Submitted:
02 April 2024
Posted:
03 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. The Study Area Profile
2.2. Data Acquisition and Processing



| Title 1 | Title 2 | Title 3 |
|---|---|---|
| 19 Bio-climatic factors | Bio1 | Average Annual Temperature |
| Bio2 | Mean Diurnal Range | |
| Bio3 | Isothermality | |
| Bio4 | Temperature Seasonality | |
| Bio6 | Min Temperature of Coldest Month | |
| Bio8 | Mean Temperature of Wettest Quarter | |
| Bio10 | Mean Temperature of Warmest Quarter | |
| Bio11 | Mean Temperature of Coldest Quarter | |
| Bio13 | Precipitation of Wettest Month | |
| Bio14 | Precipitation of Driest Month | |
| Bio15 | Precipitation Seasonality | |
| Bio17 | Precipitation of Driest Quarter | |
| Bio18 | Precipitation of Warmest Quarter | |
| Human factors | HII | Human Impact Index |
2.3. MaxEnt Model Optimization and Result Evaluation
2.4. Classification and Area Statistics
2.5. The Change of Spatial Pattern of Suitable Habitat
2.6. Center-of-Mass Transfer in Suitable Habitat
3. Results
3.1. Model Optimization Results and Accuracy Evaluation
| Type | RM | FC | Mean-AUC-ratio | Omission-rate-at-5% | Delta-AICc |
|---|---|---|---|---|---|
| Default | 1 | LQPH | 1.8290 | 0.0796 | 110.112 |
| Optimization | 0.1 | LQ | 1.9642 | 0.0385 | 0 |

3.2. The Main Environmental Factors Affecting the Distribution of Ambrosia trifida

| Variable | Percent contribution | Permutation importance |
|---|---|---|
| HII | 22.8 | 0.2 |
| Bio11 | 19.5 | 35.3 |
| Bio1 | 13.5 | 3.3 |
| Bio18 | 10.8 | 24.6 |
| Bio4 | 6.7 | 11.2 |
| Bio13 | 9.7 | 2.5 |

3.3. Distribution of Ambrosia trifida Habitat under Different Climate Patterns
| Period | Climate patterns | Area of non-suitable habitat (104 km2) | Area of low suitable habitat (104 km2) | Area of medium suitable zone (104 km2) | High Area of suitable habita (104 km2) |
|---|---|---|---|---|---|
| 2050s | RCP2.6 | 76.71 | 28.61 | 26.67 | 20.01 |
| RCP4.5 | 66.52 | 20.58 | 33.70 | 31.20 | |
| RCP8.5 | 59.51 | 15.00 | 35.76 | 41.73 | |
| 2070s | RCP2.6 | 84.02 | 26.71 | 22.07 | 19.20 |
| RCP4.5 | 63.07 | 20.36 | 38.10 | 30.48 | |
| RCP8.5 | 42..83 | 7.34 | 20.82 | 81.10 |


