Submitted:
02 April 2024
Posted:
02 April 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Methods
Results
Discussion
BDNF by microRNAs
Neuroplasticity and BDNF Regulation by microRNAs
Cell Metabolism and BDNF Regulation by microRNAs
Final Considerations
Funding
Conflicts of Interest
References
- Aili, A., Chen, Y., & Zhang, H. (2016). MicroRNA-10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain-derived neurotrophic factor. Molecular Medicine Reports, 13(1), 441–446. [CrossRef]
- Angelucci, F., Croce, N., Spalletta, G., Dinallo, V., Gravina, P., Bossù, P., Federici, G., Caltagirone, C., & Bernardini, S. (2011). Paroxetine rapidly modulates the expression of brain-derived neurotrophic factor mRNA and protein in a human glioblastoma-astrocytoma cell line. Pharmacology, 87(1–2), 5–10. [CrossRef]
- Asadi, M. R., Gharesouran, J., Sabaie, H., Moslehian, M. S., Dehghani, H., Arsang-Jang, S., Taheri, M., Mortazavi, D., Hussen, B. M., Sayad, A., & Rezazadeh, M. (2022). Assessing the expression of two post-transcriptional BDNF regulators, TTP and miR-16 in the peripheral blood of patients with Schizophrenia. BMC Psychiatry, 22(1), 771. [CrossRef]
- Bahi, A. (2016). Sustained lentiviral-mediated overexpression of microRNA124a in the dentate gyrus exacerbates anxiety- and autism-like behaviors associated with neonatal isolation in rats. Behavioural Brain Research, 311, 298–308. [CrossRef]
- Bahi, A. (2017). Hippocampal BDNF overexpression or microR124a silencing reduces anxiety- and autism-like behaviors in rats. Behavioural Brain Research, 326, 281–290. [CrossRef]
- Bahi, A., Chandrasekar, V., & Dreyer, J. L. (2014). Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology, 46, 78–87. [CrossRef]
- Bahi, A., & Dreyer, J. L. (2013). Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. European Journal of Neuroscience, 38(2), 2328–2337. [CrossRef]
- Bai, M., Zhu, X., Zhang, Y., Zhang, S., Zhang, L., Xue, L., Yi, J., Yao, S., & Zhang, X. (2012). Abnormal Hippocampal BDNF and miR-16 Expression Is Associated with Depression-Like Behaviors Induced by Stress during Early Life. PLoS ONE, 7(10), e46921. [CrossRef]
- Barde, Y. A., Davies, A. M., Johnson, J. E., Lindsay, R. M., & Thoenen, H. (1987). Brain derived neurotrophic factor. Progress in Brain Research, 71(C), 185–189. [CrossRef]
- Boon, R. A., & Vickers, K. C. (2013). Intercellular Transport of MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), 186–192. [CrossRef]
- Bouron, A., Boisseau, S., De Waard, M., & Peris, L. (2006). Differential down-regulation of voltage-gated calcium channel currents by glutamate and BDNF in embryonic cortical neurons. European Journal of Neuroscience, 24(3), 699–708. [CrossRef]
- Buist, M., Fuss, D., & Rastegar, M. (2021). Transcriptional regulation of mecp2e1-e2 isoforms and bdnf by metformin and simvastatin through analyzing nascent rna synthesis in a human brain cell line. Biomolecules, 11(8). [CrossRef]
- Burckhardt, M. A., Abraham, M. B., Mountain, J., Coenen, D., Paniora, J., Clapin, H., Jones, T. W., & Davis, E. A. (2019). Improvement in psychosocial outcomes in children with type 1 diabetes and their parents following subsidy for continuous glucose monitoring. Diabetes Technology and Therapeutics, 21(10), 538–545. [CrossRef]
- Caputo, V., Sinibaldi, L., Fiorentino, A., Parisi, C., Catalanotto, C., Pasini, A., Cogoni, C., & Pizzuti, A. (2011). Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS ONE, 6(12). [CrossRef]
- Chandrasekar, V., & Dreyer, J. L. (2009). microRNAs miR-124, let-7d and miR-181a regulate Cocaine-induced Plasticity. Molecular and Cellular Neuroscience, 42(4), 350–362. [CrossRef]
- Chen-Plotkin, A. S., Unger, T. L., Gallagher, M. D., Bill, E., Kwong, L. K., Volpicelli-Daley, L., Busch, J. I., Akle, S., Grossman, M., Van Deerlin, V., Trojanowski, J. Q., & Lee, V. M. Y. (2012). TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. Journal of Neuroscience, 32(33), 11213–11227. [CrossRef]
- Chen, Y., Mateski, J., Gerace, L., Wheeler, J., Burl, J., Prakash, B., Svedin, C., Amrick, R., & Adams, B. D. (2024). Non-coding RNAs and neuroinflammation: implications for neurological disorders. Experimental Biology and Medicine (Maywood, N.J.), 249(February), 10120. [CrossRef]
- Cheng, F., Yang, Z., Huang, F., Yin, L., Yan, G., & Gong, G. (2018). microRNA-107 inhibits gastric cancer cell proliferation and metastasis by targeting PI3K/AKT pathway. Microbial Pathogenesis, 121, 110–114. [CrossRef]
- Cho, K. J., Song, J., Oh, Y., & Lee, J. E. (2015). MicroRNA-Let-7a regulates the function of microglia in inflammation. Molecular and Cellular Neuroscience, 68, 167–176. [CrossRef]
- Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1), 18–41. [CrossRef]
- Croce, N., Gelfo, F., Ciotti, M. T., Federici, G., Caltagirone, C., Bernardini, S., & Angelucci, F. (2013). NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: A possible role in neuroprotection? Molecular and Cellular Biochemistry, 376(1–2), 189–195. [CrossRef]
- Cui, M., Xiao, H., Li, Y., Dong, J., Luo, D., Li, H., Feng, G., Wang, H., & Fan, S. (2017). Total abdominal irradiation exposure impairs cognitive function involving miR-34a-5p/BDNF axis. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(9), 2333–2341. [CrossRef]
- Darcq, E., Warnault, V., Phamluong, K., Besserer, G. M., Liu, F., & Ron, D. (2015). MicroRNA-30a-5p in the prefrontal cortex controls the transition from moderate to excessive alcohol consumption. Molecular Psychiatry, 20(10), 1240–1250. [CrossRef]
- de Assis, G. G., & Gasanov, E. V. (2019). BDNF and Cortisol integrative system – Plasticity vs. degeneration: Implications of the Val66Met polymorphism. Frontiers in Neuroendocrinology, 55, 100784. [CrossRef]
- de Assis, G. G., & Hoffman, J. R. (2022). The BDNF Val66Met Polymorphism is a Relevant, But not Determinant, Risk Factor in the Etiology of Neuropsychiatric Disorders – Current Advances in Human Studies: A Systematic Review. Brain Plasticity, 8(2), 133–142. [CrossRef]
- Deng, C., Zhu, J., Yuan, J., Xiang, Y., & Dai, L. (2020). Pramipexole Inhibits MPP+-Induced Neurotoxicity by miR-494-3p/BDNF. Neurochemical Research, 45(2), 268–277. [CrossRef]
- Deng, L., Lai, S., Fan, L., Li, X., Huang, H., & Mu, Y. (2022). miR-210-3p suppresses osteogenic differentiation of MC3T3-E1 by targeting brain derived neurotrophic factor (BDNF). Journal of Orthopaedic Surgery and Research, 17(1), 1–9. [CrossRef]
- Descamps, B., Saif, J., Benest, A. V., Biglino, G., Bates, D. O., Chamorro-Jorganes, A., & Emanueli, C. (2018). BDNF (Brain-Derived Neurotrophic Factor) promotes embryonic stem cells differentiation to endothelial cells via a molecular pathway, including MicroRNA-214, EZH2 (Enhancer of Zeste Homolog 2), and eNOS (Endothelial Nitric Oxide Synthase). Arteriosclerosis, Thrombosis, and Vascular Biology, 38(9), 2117–2125. [CrossRef]
- Ding, J., Jiang, C., Yang, L., & Wang, X. (2022). Relationship and effect of miR-1-3p expression and BDNF level in patients with primary hypertension complicated with depression. Cellular and Molecular Biology, 68(1), 67–74. [CrossRef]
- Dong, Q., Ji, Y. S., Cai, C., & Chen, Z. Y. (2012). LIM Kinase 1 (LIMK1) interacts with Tropomyosin-related Kinase B (TrkB) and mediates Brain-derived Neurotrophic Factor (BDNF)-induced axonal elongation. Journal of Biological Chemistry, 287(50), 41720–41731. [CrossRef]
- Duan, W., Chen, Y., & Wang, X. R. (2018). MicroRNA-155 contributes to the occurrence of epilepsy through the PI3K/Akt/mTOR signaling pathway. International Journal of Molecular Medicine, 42(3), 1577–1584. [CrossRef]
- Duclot, F., & Kabbaj, M. (2017). The role of early growth response 1 (EGR1) in brain plasticity and neuropsychiatric disorders. Frontiers in Behavioral Neuroscience, 11(March), 1–20. [CrossRef]
- Ehinger, Y., Phamluong, K., Darevesky, D., Welman, M., Moffat, J. J., Sakhai, S. A., Whiteley, E. L., Berger, A. L., Laguesse, S., Farokhnia, M., Leggio, L., Lordkipanidzé, M., & Ron, D. (2021). Differential correlation of serum BDNF and microRNA content in rats with rapid or late onset of heavy alcohol use. Addiction Biology, 26(2), 1–12. [CrossRef]
- Fang, F., Zhang, X., Li, B., & Gan, S. (2022). miR-182-5p combined with brain-derived neurotrophic factor assists the diagnosis of chronic heart failure and predicts a poor prognosis. Journal of Cardiothoracic Surgery, 17(1), 88. [CrossRef]
