 13, 3440. [CrossRef]
- Gordiyenko, G. Ionospheric response over the Middle Asian region to the May 1967 geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 2023, 253, 106151. [CrossRef]
- Gordienko, G.I.; Vodyannikov, V.V.; Yakovets, A.F. Geomagnetic storm effects in the ionospheric E- and F-regions. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1818–1830. [CrossRef]
- Cander, L.R. Mid-Latitude Single Station F region Storm Morphology and Forecast. JActa Geophysica 2016, 64/2, 541–566. [CrossRef]
- Matsuno, T. A. Dynamical Model of the Stratospheric Sudden Warming. J. Atmos. Sci. 1971, 28, 1479–1494.
- Charlton, A.J.; Polvani, L.M. A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. J. Clim. 2007, 20, 449–469. [CrossRef]
- Nath, D.; Chen, W.; Zelin, C.; Pogoreltsev, A.I. & Wei. K. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave Reflection. Scientific Reports April 2016, DOI:0.1038/srep24174. https://www.researchgate.net/publication/299852923. [CrossRef]
- Pedatella, N.M.; Chau, J.L.; Schmidt, H.; Goncharenko, L.P.; Stolle, C.; Hocke, K.; Harvey, V.L.; Funke, B.; Siddiqui, T.A. How sudden stratospheric warming affects the whole atmosphere. EOS 2018, 99, 35–38. [CrossRef]
- Baldwin, M.P.; Ayarzagüena, B.; Birner, T.; Butchart, N.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.V.; Garfinkel, C.I.; Garny, H.; Gerber, E.P.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 59, e2020RG000708.
- Goncharenko, L.P.; Chau, J.L.; Liu, H.L.; Coster, A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010, 37, L10101. [CrossRef]
- Goncharenko, L.; Zhang, S.R. Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys. Res. Lett. 2008, 35, L21103. [CrossRef]
- Chau, J.L.; Fejer, B.G.; Goncharenko, L.P. Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event. Geophys. Res. Lett. 2009, 36, L05101. [CrossRef]
- Yue, X.; Schreiner, W.S.; Lei, J.; Rocken, C.; Hunt, D.C.; Kuo, Y.-H.; and Wan, W. Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 2010, 115, A00G09. https://doi.org/10.1029/2010JA015466. [CrossRef]
- Shepherd, M.G.; Shepherd, G.G. (2011) Stratospheric warming effects on thermospheric O(1S) dayglow dynamics. J. Geophys. Res. 2011, 116: A11327. https://doi.org/10.1029/2011JA016762. [CrossRef]
- Pancheva, D.; Mukhtarov, P. Stratospheric warmings: The atmosphere–ionosphere coupling paradigm. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1697–1702. [CrossRef]
- Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, M.N.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A. Modeling the effect of sudden stratospheric warming within the thermosphere-ionosphere system. J. Atmos. Sol.-Terr. Phys. 2012, 90-91, 77-85. [CrossRef]
- Sumod, S.G.; Pant, T.K.; Jose, L.; Hossain, M.M.; Kumar, K.K. Signatures of Sudden Stratospheric Warming on the Equatorial Ionosphere-Thermosphere System. Planetary and Space Science 2012, 63–64, 49–55. [CrossRef]
- Fang, T.-W.; Fuller-Rowell T.; Akmaev, R.; Wu, F.; Wang, H.; and Anderson, D.. Longitudinal variation of ionospheric vertical drifts during the 2009 sudden stratospheric warming J. Geophys. Res. 2012, 117, A03324. [CrossRef]
- Polekh, N.M.; Kurkin, V.I.; Zolotukhina, N.A.; Chernigovskaya, M.A. On the connection between nighttime winter ionization increase in midlatitude F region and stratosphere warming. Sol.-Terr. Phys. 2013, 22, 41-46 (in Russian).
- Polyakova, A.S.; Chernigovskaya, M.A.; Perevalova, N.P. Ionospheric effects of sudden stratosperic warmings in eastern Siberia region. J. Atmos. Sol.-Terr. Phys. 2014, 120, 15–23.