3.4. Spatial Pattern Changes of Ambrosia trifida Habitat under Different Climate Patterns

3.5. Centroid Migration in Ambrosia trifida Habitat under Different Climate Patterns

4. Discussion
4.1. Model Rationality Evaluation
4.2. The Dominant Environmental Variable Limiting the Distribution of Ambrosia trifida
4.3. Control Measures and Strategies of Invasive Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wake, I.A.M.S.;Soeprobowati, T.R.;Jumari. The invasive alien plants threatened the balance of ecosystem in conservative area in Ontoloe Island, Flores-Indonesia Journal of Physics: Conference Series.2018, 1025, 012033-012033. [CrossRef]
- Celine, B.;Wilfried, T.;Boris, L.;Piero, G.;Michel, B.;Franck, C. Will climate change promote future invasions? Global change biology.2013, 19, 3740-3748. [CrossRef]
- Monika, W.;D, J.A.;Ralph, M.N. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions. Ecology letters.2011, 14, 749-757. [CrossRef]
- Rai, P.K.;Singh, J.S. Invasive alien plant species: Their impact on environment, ecosystem services and human health Ecological Indicators.2020, 111, 106020. [CrossRef]
- Li, G.Q.; Liu, C.C.; Liu, Y.G.; Yang, J.; Zhang, X.S.; Guo, K. Advances in theoretical issues of species distribution models. Acta Ecologica Sinica.2013, 33 (16), 4827-4835. [CrossRef]
- Xu, Z.L.;Peng, H.H.;Peng, S.Z.The development and evaluation of species distribution models.Acta Ecologica Sinica.2015, 35( 2), 557-567.
- Elith, J.;Phillips, S.J.;Hastie, T.;Dudík, M.;Chee, Y.E.;Yates, C.J. A statistical explanation of MaxEnt for ecologists Diversity and Distributions.2011, 17, 43-57. [CrossRef]
- Qin, X.;Li, M. Predicting the Potential Distribution ofOxalis debilisKunth, an Invasive Species in China with a Maximum Entropy Model. Plants.2023, 12. [CrossRef]
- A, A.Q.;K, D.M.;M, J.A. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe.. The Science of the total environment.2022, 825, 154053-154053. [CrossRef]
- Wenjun, Y.;Shuxia, S.;Naixian, W.;Peixian, F.;Chao, Y.;Renqing, W.;Peiming, Z.;Hui, W. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. The Science of the total environment.2023, 903, 166260-166260. [CrossRef]
- Rasmussen, K.;Thyrring, J.;Muscarella, R.;Borchsenius, F. Climate-change-induced range shifts of three allergenic Ambrosia trifidas (Ambrosia L.) in Europe and their potential impact on human health PeerJ.2017, 5, e3104. [CrossRef]
- Mushtaq, S.;Reshi, Z.A.;Shah, M.A.;Charles, B. Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: a case study of Parthenium hysterophorus L. Tropical Ecology.2021, 62, 1-20. [CrossRef]
- Wildlife Conservation Society - WCS, and Center for International Earth Science Information Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic).
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods Ecological Modelling.2011, 222, 1343-1346. [CrossRef]
- Kong, W.Y.;Li,X.H.;Zhou,H.F. Optimizing MaxEnt model in the prediction of species distribution. Chinese Journal of Applied Ecology.2019, 30, 2116-2128. [CrossRef]
- Morales, N.S.;Fernández, I.C.;Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review PeerJ.2017, 5, e3093. [CrossRef]
- Rong, S.;Luo, P.;Yi, H.;Yang, X.;Zhang, L.;Zeng, D.;Wang, L. Predicting Habitat Suitability and Adaptation Strategies of an Endangered Endemic Species,Camellia luteofloraLi ex Chang (Ericales: Theaceae) under Future Climate Change Forests.2023, 14. [CrossRef]
- Miao, G.;Zhao, Y.;Wang, Y.;Yu, C.;Xiong, F.;Sun, Y.;Cao, Y. Suitable Habitat Prediction and Analysis ofDendrolimus houiand Its HostCupressus funebrisin the Chinese Region Forests.2024, 15. [CrossRef]
- Qin, Z.;Xiangbao, S.;Xiaolong, J.;Tingting, F.;Xiaocui, L.;Wende, Y. MaxEnt Modeling for Predicting Suitable Habitat for Endangered Tree Keteleeria davidiana (Pinaceae) in China. Forests.2023, 14, 394-394. [CrossRef]
- Liu, W.;Meng, H.;Dong, B.;Fan, J.;Zhu, X.;Zhou, H. Predicting potential distribution of the Rhinoncus sibiricus under climatic in China using MaxEnt. PloS ONE.2024, 19, e0297126-e0297126. [CrossRef]
- Hamdi, A.;Hassane, M.;Issam, T.;Juan, B.;Abdelhamid, K. Observed and Predicted Geographic Distribution of Acer monspessulanum L. Using the MaxEnt Model in the Context of Climate Change Forests.2022, 13, 2049-2049. [CrossRef]