- Fang, Y., Qiu, Q., Zhang, S., Sun, L., Li, G., Xiao, S., & Li, X. (2018). Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. Journal of Affective Disorders, 227(November 2017), 745–751. [CrossRef]
- Fu, Y., Hou, B., Weng, C., Liu, W., Dai, J., Zhao, C., & Yin, Z. Q. (2017). Functional ectopic neuritogenesis by retinal rod bipolar cells is regulated by miR-125b-5p during retinal remodeling in RCS rats. Scientific Reports, 7(1), 1011. [CrossRef]
- Gao, B., Hao, S., Tian, W., Jiang, Y., Zhang, S., Guo, L., Zhao, J., zhang, G., Yan, J., & Luo, D. (2017). MicroRNA-107 is downregulated and having tumor suppressive effect in breast cancer by negatively regulating brain-derived neurotrophic factor. Journal of Gene Medicine, 19(12). [CrossRef]
- Gao, Jian, Liang, Z., Zhao, F., Liu, X., & Ma, N. (2022). Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Bioengineered, 13(5), 12275–12288. [CrossRef]
- Gao, Jun, Wang, W. Y., Mao, Y. W., Gräff, J., Guan, J. S., Pan, L., Mak, G., Kim, D., Su, S. C., & Tsai, L. H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466(7310), 1105–1109. [CrossRef]
- Gao, L., Yan, P., Guo, F. F., Liu, H. J., & Zhao, Z. F. (2018). MiR-1-3p inhibits cell proliferation and invasion by regulating BDNF-TrkB signaling pathway in bladder cancer. Neoplasma, 65(1), 89–96. [CrossRef]
- Gao, Lin, Feng, A., Yue, P., Liu, Y., Zhou, Q., Zang, Q., & Teng, J. (2020). Lncrna bc083743 promotes the proliferation of schwann cells and axon regeneration through mir-103-3p/bdnf after sciatic nerve crush. Journal of Neuropathology and Experimental Neurology, 79(10), 1100–1114. [CrossRef]
- Gao, Y., Su, J., Guo, W., Polich, E. D., Magyar, D. P., Xing, Y., Li, H., Smrt, R. D., Chang, Q., & Zhao, X. (2015). Inhibition of miR-15a promotes BDNF expression and rescues dendritic maturation deficits in MeCP2-deficient neurons. Stem Cells, 33(5), 1618–1629. [CrossRef]
- Ge, Q. Di, Tan, Y., Luo, Y., Wang, W. J., Zhang, H., & Xie, C. (2018). MiR-132, miR-204 and BDNF-TrkB signaling pathway may be involved in spatial learning and memory impairment of the offspring rats caused by fluorine and aluminum exposure during the embryonic stage and into adulthood. Environmental Toxicology and Pharmacology, 63(August), 60–68. [CrossRef]
- Giannotti, G., Caffino, L., Calabrese, F., Racagni, G., Riva, M. A., & Fumagalli, F. (2014). Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the medial prefrontal cortex of adult rats. International Journal of Neuropsychopharmacology, 17(4), 625–634. [CrossRef]
- Giordano, M., Trotta, M. C., Ciarambino, T., D’Amico, M., Galdiero, M., Schettini, F., Paternosto, D., Salzillo, M., Alfano, R., Andreone, V., Malatino, L. S., Biolo, G., Paolisso, G., & Adinolfi, L. E. (2020). Circulating MiRNA-195-5p and -451a in diabetic patients with transient and acute ischemic stroke in the emergency department. International Journal of Molecular Sciences, 21(20), 1–10. [CrossRef]
- Guan, W., Xu, D. W., Ji, C. H., Wang, C. N., Liu, Y., Tang, W. Q., Gu, J. H., Chen, Y. M., Huang, J., Liu, J. F., & Jiang, B. (2021). Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF. Pharmacological Research, 174, 105932. [CrossRef]
- Gulyaeva, L. F., & Kushlinskiy, N. E. (2016). Regulatory mechanisms of microRNA expression. Journal of Translational Medicine, 14(1), 1–10. [CrossRef]
- Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524. [CrossRef]
- Han, L., Wen, Z., Lynn, R. C., Baudet, M. L., Holt, C. E., Sasaki, Y., Bassell, G. J., & Zheng, J. Q. (2011). Regulation of chemotropic guidance of nerve growth cones by microRNA. Molecular Brain, 4(1), 40. [CrossRef]
- Hernandez-Rapp, J., Smith, P. Y., Filali, M., Goupil, C., Planel, E., Magill, S. T., Goodman, R. H., & Hébert, S. S. (2015). Memory formation and retention are affected in adult miR-132/212 knockout mice. Behavioural Brain Research, 287, 15–26. [CrossRef]
- Hu, J. J., Qin, L. J., Liu, Z. Y., Liu, P., Wei, H. P., Wang, H. Y., Zhao, C. C., & Ge, Z. M. (2020). miR-15a regulates oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal injury by targeting BDNF. Kaohsiung Journal of Medical Sciences, 36(1), 27–34. [CrossRef]
- Hu, X. M., Cao, S. Bin, Zhang, H. L., Lyu, D. M., Chen, L. P., Xu, H., Pan, Z. Q., & Shen, W. (2016). Downregulation of miR-219 enhances brain-derived neurotrophic factor production in mouse dorsal root ganglia to mediate morphine analgesic tolerance by upregulating CaMKIIγ. Molecular Pain, 12, 1–12. [CrossRef]
- Huan, Z., Mei, Z., Na, H., Xinxin, M., Yaping, W., Ling, L., Lei, W., Kejin, Z., & Yanan, L. (2021). lncRNA MIR155HG Alleviates Depression-Like Behaviors in Mice by Regulating the miR-155/BDNF Axis. Neurochemical Research, 46(4), 935–944. [CrossRef]
- Huang, W., Cao, J., Liu, X., Meng, F., Li, M., Chen, B., & Zhang, J. (2015). AMPK Plays a Dual Role in Regulation of CREB/BDNF Pathway in Mouse Primary Hippocampal Cells. Journal of Molecular Neuroscience, 56(4), 782–788. [CrossRef]
- Huang, W., Meng, F., Cao, J., Liu, X., Zhang, J., & Li, M. (2017). Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia–Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling. Journal of Molecular Neuroscience, 62(1), 35–42. [CrossRef]
- Hung, Y. Y., Huang, Y. L., Chang, C., & Kang, H. Y. (2019). Deficiency in androgen receptor aggravates the depressive-like behaviors in chronic mild stress model of depression. Cells, 8(9). [CrossRef]
- Hutchison, E. R., Kawamoto, E. M., Taub, D. D., Lal, A., Abdelmohsen, K., Zhang, Y., Wood, W. H., Lehrmann, E., Camandola, S., Becker, K. G., Gorospe, M., & Mattson, M. P. (2013). Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia, 61(7), 1018–1028. [CrossRef]
- Ibarra, I. L., Ratnu, V. S., Gordillo, L., Hwang, I., Mariani, L., Weinand, K., Hammarén, H. M., Heck, J., Bulyk, M. L., Savitski, M. M., Zaugg, J. B., & Noh, K. (2022). Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements. Molecular Systems Biology, 18(8), 1–25. [CrossRef]
- Im, H. I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127. [CrossRef]
- Imam, J. S., Plyler, J. R., Bansal, H., Prajapati, S., Bansal, S., Rebeles, J., Chen, H. I. H., Chang, Y. F., Panneerdoss, S., Zoghi, B., Buddavarapu, K. C., Broaddus, R., Hornsby, P., Tomlinson, G., Dome, J., Vadlamudi, R. K., Pertsemlidis, A., Chen, Y., & Rao, M. K. (2012). Genomic Loss of Tumor Suppressor miRNA-204 Promotes Cancer Cell Migration and Invasion by Activating AKT/mTOR/Rac1 Signaling and Actin Reorganization. PLoS ONE, 7(12), e52397. [CrossRef]
- Ji, M., Wang, W., Li, S., & Hu, W. (2017). Implantation of bone mesenchymal stem cells overexpressing miRNA-705 mitigated ischemic brain injury. Molecular Medicine Reports, 16(6), 8323–8328. [CrossRef]
- Jiang, B., Gao, L., Lei, D., Liu, J., Shao, Z., Zhou, X., Li, R., Wu, D., Xue, F., Zhu, Y., & Yuan, H. (2016). Decreased expression of miR-9 due to E50K OPTN mutation causes disruption of the expression of BDNF leading to RGC-5 cell apoptosis. Molecular Medicine Reports, 14(5), 4901–4905. [CrossRef]
- Jiang, J. D., Zheng, X. C., Huang, F. Y., Gao, F., You, M. Z., & Zheng, T. (2019). MicroRNA-107 regulates anesthesia-induced neural injury in embryonic stem cell derived neurons. IUBMB Life, 71(1), 20–27. [CrossRef]
- Jiang, Y., & Zhu, J. (2015). Effects of sleep deprivation on behaviors and abnormal hippocampal BDNF/miR-10B expression in rats with chronic stress depression. International Journal of Clinical and Experimental Pathology, 8(1), 586–593. http://www.ncbi.nlm.nih.gov/pubmed/25755749.
- Jimenez-Gonzalez, A., García-Concejo, A., López-Benito, S., Gonzalez-Nunez, V., Arévalo, J. C., & Rodriguez, R. E. (2016). Role of morphine, miR-212/132 and mu opioid receptor in the regulation of Bdnf in zebrafish embryos. Biochimica et Biophysica Acta - General Subjects, 1860(6), 1308–1316. [CrossRef]
- Kang, E., Jia, Y., Wang, J., Wang, G., Chen, H., Chen, X., Ye, Y., Zhang, X., Su, X., Wang, J., & He, X. (2022). Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neuroscience & Therapeutics, 28(7), 1081–1092. [CrossRef]
- Kaurani, L. (2024). Clinical Insights into MicroRNAs in Depression : Bridging Molecular Discoveries and Therapeutic Potential.