- Laskar, F.I.; Pallamraju, D.; and Veenadhari, B. Vertical coupling of atmospheres: dependence on strength of sudden stratospheric warming and solar activity. Earth, Planets and Space 2014, 66:94. [CrossRef]
- Pedatella, N. M., Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm, Geophys. Res. Lett. 2016, 43, 9383–9389. [CrossRef]
- Mošna, Z.; Edemskiy, I.; Laštoviˇcka, J.; Kozubek, M.; Koucká Knížová, P.; Kouba, D.; Siddiqui, T.A. Observation of the Ionosphere in Middle Latitudes during 2009, 2018 and 2018/2019 Sudden Stratospheric Warming Events. Atmosphere 2021, 12, 602. [CrossRef]
- Siddiqui, T. A., Yamazaki, Y., Stolle, C., Maute, A., Laštovička, J., Edemskiy, I. K., et al.. Understanding the total electron content variability over Europe during 2009 and 2019 SSWs. Journal of Geophysical Research: Space Physics 2021, 126, e2020JA028751. [CrossRef]
- Karpenko, A.L.; Leshchenko, L.N.; Manaenkova, N.I. Peculiarities and perspectives of network digital ionospheric station ‘‘PARUS”. In: Progress in Electromagnetics Research (PIERS) Symposium Proceedings 2009, Moscow, Russia, August 18–21, pp. 219–222. [CrossRef]
- Sargoytchev, S.; Brown, S.; Solheim, B.; Cho, Y.-M.; Shepherd, G.; López-Gonzàlez, M.-J. Spectral Airglow Temperature Imager (SATI) − a ground based instrument for temperature monitoring of the mesosphere region, Appl. Opt. 2004, 43: 5712.
- Goncharenko, L.; Chau, J. L.; Condor, P.; Coster, A.; and Benkevitch L. Ionospheric effects of sudden stratospheric warming during moderate-to-high solar activity: Case study of January 2013. Geophys. Res. Lett. 2013, 40, 1–5. . [CrossRef]
- Goncharenko, L. P.; Coster, A. J.; Zhang, S.-R.; Erickson, P. J.; Benkevitch, L.; Aponte, N.; et al. Deep ionospheric hole created by sudden stratospheric warming in the nighttime ionosphere. J. Geophys. Res. Space Phys. 2018, 123. [CrossRef]
- Laskar, F. I.; McCormack, J. P.; Chau, J. L.; Pallamraju, D.; Hoffmann, P.; & Singh, R. P. Interhemispheric meridional circulation during sudden stratospheric warming. J. Geophys. Res. Space Phys. 2019, 124, 7112–7122. [CrossRef]
- Liu, Yi and Zhang, Yu. Overview of the major 2012–2013 Northern Hemisphere stratospheric sudden warming: Evolution and its association with surface weather. J. Meteor. Res. 2014, 28(4), 561–575. [CrossRef]
- Coy L. The Major Stratospheric Sudden Warming of January 2013: Analyses and Forecasts in the GEOS-5 Data Assimilation System. 2014. https://doi.org/. [CrossRef]
- deWit, R. J.; Hibbins, R. E.; Espy, P. J.; Orsolini, Y. J.; Limpasuvan, V. and Kinnison D. E. Observations of gravity wave forcing of the mesopause region during the January 2013 major Sudden Stratospheric Warming, Geophys. Res. Lett. 2014, 41, 4745–4752. [CrossRef]
- Shpynev, B.G.; Kurkin, V.I.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Yu.; Grigorieva, S.A.; Stepanov, A.E.; Bychkov, V.V.; Pancheva, D.; and Mukhtarov, P. High-midlatitude ionosphere response to major stratospheric warming. Earth, Planets and Space 2015, 67:18. . [CrossRef]
- Yasyukevich, A.S.; Klimenko, M.V.; Kulikov, Yu.Yu.; Klimenko, V.V.; Bessarab, F.S.; Korenkov, Yu.N.; Marichev, V.N.; Ratovsky, K.G.; Kolesnik, S.A. Changes in the stratosphere and ionosphere parameters during the 2013 major stratospheric warming. Sol.-Terr. Phys. 2018, 4(4), 48–58. © 2018 A.S. [CrossRef]
- Shepherd, M.G.; Cho, Y.-M.; Shepherd, G.G.; Ward, W.E.; Drummond. J.R. Mesospheric temperature and atomic oxygen response during the January 2009 major stratospheric warming, J. Geophys. Res. 2010, 115:A07318. [CrossRef]
- Chen, G., Wu, C., Zhang, S., Ning, B., Huang, X., Zhong, D., Qi, H., Wang, J., and Huang, L. Midlatitude ionospheric responses to the 2013 SSW under high solar activity, JJ. Geophys. Res. Space Phys 2016, 121, 790–803. [CrossRef]
- Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens, D.R., Kristoffersen, S., and Alken, P. September 2019 Antarctic sudden stratospheric warming: Quasi-6-Dday wave burst and ionospheric effects. Geophys. Res. Lett. 2020, 47, e2019GL086577. [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).