- Yunlin, H.;Jiangming, M.;Guangsheng, C. Potential geographical distribution and its multi-factor analysis of Pinus massoniana in China based on the maxent model. Ecological Indicators.2023, 154. [CrossRef]
- Hurtt, G.C.;Chini, L.P.;Frolking, S.;Betts, R.A.;Feddema, J.;Fischer, G.;Fisk, J.P.;Hibbard, K.;Houghton, R.A.;Janetos, A., et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands Climatic Change.2011, 109, 117-161. [CrossRef]
- E, C.M.;Townsend, P.A.;Narayani, B.;Luis, O.-O. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ.2019, 7, e6281. [CrossRef]
- Yexu, Z.;Chao, Y.;Norihisa, M.;Chunlan, L.;Qifang, G. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model.. Ecology and evolution.2023, 13, e10565-e10565. [CrossRef]
- Zhang,T.;Hu,W.;Jia,T.J.;Zhao,S.Z;Kong,D.Y.;Liu,Y. Prediction of potential distribution of Sophora flavescens in China under climate change. Guihaia.2022, 42, 349-362. [CrossRef]
- Ma,J.J.;Li,Y.Y.;Wang,H.Z.;Fan,R.R.;Li,M.;Yan,J.P.;Zhu,Y.;Duan,Y.F. Geographical Distribution and the Prediction of the Potential Distribution of Keteleeria. Journal of Northwest Forestry University.2022, 37, 158-165.
- Fu,Y.;An,H.J.;Gao,M.L.;Li,H.X.;Zhang,R. Prediction of Potential Distribution Area of Empetrum nigrum var.japonicum Based on Climate Change Background. Journal of Northwest Forestry University.2023, 38, 49-56.
- Liu,W.;Zhao,R.N.;Sheng,Q.Q.;Geng,X.M.;Zhu,Z.L. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China. Journal of Beijing Forestry University.2021, 43, 83-92. [CrossRef]
- Ma,Q.Q.;Liu,T.;Dong,H.G.;Wang,H.Y.;Zhao,W.X.;Wang,R.L.;Liu,Y.;Chen,L. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change. Acta Prataculturae Sinica.2020, 29, 73-85. [CrossRef]
- Huang,Q.Q.;Shen,Y.D.;Li,X.X.;Cheng,H.T.;Song,X.;Fan,Z.W. Research progress on the distribution and invasiveness of alien invasive plants in China. Ecology and Environment Sciences.2012, 21, 977-985.
- Feng,J.M.;Xu,C.D.Spatial Distribution Pattern of Alien Plants in Yunnan Province and Its Relationship with Environmental Factors and Human Activities. Journal of Southwest University(Natural Science Edition).2009, 31, 78-83. [CrossRef]
- Silvia, F.;Marco, M.;Fernando, D.P.;Francesco, V. The effect of various after-ripening temperature regimens on the germination behaviour of Ambrosia artemisiifolia Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology.2020, 154, 165-172. [CrossRef]
- Wu,H.R.;Qiang,S.;Duan,H.;Lin,J.C.Ambrosia artemisiifolia L.Weed Science.2004, 52-54.
- Kang,F.F.;Wei,Y.D.;Yang,F.;Zhang,R.F.;Cheng,Y.;Liu,Y.;Yin,L.P. Effects of different treatments on seed dormancy and germination of Ambrosia artemisiifolia L. Plant Quarantine.2010, 24, 14-16.
- Liu,X.Y.;Li,J.S.;Zhao,C.Y.;Quan,Z.J.;Zhao,X.J.;Gong,L. Prediction of potential suitable area of Ambrosia artemisiifolia L.in China based on MAXENT and ArcGIS. Acta Phytophylacica Sinica.2016, 43, 1041-1048.
- Ding,S.Q. Study on the occurrence and distribution of Ambrosia trifida, growth limiting ecological factors and chemical control technologies, Master's thesis, Xinjiang Agricultural University,Xinjiang,2021.
- Tang,S.C.;Li,X.Q.;Wei,C.Q.;Pan,Y.M.;Lv,H.S. Current Status and Research Progress of Alien Invasive Plants in Guangxi. Journal of Guangxi Academy of Sciences.2023, 39, 146-155.
- Liang,W.M.;Wang,S.W. Damage and Prevention and Control Measures of Ambrosia trifida. XianDai NongYe KeJi.2010, 160-161.
- Guo,C.L.;Ma,Y.F.;Qin,J.L.;Ma,Y.L. Chemical control effects of 30 kinds of herbicides on Ambrosia artemisiifolia and Mikania micrantha. Plant Protection.2014, 40, 179-183.
- Ding,S.Q.;Fu,K.Y.;Ding,X.H.;He,J.;Tuerxun,A.;Zhang,G.L.;Fu,W.D.;Wen,J.;Jiamaliding,W.;Guo,W.C. Screeing of herbicides for controlling Ambrosia artemisiifolia L.in Xinjiang,China. Journal of biosafety.2021, 30, 126-131.
- Wilgen, B.W.v.;Raghu, S.;Sheppard, A.W.;Schaffner, U. Quantifying the social and economic benefits of the biological control of invasive alien plants in natural ecosystems Current Opinion in Insect Science.2020, 38, 1-5. [CrossRef]
- Morais, E.G.F.;Pican, M.C.;Ccedil;Seme, A.A.;Atilde;Barreto, R.W.;Rosado, J.F.;Martins, J.C. Lepidopterans as Potential Agents for the Biological Control of the Invasive Plant, Miconia calvescens Journal of Insect Science.2012, 12, 1-17. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).