- Kawashima, H., Numakawa, T., Kumamaru, E., Adachi, N., Mizuno, H., Ninomiya, M., Kunugi, H., & Hashido, K. (2010). Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience, 165(4), 1301–1311. [CrossRef]
- Ke, X., Huang, Y., Fu, Q., Lane, R. H., & Majnik, A. (2021). Adverse Maternal Environment Alters MicroRNA-10b-5p Expression and Its Epigenetic Profile Concurrently with Impaired Hippocampal Neurogenesis in Male Mouse Hippocampus. Developmental Neuroscience, 43(2), 95–105. [CrossRef]
- Kim, D. Il, Taylor, J. A., Tan, C. O., Park, H., Kim, J. Y., Park, S. Y., Chung, K. M., Lee, Y. H., Lee, B. S., & Jeon, J. Y. (2019). A pilot randomized controlled trial of 6-week combined exercise program on fasting insulin and fitness levels in individuals with spinal cord injury. European Spine Journal, 28(5), 1082–1091. [CrossRef]
- Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514. [CrossRef]
- Kumari, A., Singh, P., Baghel, M. S., & Thakur, M. K. (2016). Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain. Physiology and Behavior, 158, 34–42. [CrossRef]
- Kynast, K. L., Russe, O. Q., Möser, C. V., Geisslinger, G., & Niederberger, E. (2013). Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain, 154(3), 368–376. [CrossRef]
- Labrador-Velandia, S., Alonso-Alonso, M. L., Di Lauro, S., García-Gutierrez, M. T., Srivastava, G. K., Pastor, J. C., & Fernandez-Bueno, I. (2019). Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Experimental Eye Research, 185, 107671. [CrossRef]
- Lai, E. C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363–364. [CrossRef]
- Lambert, C. P., Sullivan, D. H., & Evans, W. J. (2003). Effects of testosterone replacement and/or resistance training on interleukin-6, tumor necrosis factor alpha, and leptin in elderly men ingesting megestrol acetate: A randomized controlled trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 58(2), 165–170. [CrossRef]
- Lee, S. T., Chu, K., Jung, K. H., Kim, J. H., Huh, J. Y., Yoon, H., Park, D. K., Lim, J. Y., Kim, J. M., Jeon, D., Ryu, H., Lee, S. K., Kim, M., & Roh, J. K. (2012). MiR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Annals of Neurology, 72(2), 269–277. [CrossRef]
- Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23(20), 4051–4060. [CrossRef]
- Lekk, I., Cabrera-Cabrera, F., Turconi, G., Tuvikene, J., Esvald, E. E., Rähni, A., Casserly, L., Garton, D. R., Andressoo, J. O., Timmusk, T., & Koppel, I. (2023). Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. Journal of Biological Chemistry, 299(2), 102897. [CrossRef]
- Li, C., Lie, H., & Sun, W. (2022). Inhibitory effect of miR-182-5p on retinal neovascularization by targeting angiogenin and BDNF. Molecular Medicine Reports, 25(2), 61. [CrossRef]
- Li, Hongxia, Du, M., Xu, W., & Wang, Z. (2021). MiR-191 downregulation protects against isoflurane-induced neurotoxicity through targeting BDNF. Toxicology Mechanisms and Methods, 31(5), 367–373. [CrossRef]
- Li, Hongyang, Gong, Y., Qian, H., Chen, T., Liu, Z., Jiang, Z., & Wei, S. (2015). Brain-derived neurotrophic factor is a novel target gene of the has-miR-183/96/182 cluster in retinal pigment epithelial cells following visible light exposure. Molecular Medicine Reports, 12(2), 2793–2799. [CrossRef]
- Li, M., Armelloni, S., Zennaro, C., Wei, C., Corbelli, A., Ikehata, M., Berra, S., Giardino, L., Mattinzoli, D., Watanabe, S., Agostoni, C., Edefonti, A., Reiser, J., Messa, P., & Rastaldi, M. P. (2015). BDNF repairs podocyte damage by microRNA-mediated increase of actin polymerization. Journal of Pathology, 235(5), 731–744. [CrossRef]
- Li, R., Shang, J., Zhou, W., Jiang, L., Xie, D., & Tu, G. (2018). Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation. Biomedicine and Pharmacotherapy, 103, 127–134. [CrossRef]
- Li, S. C., Chan, W. C., Hu, L. Y., Lai, C. H., Hsu, C. N., & Lin, W. chang. (2010). Identification of homologous microRNAs in 56 animal genomes. Genomics, 96(1), 1–9. [CrossRef]
- Li, Wei, Li, X., Xin, X., Kan, P.-C., & Yan, Y. (2016). MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer’s disease. BioScience Trends, 10(5), 372–377. [CrossRef]
- Li, Wu, He, Q. Z., Wu, C. Q., Pan, X. Y., Wang, J., Tan, Y., Shan, X. Y., & Zeng, H. C. (2015). PFOS Disturbs BDNF-ERK-CREB Signalling in Association with Increased MicroRNA-22 in SH-SY5Y Cells. BioMed Research International, 2015. [CrossRef]
- Li, Xiaojie, Yuan, L., Wang, J., Zhang, Z., Fu, S., Wang, S., & Li, X. (2021). MiR-1b up-regulation inhibits rat neuron proliferation and regeneration yet promotes apoptosis via targeting KLF7. Folia Neuropathologica, 59(1), 67–80. [CrossRef]
- Li, Xiu-juan. (2018). Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis. Diabetes and Vascular Disease Research, 15(3), 204–213. [CrossRef]
- Li, Y. J., Xu, M., Gao, Z. H., Wang, Y. Q., Yue, Z., Zhang, Y. X., Li, X. X., Zhang, C., Xie, S. Y., & Wang, P. Y. (2013). Alterations of Serum Levels of BDNF-Related miRNAs in Patients with Depression. PLoS ONE, 8(5), e63648. [CrossRef]
- Li, Y., Wei, C., Wang, W., Li, Q., & Wang, Z. C. (2023). Tropomyosin receptor kinase B (TrkB) signalling: targeted therapy in neurogenic tumours. Journal of Pathology: Clinical Research, 9(2), 89–99. [CrossRef]
- Lian, N., Niu, Q., Lei, Y., Li, X., Li, Y., & Song, X. (2018). MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle, 17(24), 2745–2755. [CrossRef]
- Liang, S. P., Chen, Q., Cheng, Y. B., Xue, Y. Y., & Wang, H. J. (2019). Comparative effects of monosialoganglioside versus citicoline on apoptotic factor, neurological function and oxidative stress in newborns with hypoxic-ischemic encephalopathy. Journal of the College of Physicians and Surgeons Pakistan, 29(4), 324–327. [CrossRef]
- Liang, Y., Liu, Y., Hou, B., Zhang, W., Liu, M., Sun, Y. E., Ma, Z., & Gu, X. (2016). CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Molecular Pain, 12. [CrossRef]
- Lin, B., Zhao, H., Li, L., Zhang, Z., Jiang, N., Yang, X., Zhang, T., Lian, B., Liu, Y., Zhang, C., Wang, J., Wang, F., Feng, D., & Xu, J. (2021). Sirt1 Improves Heart Failure Through modulating the NF-κB p65/microRNA-155/BNDF Signaling Cascade. Aging, 13(10), 14482–14498. [CrossRef]
- Lin, C. R., Chen, K. H., Yang, C. H., Huang, H. W., & Sheen-Chen, S. M. (2014). Intrathecal miR-183 delivery suppresses mechanical allodynia in mononeuropathic rats. European Journal of Neuroscience, 39(10), 1682–1689. [CrossRef]
- Lin, C. Y., Wang, S. W., Chen, Y. L., Chou, W. Y., Lin, T. Y., Chen, W. C., Yang, C. Y., Liu, S. C., Hsieh, C. C., Fong, Y. C., Wang, P. C., & Tang, C. H. (2017). Brain-derived neurotrophic factor promotes VEGF-C-dependent lymphangiogenesis by suppressing miR-624-3p in human chondrosarcoma cells. Cell Death and Disease, 8(8). [CrossRef]
- Liu, H., Wang, J., Yan, R., Jin, S., Wan, Z., Cheng, J., Li, N., Chen, L., & Le, C. (2020). Microrna-204-5p mediates sevoflurane-induced cytotoxicity in ht22 cells by targeting brain-derived neurotrophic factor. Histology and Histopathology, 35(11), 1353–1361. [CrossRef]
- Liu, S., Liu, Q., Ju, Y., & Liu, L. (2021). Downregulation of miR-383 reduces depression-like behavior through targeting Wnt family member 2 (Wnt2) in rats. Scientific Reports, 11(1), 1–15. [CrossRef]
- Liu, X., Cui, X., Guan, G., Dong, Y., & Zhang, Z. (2020). microRNA-192-5p is involved in nerve repair in rats with peripheral nerve injury by regulating XIAP. Cell Cycle, 19(3), 326–338. [CrossRef]
- Liu, Zhen, Wang, C., Wang, X., & Xu, S. (2015). Therapeutic Effects of Transplantation of As-MiR-937-Expressing Mesenchymal Stem Cells in Murine Model of Alzheimer’s Disease. Cellular Physiology and Biochemistry, 37(1), 321–330. [CrossRef]
- Liu, Zheng, Yang, J., Fang, Q., Shao, H., Yang, D., Sun, J., & Gao, L. (2021). MiRNA-199a-5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron. Brain and Behavior, 11(8). [CrossRef]
- Long, J., Jiang, C., Liu, B., Fang, S., & Kuang, M. (2016). MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumor Biology, 37(5), 5821–5828. [CrossRef]
- Lu, Y., Huang, Z., Hua, Y., & Xiao, G. (2018). Minocycline Promotes BDNF Expression of N2a Cells via Inhibition of miR-155-Mediated Repression After Oxygen-Glucose Deprivation and Reoxygenation. Cellular and Molecular Neurobiology, 38(6), 1305–1313. [CrossRef]
- Lv, M., Yang, S., Cai, L., Qin, L. qiang, Li, B. yan, & Wan, Z. (2018). Effects of Quercetin Intervention on Cognition Function in APP/PS1 Mice was Affected by Vitamin D Status. Molecular Nutrition and Food Research, 62(24), 1–38. [CrossRef]
- Ma, J. C., Duan, M. J., Sun, L. L., Yan, M. L., Liu, T., Wang, Q., Liu, C. D., Wang, X., Kang, X. H., Pei, S. C., Zong, D. K., Chen, X., Wang, N., & Ai, J. (2015). Cardiac over-expression of microRNA-1 induces impairment of cognition in mice. Neuroscience, 299, 66–78. [CrossRef]
- Ma, Ji Chao, Duan, M. J., Li, K. X., Biddyut, D., Zhang, S., Yan, M. L., Yang, L., Jin, Z., Zhao, H. M., Huang, S. Y., Sun, Q., Su, D., Xu, Y., Pan, Y. H., & Ai, J. (2018). Knockdown of MicroRNA-1 in the Hippocampus Ameliorates Myocardial Infarction Induced Impairment of Long-Term Potentiation. Cellular Physiology and Biochemistry, 50(4), 1601–1616. [CrossRef]
- Ma, R., Zhu, P., Liu, S., Gao, B., & Wang, W. (2019). miR-496 suppress tumorigenesis via targeting BDNF-mediated PI3K/Akt signaling pathway in non-small cell lung cancer. Biochemical and Biophysical Research Communications, 518(2), 273–277. [CrossRef]
- Ma, Y., Shen, N., Wicha, M. S., & Luo, M. (2021). The roles of the let-7 family of micrornas in the regulation of cancer stemness. Cells, 10(9), 1–20. [CrossRef]
- Marler, K. J., Suetterlin, P., Dopplapudi, A., Rubikaite, A., Adnan, J., Maiorano, N. A., Lowe, A. S., Thompson, I. D., Pathania, M., Bordey, A., Fulga, T., Van Vactor, D. L., Hindges, R., & Drescher, U. (2014). BDNF promotes axon branching of retinal ganglion cells via miRNA-132 and p250GAP. Journal of Neuroscience, 34(3), 969–979. [CrossRef]
- Mellios, N., Huang, H. S., Baker, S. P., Galdzicka, M., Ginns, E., & Akbarian, S. (2009). Molecular Determinants of Dysregulated GABAergic Gene Expression in the Prefrontal Cortex of Subjects with Schizophrenia. Biological Psychiatry, 65(12), 1006–1014. [CrossRef]
- Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042. [CrossRef]
- Mendoza-Viveros, L., Chiang, C. K., Ong, J. L. K., Hegazi, S., Cheng, A. H., Bouchard-Cannon, P., Fana, M., Lowden, C., Zhang, P., Bothorel, B., Michniewicz, M. G., Magill, S. T., Holmes, M. M., Goodman, R. H., Simonneaux, V., Figeys, D., & Cheng, H. Y. M. (2017). miR-132/212 Modulates Seasonal Adaptation and Dendritic Morphology of the Central Circadian Clock. Cell Reports, 19(3), 505–520. [CrossRef]
- Miao, Z., Mao, F., Liang, J., Szyf, M., Wang, Y., & Sun, Z. S. (2018). Anxiety-Related Behaviours Associated with microRNA-206-3p and BDNF Expression in Pregnant Female Mice Following Psychological Social Stress. Molecular Neurobiology, 55(2), 1097–1111. [CrossRef]
- Miao, Z., Zhang, J., Li, Y., Li, X., Song, W., Sun, Z. S., & Wang, Y. (2019). Presence of the pregnant partner regulates microRNA-30a and BDNF levels and protects male mice from social defeat-induced abnormal behaviors. Neuropharmacology, 159. [CrossRef]
- Misiorek, J. O., Schreiber, A. M., Urbanek-Trzeciak, M. O., Jazurek-Ciesiołka, M., Hauser, L. A., Lynch, D. R., Napierala, J. S., & Napierala, M. (2020). A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich’s Ataxia Patients. Molecular Neurobiology, 57(6), 2639–2653. [CrossRef]
- Miura, P., Amirouche, A., Clow, C., Bélanger, G., & Jasmin, B. J. (2012). Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. Journal of Neurochemistry, 120(2), 230–238. [CrossRef]
- Mohammadipoor-Ghasemabad, L., Sangtarash, M. H., Sheibani, V., Sasan, H. A., & Esmaeili-Mahani, S. (2019). Hippocampal microRNA-191a-5p Regulates BDNF Expression and Shows Correlation with Cognitive Impairment Induced by Paradoxical Sleep Deprivation. Neuroscience, 414, 49–59. [CrossRef]
- Mojtahedi, S., Kordi, M. R., Hosseini, S. E., Omran, S. F., & Soleimani, M. (2013). Effect of treadmill running on the expression of genes that are involved in neuronal differentiation in the hippocampus of adult male rats. Cell Biology International, 37(4), 276/a-283/a. [CrossRef]
- Mu, Y., Zhou, H., Wu, W. J., Hu, L. C., & Chen, H. B. (2015). Dynamic expression of miR-206-3p during mouse skin development is independent of keratinocyte differentiation. Molecular Medicine Reports, 12(6), 8113–8120. [CrossRef]
- Nagpal, N., Ahmad, H. M., Molparia, B., & Kulshreshtha, R. (2013). MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis, 34(8), 1889–1899. [CrossRef]
- Neumann, E., Brandenburger, T., Santana-Varela, S., Deenen, R., Köhrer, K., Bauer, I., Hermanns, H., Wood, J. N., Zhao, J., & Werdehausen, R. (2016). MicroRNA-1-associated effects of neuron-specific brain-derived neurotrophic factor gene deletion in dorsal root ganglia. Molecular and Cellular Neuroscience, 75, 36–43. [CrossRef]
- Neumann, E., Hermanns, H., Barthel, F., Werdehausen, R., & Brandenburger, T. (2015). Expression changes of microRNA-1 and its targets Connexin 43 and brain-derived neurotrophic factor in the peripheral nervous system of chronic neuropathic rats. Molecular Pain, 11(1). [CrossRef]
- Nguyen, T., Su, C., & Singh, M. (2018). Let-7i inhibition enhances progesterone-induced functional recovery in a mouse model of ischemia. Proceedings of the National Academy of Sciences of the United States of America, 115(41), E9668–E9677. [CrossRef]
- Ni, J., & Zhang, L. (2020). Cancer cachexia: Definition, staging, and emerging treatments. Cancer Management and Research, 12, 5597–5605. [CrossRef]
- Niu, Y., Wan, C., Zhang, J., Zhang, S., Zhao, Z., Zhu, L., Wang, X., Ren, X., Wang, J., & Lei, P. (2021). Aerobic exercise improves VCI through circRIMS2/miR-186/BDNF-mediated neuronal apoptosis. Molecular Medicine, 27(1), 4. [CrossRef]
- Numakawa, T., Suzuki, S., Kumamaru, E., Adachi, N., Richards, M., & Kunugi, H. (2010). BDNF function and intracellular signaling in neurons. Histology and Histopathology, 25(2), 237–258. [CrossRef]
- O’Brien, J., Hayder, H., Zayed, Y., & Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. In Frontiers in Endocrinology (Vol. 9, Issue AUG, pp. 1–12). [CrossRef]
- Odent, S., Attié-Bitach, T., Blayau, M., Mathieu, M., Augé, J., Delezoïde, A. L., Le Gall, J. Y., Le Marec, B., Munnich, A., David, V., & Vekemans, M. (1999). Expression of the Sonic hedgehog (SHH ) gene during early human development and phenotypic expression of new mutations causing holoprosencephaly. Human Molecular Genetics, 8(9), 1683–1689.
- Oikawa, H., Goh, W. W. B., Lim, V. K. J., Wong, L., & Sng, J. C. G. (2015). Valproic acid mediates miR-124 to down-regulate a novel protein target, GNAI1. Neurochemistry International, 91, 62–71. [CrossRef]
- Pan, S., Feng, W., Li, Y., Huang, J., Chen, S., Cui, Y., Tian, B., Tan, S., Wang, Z., Yao, S., Chiappelli, J., Kochunov, P., Chen, S., Yang, F., Li, C. S. R., Tian, L., Tan, Y., & Elliot Hong, L. (2021). The microRNA-195 - BDNF pathway and cognitive deficits in schizophrenia patients with minimal antipsychotic medication exposure. Translational Psychiatry, 11(1). [CrossRef]
- Panta, A., Pandey, S., Duncan, I. N., Duhamel, S., & Sohrabji, F. (2019). Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain, Behavior, and Immunity, 78(August 2018), 31–40. [CrossRef]
- Pejhan, S., Del Bigio, M. R., & Rastegar, M. (2020). The MeCP2E1/E2-BDNF-miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Frontiers in Cell and Developmental Biology, 8(August). [CrossRef]
- Peng, D., Wang, Y., Xiao, Y., Peng, M., Mai, W., Hu, B., Jia, Y., Chen, H., Yang, Y., Xiang, Q., Su, Z., Zhang, Q., & Huang, Y. (2022). Extracellular vesicles derived from astrocyte-treated with haFGF14-154 attenuate Alzheimer phenotype in AD mice. Theranostics, 12(9), 3862–3881. [CrossRef]
- Peng, J. Y., An, X. P., Fang, F., Gao, K. X., Xin, H. Y., Han, P., Bao, L. J., Ma, H. D., & Cao, B. Y. (2016). MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domestic Animal Endocrinology, 54, 60–67. [CrossRef]
- Radzikinas, K., Aven, L., Jiang, Z., Tran, T., Paez-Cortez, J., Boppidi, K., Lu, J., Fine, A., & Ai, X. (2011). A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. Journal of Neuroscience, 31(43), 15407–15415. [CrossRef]
- Rajewsky, N. (2006). Microrna target predictions in animals. Nature Genetics, 38(6S), S8–S13. [CrossRef]
- Robinson, M. (1996). Timing and regulation of trkB and BDNF mRNA expression in placode-derived sensory neurons and their targets. European Journal of Neuroscience, 8(11), 2399–2406. [CrossRef]
- Roush, S., & Slack, F. J. (2008). The let-7 family of microRNAs. Trends in Cell Biology, 18(10), 505–516. [CrossRef]
- Ryan, K. M., O’Donovan, S. M., & McLoughlin, D. M. (2013). Electroconvulsive stimulation alters levels of BDNF-associated microRNAs. Neuroscience Letters, 549, 125–129. [CrossRef]
- Scheen, A. J., Schmitt, H., Jiang, H. H., & Ivanyi, T. (2015). Individualizing treatment of type 2 diabetes by targeting postprandial or fasting hyperglycaemia: Response to a basal vs a premixed insulin regimen by HbA1c quartiles and ethnicity. Diabetes and Metabolism, 41(3), 216–222. [CrossRef]
- Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289. [CrossRef]
- Shao, Y., Yu, Y., Zhou, Q., Li, C., Yang, L., & Pei, C. gang. (2015). Inhibition of miR-134 Protects Against Hydrogen Peroxide-Induced Apoptosis in Retinal Ganglion Cells. Journal of Molecular Neuroscience, 56(2), 461–471. [CrossRef]
- Shen, J., Li, Y., Qu, C., Xu, L., Sun, H., & Zhang, J. (2019). The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. Journal of Affective Disorders, 248(August 2018), 81–90. [CrossRef]
- Shen, J., Xu, L., Qu, C., Sun, H., & Zhang, J. (2018). Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behavioural Brain Research, 349(2010), 1–7. [CrossRef]
- Shrestha, S., Phay, M., Kim, H. H., Pouladvand, P., Lee, S. J., & Yoo, S. (2019). Differential regulation of brain-derived neurotrophic factor (BDNF) expression in sensory neuron axons by miRNA-206. FEBS Open Bio, 9(2), 374–383. [CrossRef]
- Shukla, G. C., Singh, J., & Barik, S. (2011). MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Molecular and Cellular Pharmacology, 3(3), 83. [CrossRef]
- Smallridge, R. (2001). Gene expression: A small fortune. Nature Reviews Molecular Cell Biology, 2(12), 867. [CrossRef]
- Solomon, M. G., Griffin, W. C., Lopez, M. F., & Becker, H. C. (2019). Brain Regional and Temporal Changes in BDNF mRNA and microRNA-206 Expression in Mice Exposed to Repeated Cycles of Chronic Intermittent Ethanol and Forced Swim Stress. Neuroscience, 406, 617–625. [CrossRef]
- Song, D., Diao, J., Yang, Y., & Chen, Y. (2017). MicroRNA-382 inhibits cell proliferation and invasion of retinoblastoma by targeting BDNF-mediated PI3K/AKT signalling pathway. Molecular Medicine Reports, 16(5), 6428–6436. [CrossRef]
- Song, Y., Wang, G., Zhuang, J., Ni, J., Zhang, S., Gye, Y., & Xia, W. (2019). MicroRNA-584 prohibits hepatocellular carcinoma cell proliferation and invasion by directly targeting BDNF. Molecular Medicine Reports, 20(2), 1994–2001. [CrossRef]
- Su, B., Cheng, S., Wang, L., & Wang, B. (2022). MicroRNA-139-5p acts as a suppressor gene for depression by targeting nuclear receptor subfamily 3, group C, member 1. Bioengineered, 13(5), 11856–11866. [CrossRef]
- Su, M., Hong, J., Zhao, Y., Liu, S., & Xue, X. (2015). MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA-132 in rats with depression. Molecular Medicine Reports, 12(4), 5399–5406. [CrossRef]
- Sun, W., Zhang, L., & Li, R. (2017). Overexpression of miR-206 ameliorates chronic constriction injury-induced neuropathic pain in rats via the MEK/ERK pathway by targeting brain-derived neurotrophic factor. Neuroscience Letters, 646, 68–74. [CrossRef]
- Sun, Y. X., Yang, J., Wang, P. Y., Li, Y. J., Xie, S. Y., & Sun, R. P. (2013). Cisplatin regulates SH-SY5Y cell growth through downregulation of BDNF via miR-16. Oncology Reports, 30(5), 2343–2349. [CrossRef]
- Sun, Z., Guo, X., Zang, M., Wang, P., Xue, S., & Chen, G. (2019). Long non-coding RNA LINC00152 promotes cell growth and invasion of papillary thyroid carcinoma by regulating the miR-497/BDNF axis. Journal of Cellular Physiology, 234(2), 1336–1345. [CrossRef]
- Tang, X. W., Chu, D., Yan, S. N., Yin, Y. F., Bian, Q., Weng, B., Chen, B., & Ran, M. L. (2021). MiR-191 promotes the porcine immature Sertoli cell proliferation by targeting the BDNF gene through activating the PI3K/AKT signaling pathway. Yi Chuan = Hereditas, 43(7), 680–693. [CrossRef]
- Tapocik, J. D., Barbier, E., Flanigan, M., Solomon, M., Pincus, A., Pilling, A., Sun, H., Schank, J. R., King, C., & Heilig, M. (2014). MicroRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. Journal of Neuroscience, 34(13), 4581–4588. [CrossRef]
- Thomas, K. T., Anderson, B. R., Shah, N., Zimmer, S. E., Hawkins, D., Valdez, A. N., Gu, Q., & Bassell, G. J. (2017). Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Reports, 20(1), 1–12. [CrossRef]
- Tian, N., Cao, Z., & Zhang, Y. (2014). MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neuroscience Bulletin, 30(2), 191–197. [CrossRef]
- Trzaska, K. A., King, C. C., Li, K. Y., Kuzhikandathil, E. V., Nowycky, M. C., Ye, J. H., & Rameshwar, P. (2009). Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. Journal of Neurochemistry, 110(3), 1058–1069. [CrossRef]
- Tu, W., Yue, J., Li, X., Wu, Q., Yang, G., Li, S., Sun, Q., & Jiang, S. (2022). Electroacupuncture Alleviates Neuropathic Pain through Regulating miR-206-3p Targeting BDNF after CCI. Neural Plasticity, 2022, 1–15. [CrossRef]
- Tu, Z., Li, Y., Dai, Y., Li, L., Lv, G., Chen, I., & Wang, B. (2017). MiR-140/BDNF axis regulates normal human astrocyte proliferation and LPS-induced IL-6 and TNF-α secretion. Biomedicine and Pharmacotherapy, 91, 899–905. [CrossRef]
- Varendi, K., Kumar, A., Härma, M. A., & Andressoo, J. O. (2014). MIR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cellular and Molecular Life Sciences, 71(22), 4443–4456. [CrossRef]
- Vuu, Y. M., Roberts, C. T., & Rastegar, M. (2023). MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism. International Journal of Molecular Sciences, 24(4). [CrossRef]
- Wang, F., Zhu, J., Zheng, J., Duan, W., & Zhou, Z. (2020). MiR-210 enhances mesenchymal stem cell-modulated neural precursor cell migration. Molecular Medicine Reports, 21(6), 2405–2414. [CrossRef]
- Wang, Li, Liu, W., Zhang, Y., Hu, Z., Guo, H., Lv, J., & Du, H. (2020). Dexmedetomidine had neuroprotective effects on hippocampal neuronal cells via targeting lncRNA SHNG16 mediated microRNA-10b-5p/BDNF axis. Molecular and Cellular Biochemistry, 469(1–2), 41–51. [CrossRef]
- Wang, Linxiao, Zhou, Y., Chen, X., Liu, J., & Qin, X. (2022). Long-term iTBS promotes neural structural and functional recovery by enhancing neurogenesis and migration via miR-551b-5p/BDNF/TrkB pathway in a rat model of cerebral ischemia-reperfusion injury. Brain Research Bulletin, 184, 46–55. [CrossRef]
- Wang, M., Tang, X., Li, L., Liu, D., Liu, H., Zheng, H., Deng, W., Zhao, X., & Yang, G. (2018). C1q/TNF-related protein-6 is associated with insulin resistance and the development of diabetes in Chinese population. Acta Diabetologica, 55(12), 1221–1229. [CrossRef]
- Wang, P., Meng, X., Huang, Y., Lv, Z., Liu, J., Wang, G., Meng, W., Xue, S., Zhang, Q., Zhang, P., & Chen, G. (2017). MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget, 8(2), 2825–2834. [CrossRef]
- Wang, S. S., Mu, R. H., Li, C. F., Dong, S. Q., Geng, D., Liu, Q., & Yi, L. T. (2017). microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79(May), 417–425. [CrossRef]
- Wayman, G. A., Impey, S., Marks, D., Saneyoshi, T., Grant, W. F., Derkach, V., & Soderling, T. R. (2006). Activity-Dependent Dendritic Arborization Mediated by CaM-Kinase I Activation and Enhanced CREB-Dependent Transcription of Wnt-2. Neuron, 50(6), 897–909. [CrossRef]
- Wibrand, K., Pai, B., Siripornmongcolchai, T., Bittins, M., Berentsen, B., Ofte, M. L., Weigel, A., Skaftnesmo, K. O., & Bramham, C. R. (2012). MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS ONE, 7(7), e41688. [CrossRef]
- Wu, B. W., Wu, M. S., & Guo, J. D. (2018). Effects of microRNA-10a on synapse remodeling in hippocampal neurons and neuronal cell proliferation and apoptosis through the BDNF-TrkB signaling pathway in a rat model of Alzheimer’s disease. Journal of Cellular Physiology, 233(7), 5281–5292. [CrossRef]
- Wu, G., Li, X., Li, M., & Zhang, Z. (2020). Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p. Experimental Cell Research, 390(1). [CrossRef]
- Wu, Y., Yang, S., Zheng, Z., Pan, H., Jiang, Y., Bai, X., Liu, T., Deng, S., & Li, Y. (2021). MiR-191-5p Disturbed the Angiogenesis in a Mice Model of Cerebral Infarction by Targeting Inhibition of BDNF. Neurology India, 69(6), 1601–1607. [CrossRef]
- Xia, H., Li, Y., & Lv, X. (2016). MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. International Journal of Oncology, 49(4), 1325–1333. [CrossRef]
- Xiang, L., Ren, Y., Li, X., Zhao, W., & Song, Y. (2016). MicroRNA-204 suppresses epileptiform discharges through regulating TrkB-ERK1/2-CREB signaling in cultured hippocampal neurons. Brain Research, 1639, 99–107. [CrossRef]
- Xie, B., Liu, Z., Jiang, L., Liu, W., Song, M., Zhang, Q., Zhang, R., Cui, D., Wang, X., & Xu, S. (2017). Increased Serum miR-206 Level Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer’s Disease: A 5-Year Follow-up Study. Journal of Alzheimer’s Disease, 55(2), 509–520. [CrossRef]
- Xing, Q., Shan, Z., Gao, Y., Mao, J., Liu, X., Yu, J., Sun, H., Fan, C., Wang, H., Zhang, H., & Teng, W. (2018). Differential Expression of MicroRNAs and miR-206-Mediated Downregulation of BDNF Expression in the Rat Fetal Brain Following Maternal Hypothyroidism. Hormone and Metabolic Research, 50(9), 696–703. [CrossRef]
- Xu, A. J., Fu, L. N., Wu, H. X., Yao, X. L., & Meng, R. (2017). MicroRNA-744 inhibits tumor cell proliferation and invasion of gastric cancer via targeting brain-derived neurotrophic factor. Molecular Medicine Reports, 16(4), 5055–5061. [CrossRef]
- Xu, H., Jia, Z., Ma, K., Zhang, J., Dai, C., Yao, Z., Deng, W., Su, J., Wang, R., & Chen, X. (2020). Protective effect of mesenchymal stromal cell-derived exosomes on traumatic brain injury via miR-216a-5p. Medical Science Monitor, 26. [CrossRef]
- Xu, W., Li, X., Chen, L., Luo, X., Shen, S., & Wang, J. (2022). Dexmedetomidine pretreatment alleviates ropivacaine-induced neurotoxicity via the miR-10b-5p/BDNF axis. BMC Anesthesiology, 22(1). [CrossRef]
- Xu, Y., Fu, Z., Gao, X., Wang, R., & Li, Q. (2021). Long non-coding RNA XIST promotes retinoblastoma cell proliferation, migration, and invasion by modulating microRNA-191-5p/brain derived neurotrophic factor. Bioengineered, 12(1), 1587–1598. [CrossRef]
- Yan, H., Wu, W., Ge, H., Li, P., & Wang, Z. (2015). Up-regulation of miR-204 enhances anoikis sensitivity in epithelial ovarian cancer cell line via brain-derived neurotrophic factor pathway in vitro. International Journal of Gynecological Cancer, 25(6), 944–952. [CrossRef]
- Yang, G., Song, Y., Zhou, X., Deng, Y., Liu, T., Weng, G., Yu, D., & Pan, S. (2015). DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Molecular Medicine Reports, 12(1), 1435–1442. [CrossRef]
- Yang, Wei, Liu, M., Zhang, Q., Zhang, J., Chen, J., Chen, Q., & Suo, L. (2020). Knockdown of miR-124 Reduces Depression-like Behavior by Targeting CREB1 and BDNF. Current Neurovascular Research, 17(2), 196–203. [CrossRef]
- Yang, Wenqian, Guo, Q., Li, J., Wang, X., Pan, B., Wang, Y., Wu, L., Yan, J., & Cheng, Z. (2019). microRNA-124 attenuates isoflurane-induced neurological deficits in neonatal rats via binding to EGR1. Journal of Cellular Physiology, 234(12), 23017–23032. [CrossRef]
- Yang, X., Yang, Q., Wang, X., Luo, C., Wan, Y., Li, J., Liu, K., Zhou, M., & Zhang, C. (2014). MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. NeuroMolecular Medicine, 16(3), 594–605. [CrossRef]
- Yi, L. T., Li, J., Liu, B. Bin, Luo, L., Liu, Q., & Geng, D. (2014). BDNF-ERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. Journal of Psychiatry and Neuroscience, 39(5), 348–359. [CrossRef]
- Yi, L. T., Mu, R. H., Dong, S. Q., Wang, S. S., Li, C. F., Geng, D., & Liu, Q. (2018). miR-124 antagonizes the antidepressant-like effects of standardized gypenosides in mice. Journal of Psychopharmacology, 32(4), 458–468. [CrossRef]
- Yi, S., Yuan, Y., Chen, Q., Wang, X., Gong, L., Liu, J., Gu, X., & Li, S. (2016). Regulation of Schwann cell proliferation and migration by MIR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Scientific Reports, 6. [CrossRef]
- Yongguang, L., Xiaowei, W., Huichao, Y., & Yanxiang, Z. (2022). Gastrodin promotes the regeneration of peripheral nerves by regulating miR-497/BDNF axis. BMC Complementary Medicine and Therapies, 22(1), 45. [CrossRef]
- Yu, H. C., Huang, H. Bin, Tseng, H. Y. H., & Lu, M. C. (2022). Brain-Derived Neurotrophic Factor Suppressed Proinflammatory Cytokines Secretion and Enhanced MicroRNA(miR)-3168 Expression in Macrophages. International Journal of Molecular Sciences, 23(1), 570. [CrossRef]
- Zeng, L.-L., He, X.-S., Liu, J.-R., Zheng, C.-B., Wang, Y.-T., & Yang, G.-Y. (2016). Lentivirus-Mediated Overexpression of MicroRNA-210 Improves Long-Term Outcomes after Focal Cerebral Ischemia in Mice. CNS Neuroscience & Therapeutics, 22(12), 961–969. [CrossRef]
- Zhai, Y., Liu, B., Mo, X., Zou, M., Mei, X., Chen, W., Huang, G., & Wu, L. (2022). Gingerol ameliorates neuronal damage induced by <scp>hypoxia-reoxygenation</scp> via the <scp>miR</scp> -210/ <scp>brain-derived</scp> neurotrophic factor axis. The Kaohsiung Journal of Medical Sciences, 38(4), 367–377. [CrossRef]
- Zhang, Jing, Guo, X., Shi, Y. W., Ma, J., & Wang, G. F. (2014). Intermittent hypoxia with or without hypercapnia is associated with tumorigenesis by decreasing the expression of brain derived neurotrophic factor and miR-34a in rats. Chinese Medical Journal, 127(1), 43–47. [CrossRef]
- Zhang, Jingdan, Li, A., Gu, R., Tong, Y., & Cheng, J. (2023). Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases. Frontiers in Immunology, 14(August), 1–12. [CrossRef]
- Zhang, Jun, Liu, Z., Pei, Y., Yang, W., Xie, C., & Long, S. (2018). MicroRNA-322 Cluster Promotes Tau Phosphorylation via Targeting Brain-Derived Neurotrophic Factor. Neurochemical Research, 43(3), 736–744. [CrossRef]
- Zhang, K., Wu, S., Li, Z., & Zhou, J. (2017). MicroRNA-211/BDNF axis regulates LPS-induced proliferation of normal human astrocyte through PI3K/AKT pathway. Bioscience Reports, 37(4). [CrossRef]
- Zhang, T., Liu, C., & Chi, L. (2020). Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neuroscience Letters, 714, 134562. [CrossRef]
- Zhang, Xiao yu, Tang, X. yi, Li, N., Zhao, L. min, Guo, Y. li, Li, X. su, Tian, C. jie, Cheng, D. jun, Chen, Z. chang, & Zhang, L. xian. (2018). GAS5 promotes airway smooth muscle cell proliferation in asthma via controlling miR-10a/BDNF signaling pathway. Life Sciences, 212, 93–101. [CrossRef]
- Zhang, Xiaonan, Xue, Y., Li, J., Xu, H., Yan, W., Zhao, Z., Yu, W., Zhai, X., Sun, Y., Wu, Y., Li, Y., Gui, L., Yu, D., Xiao, Z., & Yin, S. (2021). The involvement of ADAR1 in antidepressant action by regulating BDNF via miR-432. Behavioural Brain Research, 402. [CrossRef]
- Zhang, Z., Xia, D. jian, & Xu, A. ding. (2022). Therapeutic effect of fastigial nucleus stimulation is mediated by the microRNA-182 & microRNA-382/BDNF signaling pathways in the treatment of post-stroke depression. Biochemical and Biophysical Research Communications, 627, 137–145. [CrossRef]
- Zhao, H., Li, Y., Chen, L., Shen, C., Xiao, Z., Xu, R., Wang, J., & Luo, Y. (2019). HucMSCs-Derived miR-206-Knockdown Exosomes Contribute to Neuroprotection in Subarachnoid Hemorrhage Induced Early Brain Injury by Targeting BDNF. Neuroscience, 417, 11–23. [CrossRef]
- Zhao, P., Li, X., Li, Y., Zhu, J., Sun, Y., & Hong, J. (2021). Mechanism of miR-365 in regulating BDNF-TrkB signal axis of HFD/STZ induced diabetic nephropathy fibrosis and renal function. International Urology and Nephrology, 53(10), 2177–2187. [CrossRef]
- Zhao, X., Shu, F., Wang, X., Wang, F., Wu, L., Li, L., & Lv, H. (2019). Inhibition of microRNA-375 ameliorated ketamine-induced neurotoxicity in human embryonic stem cell derived neurons. European Journal of Pharmacology, 844, 56–64. [CrossRef]
- Zhao, Y., Wang, S., Chu, Z., Dang, Y., Zhu, J., & Su, X. (2017). MicroRNA-101 in the ventrolateral orbital cortex (VLO) modulates depressive-like behaviors in rats and targets dual-specificity phosphatase 1 (DUSP1). Brain Research, 1669, 55–62. [CrossRef]


| 1 | Schratt, G. M., et al. (2006). https://doi.org/10.1038/nature04367 | miR-134 | |
| 2 | Klein, M. E., et al. (2007). https://doi.org/10.1038/nn2010 |
miR132 | |
| 3 | Mellios, N., et al. (2008). https://doi.org/10.1093/hmg/ddn201 |
miR-30a-5p miR-195 | |
| 4 | Mellios, N., et al. (2009). https://doi.org/10.1016/j.biopsych.2008.11.019 | miR-195 | |
| 5 | Chandrasekar, V., & Dreyer, J. L. (2009). https://doi.org/10.1016/j.mcn.2009.08.009 | miR-124 | |
| 6 | Im, H.-I., et al. (2010). https://doi.org/10.1038/nn.2615 |
MeCP2 | |
| 7 | Gao J. amd Wang, et al. (2010). https://doi.org/10.1038/NATURE09271 | miR-134 | |
| 8 | Kawashima, H., et al. (2010). https://doi.org/10.1016/j.neuroscience.2009.11.057 | miR-132 | |
| 9 | Han, L., et al. (2011). https://doi.org/10.1186/1756-6606-4-40 |
miR-134 | |
| 10 | Radzikinas, K., et al. (2011). https://doi.org/10.1523/JNEUROSCI.2745-11.2011 | miR-206 | |
| 11 | Angelucci, F., et al. (2011). https://doi.org/10.1159/000322528 |
miR30a-5p | |
| 12 | Caputo, V., et al. (2011). https://doi.org/10.1371/journal.pone.0028656 | miR-26a1/2 miR-26b | |
| 13 | Bai, M., et al. (2012). https://doi.org/10.1371/journal.pone.0046921 | miR-16 | |
| 14 | Lee, S. T., et al. (2012). https://doi.org/10.1002/ana.23588 |
miR-260 | |
| 15 | Imam, J. S., et al. (2012). https://doi.org/10.1371/journal.pone.0052397 | miR-204 | |
| 16 | Chen-Plotkin, A. S., et al. (2012). https://doi.org/10.1523/JNEUROSCI.0521-12.2012 | miR-132 | |
| 17 | Wibrand, K., et al. (2012). https://doi.org/10.1371/journal.pone.0041688 | miR-132 | |
| 18 | Miura, P., et al. (2012). https://doi.org/10.1111/j.1471-4159.2011.07583.x |
miR-206 | |
| 19 | Bahi, A., & Dreyer, J.-L. (2013). https://doi.org/10.1111/ejn.12228 | miR124a | |
| 20 | Hutchison, E. R., et al. (2013). https://doi.org/10.1002/glia.22483 | McCP2 | |
| 21 | SUN, Y.-X., et al. (2013). https://doi.org/10.3892/or.2013.2731 |
miR-16 | |
| 22 | Li, Y.-J., et al. (2013). https://doi.org/10.1371/journal.pone.0063648 | miR-182 | |
| 23 | Kynast, K. L., et al. (2013). https://doi.org/10.1016/j.pain.2012.11.010 | miRNA-124a | |
| 24 | Croce, N., et al. (2013). https://doi.org/10.1007/s11010-013-1567-0 |
NPY | |
| 25 | Ryan, K. M., et al. (2013). https://doi.org/10.1016/j.neulet.2013.05.035 | miR-212 | |
| 26 | Nagpal, N., et al. (2013). https://doi.org/10.1093/carcin/bgt107 |
miR-191 | |
| 27 | Mojtahedi, S., et al. (2013). https://doi.org/10.1002/cbin.10022 |
miR-124 | |
| 28 | Tapocik, J. D., et al. (2014). https://doi.org/10.1523/JNEUROSCI.0445-14.2014 | miR-206 | |
| 29 | Lin, C. R., et al. (2014). https://doi.org/10.1111/ejn.12522 |
miR-183 | |
| 30 | Tian, N., et al. (2014). https://doi.org/10.1007/s12264-013-1419-7 |
miR-206 | |
| 31 | Bahi, A., et al. (2014). https://doi.org/10.1016/j.psyneuen.2014.04.009 | miR124a | |
| 32 | Marler, K. J., et al. (2014). https://doi.org/10.1523/JNEUROSCI.1910-13.2014 | miRNA-132 | |
| 33 | Yang, X., et al. (2014). https://doi.org/10.1007/s12017-014-8312-z |
miR-206 | |
| 34 | Yi, L. T., et al. (2014). https://doi.org/10.1503/jpn.130169 |
miR-132 | |
| 35 | Giannotti, G., et al. (2014). https://doi.org/10.1017/S1461145713001454 | miR124 miR132 | |
| 36 | Varendi, K., et al. (2014). https://doi.org/10.1007/s00018-014-1628-x |
miR-1/206 miR-10 | |
| 37 | Zhang, J., et al. (2014). https://doi.org/10.3760/cma.j.issn.0366-6999.20131683 | miR- 34a | |
| 38 | Cho, K. J., et al. (2015). https://doi.org/10.1016/j.mcn.2015.07.004 | miR-Let-7a | |
| 39 | Li, H., et al. (2015). https://doi.org/10.3892/mmr.2015.3736 |
miR-183/96/182 | |
| 40 | Ma, J. C., et al. (2015). https://doi.org/10.1016/j.neuroscience.2015.04.061 | miR-1 | |
| 41 | Yang, G., et al. (2015). https://doi.org/10.3892/mmr.2015.3531 |
miR-29c | |
| 42 | Neumann, E., et al. (2015). https://doi.org/10.1186/s12990-015-0045-y |
miR-1 | |
| 43 | Li, W., et al. (2015). https://doi.org/10.1155/2015/302653 |
miR-22 | |
| 44 | Xiang, L., et al. (2015). https://doi.org/10.1016/j.brainres.2015.06.046 | miR-132 miR-132 | |
| 45 | Yan, H., et al. (2015). https://doi.org/10.1097/IGC.0000000000000456 | miR-204 | |
| 46 | Mu, Y., et al. (2015). https://doi.org/10.3892/mmr.2015.4456 |
miR-206-3p | |
| 47 | Li, M., et al. (2015). https://doi.org/10.1002/path.4484 |
miRNA-134 miR-132 | |
| 48 | Liu, Z., et al. (2015). https://doi.org/10.1159/000430356 |
miR-937 | |
| 49 | Su, M., et al. (2015). https://doi.org/10.3892/mmr.2015.4104 |
MeCP2 | |
| 50 | Hernandez-Rapp, J., et al. (2015). https://doi.org/10.1016/j.bbr.2015.03.032 | miR-132/212 | |
| 51 | Huang, W., et al. (2015). https://doi.org/10.1007/s12031-015-0500-2 |
miR-134 | |
| 52 | Oikawa, H., et al. (2015). http://doi.org/10.1016/j.neuint.2015.10.010 | miR-124 | |
| 53 | Jiang, Y., & Zhu, J. (2015). http://www.ncbi.nlm.nih.gov/pubmed/25755749 | miR-10B | |
| 54 | Shao, Y., et al. (2015). https://doi.org/10.1007/s12031-015-0522-9 |
miR-134 | |
| 55 | Gao, Y., et al. (2015). https://doi.org/10.1002/stem.1950 |
miR-15a+ | |
| 56 | Darcq, E., et al. (2015). https://doi.org/10.1038/mp.2014.120 |
miR-30a-5p | |
| 57 | Long, J., et al. (2016). https://doi.org/10.1007/s13277-015-4427-6 |
MiR-15a-5p | |
| 58 | Hu, X. M., et al. (2016). https://doi.org/10.1177/1744806916666283 | miR-219 | |
| 59 | Li, Y., et al. (2016). https://doi.org/10.1016/j.pnpbp.2015.09.004 | miR-182 | |
| 60 | Peng, J. Y., et al. (2016). https://doi.org/10.1016/j.domaniend.2015.09.005 | miR-10b | |
| 61 | Yi, S., et al. (2016). https://doi.org/10.1038/srep29121 |
miR-1 | |
| 62 | Bahi, A. (2016). https://doi.org/10.1016/j.bbr.2016.05.033 |
miR124a | |
| 63 | Xia, H., Li, Y., & Lv, X. (2016). https://doi.org/10.3892/ijo.2016.3628 | miR-107 | |
| 64 | Neumann, E., et al. (2016). https://doi.org/10.1016/j.mcn.2016.06.003 | miR-1 | |
| 65 | Kumari, A., et al. (2016). https://doi.org/10.1016/j.physbeh.2016.02.032 | miRNA-132 and miRNA-134 | |
| 66 | Liang, Y., et al. (2016). https://doi.org/10.1177/1744806916641679 | miRNA-212/132 | |
| 67 | Jiang, B., et al. (2016). https://doi.org/10.3892/mmr.2016.5810 | miR-9 | |
| 68 | Hang, P., et al. (2016) https://doi.org/10.7150/ijbs.15071 |
miRNA-195 | |
| 69 | Li, W., et al. (2016). https://doi.org/10.5582/bst.2016.01127 |
miR-613 | |
| 70 | Jimenez-Gonzalez, A., et al. (2016). https://doi.org/10.1016/j.bbagen.2016.03.001 | miR-212 and miR-132 | |
| 71 | Aili, A., Chen, Y., & Zhang, H. (2016). https://doi.org/10.3892/mmr.2015.4506 | miR-10b | |
| 72 | Zeng, L. L., et al. (2016). https://doi.org/10.1111/cns.12589 |
MiR-210 | |
| 73 | Xiang, L., et al. (2016). https://doi.org/10.1016/j.brainres.2016.02.045 | MiR-204 | |
| 74 | Cui, M., et al. (2017). https://doi.org/10.1016/j.bbadis.2017.06.021 | miR-34a-5p | |
| 75 | Thomas, K. T., et al. (2017). https://doi.org/10.1016/j.celrep.2017.06.038 | miR-137 | |
| 76 | Mendoza-Viveros, L., et al. (2017). https://doi.org/10.1016/j.celrep.2017.03.057 | miR-132/212 | |
| 77 | Xie, B., et al. (2017). https://doi.org/10.3233/JAD-160468 |
miR-206 | |
| 78 | Wang, P., et al. (2017). https://doi.org/10.18632/oncotarget.13747 | miR-497 | |
| 79 | Gao, B., et al. (2017). https://doi.org/10.1002/jgm.2932 |
miR-107 | |
| 80 | Tu, Z., et al. (2017). https://doi.org/10.1016/j.biopha.2017.05.016 | miR-140 | |
| 81 | Song, D., ett al. (2017). https://doi.org/10.3892/mmr.2017.7396 |
miR-382 | |
| 82 | Lin, C. Y., et al. (2017). https://doi.org/10.1038/cddis.2017.354 |
miR-624-3p | |
| 83 | Zhao, Y., et al. (2017). https://doi.org/10.1016/j.brainres.2017.05.020 | miR-101 | |
| 84 | Zhang, K., et al. (2017). https://doi.org/10.1042/BSR20170755 |
miR-211 | |
| 85 | Bahi, A. (2017). https://doi.org/10.1016/j.bbr.2017.03.010 |
miR124a | |
| 86 | Xu, A. J., et al. (2017). https://doi.org/10.3892/mmr.2017.7167 | miR-744 | |
| 87 | Sun, W., et al. (2017). https://doi.org/10.1016/j.neulet.2016.12.047 | miR-206 | |
| 88 | Wang, S. S., et al. (2017). https://doi.org/10.1016/j.pnpbp.2017.07.024 | miR-124 | |
| 89 | (Wang et al., 2017) https://doi.org/10.3892/mmr.2017.8282 |
miR-103 | |
| 90 | Huang, W., et al. (2017). https://doi.org/10.1007/s12031-017-0907-z |
MiR-134 | |
| 91 | Ji, M., et al. (2017). https://doi.org/10.3892/mmr.2017.7626 |
miR-705 | |
| 92 | Fu et al., (2017) http://dx.doi.org/10.1038/s41598-017-01261-x |
miR-125b-5p | |
| 93 | Lian, N., et al. (2018). https://doi.org/10.1080/15384101.2018.1556060 | miR-221 | |
| 94 | Duan, W., et al. (2018). https://doi.org/10.3892/ijmm.2018.3711 | miR-155 | |
| 95 | Yi, L. T., et al. (2018). https://doi.org/10.1177/0269881118758304 | miR-124 | |
| 96 | Nguyen, T., et al. (2018). https://doi.org/10.1073/pnas.1803384115 | let-7i | |
| 97 | Cheng, F., et al. (2018). https://doi.org/10.1016/j.micpath.2018.04.060 | miR-107 | |
| 98 | Fang, Y., et al. (2018). https://doi.org/10.1016/j.jad.2017.11.090 | miR-124 | |
| 99 | Zhang, S., et al. (2018). https://doi.org/10.1016/j.neulet.2017.10.014 | miR-210-3p | |
| 100 | Xing, Q., et al. (2018). https://doi.org/10.1055/a-0658-2095 |
miR-206 | |
| 101 | Li, X. J. (2018). https://doi.org/10.1177/1479164117749382 |
miR-497 | |
| 102 | Lu, Y., et al. (2018). https://doi.org/10.1007/s10571-018-0599-0 |
miR-155 | |
| 103 | Miao, Z., et al. (2018). https://doi.org/10.1007/s12035-016-0378-1 |
miR-206-3p | |
| 104 | Descamps, B., et al. (2018). https://doi.org/10.1161/ATVBAHA.118.311400 | miR-214 | |
| 105 | Lv, M., Yet al. (2018). https://doi.org/10.1002/mnfr.201800621 |
miR-26a miR-125b miR-132 | |
| 106 | Ge, Q. Di, et al. (2018). https://doi.org/10.1016/j.etap.2018.08.011 | miR-132 miR-204 | |
| 107 | Shen, J., et al. (2018). https://doi.org/10.1016/j.bbr.2018.04.050 | miR-134 | |
| 108 | Wu, B. W., et al. (2018). https://doi.org/10.1002/jcp.26328 |
miR-10a | |
| 109 | Ma, J. C., et al. (2018). https://doi.org/10.1159/000494657 |
miR-1 | |
| 110 | Zhang, X. yu, et al. (2018). https://doi.org/10.1016/j.lfs.2018.09.002 | miR-10a | |
| 111 | Gao, L., et al. (2018). https://doi.org/10.4149/neo_2018_161128N594 | MiR-1-3p | |
| 112 | Zhang, J., et al. (2018). https://doi.org/10.1007/s11064-018-2475-1 |
miR-322 | |
| 113 | Jiang, J. D., et al. (2019). https://doi.org/10.1002/iub.1911 |
miR-107 | |
| 114 | Yang, W., et al. (2019). https://doi.org/10.1002/jcp.28862 |
miR-124 | |
| 115 | Shrestha, S., et al. (2019). https://doi.org/10.1002/2211-5463.12581 |
miRNA-206 | |
| 116 | Miao, Z., et al. (2019). https://doi.org/10.1016/j.neuropharm.2019.03.032 | miR-30a | |
| 117 | Song, Y., et al. (2019). https://doi.org/10.3892/mmr.2019.10424 | miR-584 | |
| 118 | Sun, Z., et al. (2019). https://doi.org/10.1002/jcp.26928 |
miR-497 | |
| 119 | Mohammadipoor-Ghasemabad, L., et al. (2019). https://doi.org/10.1016/j.neuroscience.2019.06.037 | miR-191a | |
| 120 | Hung, Y. Y., et al. (2019). https://doi.org/10.3390/cells8091021 | miR-204-5p | |
| 121 | Li, B. B., et al. (2019). https://doi.org/10.1016/j.chemosphere.2019.05.064 | miR-7 | |
| 122 | Ma, R.,et al. (2019). https://doi.org/10.1016/j.bbrc.2019.08.046 |
miR-496 | |
| 123 | Shen, J., et al. (2019). https://doi.org/10.1016/j.jad.2019.01.031 |
miR-134 | |
| 124 | Solomon, M. G., et al. (2019). https://doi.org/10.1016/j.neuroscience.2019.02.012 | miR-206 | |
| 125 | Zhao, X., et al. (2019). https://doi.org/10.1016/j.ejphar.2018.11.035 | miR-375 | |
| 126 | Panta, A., et al. (2019). https://doi.org/10.1016/j.bbi.2019.01.003 | miR-363-3p | |
| 127 | Zhao, H., et al. (2019). https://doi.org/10.1016/j.neuroscience.2019.07.051 | miR-206 | |
| 128 | Xie, W., et al. (2020). https://doi.org/10.1007/s11064-020-03013-2 |
miR-185 | |
| 129 | Deng, C., et al. (2020). https://doi.org/10.1007/s11064-019-02910-5 |
miR-494-3p | |
| 130 | Hu, J. J., et al. (2020). https://doi.org/10.1002/kjm2.12136 |
miR-15a | |
| 131 | Liu, X., et al. (2020). https://doi.org/10.1080/15384101.2019.1710916 | MiR-192-5p | |
| 132 | Zhang, T., et al. (2020). https://doi.org/10.1016/j.neulet.2019.134562 | miR-10a-5p | |
| 133 | Yang, W., et al. (2020). https://doi.org/10.2174/1567202617666200319141755 | miR-124 | |
| 134 | Wu, G., et al. (2020). https://doi.org/10.1016/j.yexcr.2020.111937 | miR-129-5p | |
| 135 | Liu, H., et al. (2020). https://doi.org/10.14670/HH-18-266 |
miR-204-5p | |
| 136 | Misiorek, J. O., et al. (2020). https://doi.org/10.1007/s12035-020-01899-1 |
miR-10a-5p | |
| 137 | Wang, F., et al. (2020). https://doi.org/10.3892/mmr.2020.11065 | mir-210 | |
| 138 | Wang, L., et al. (2020). https://doi.org/10.1007/s11010-020-03726-6 |
miR-10b-5p | |
| 139 | Gao, L., et al. (2020). https://doi.org/10.1093/JNEN/NLAA069 |
miR-103-3p | |
| 140 | Giordano, M., et al. (2020). https://doi.org/10.3390/ijms21207615 | miR-195-5p | |
| 141 | Xu, H., et al. (2020). https://doi.org/10.12659/MSM.920855 |
miR-216a-5p | |
| 142 | Pejhan et al., (2020) https://doi.org/10.3389/fcell.2020.00763 |
miR-132 | |
| 143 | Lin, B., et al. (2021). https://doi.org/10.18632/aging.103640 |
miR-155 | |
| 144 | Niu, Y., et al. (2021). https://doi.org/10.1186/s10020-020-00258-z |
miR-186 | |
| 145 | Zhang, X., et al. (2021). https://doi.org/10.1016/j.bbr.2020.113087 | miR-432 | |
| 146 | Huan, Z., et al. (2021). https://doi.org/10.1007/s11064-021-03234-z |
miR-155 | |
| 147 | Zhao, P., et al. (2021). https://doi.org/10.1007/s11255-021-02853-3 |
miR-365 | |
| 148 | Ke, X., et al. (2021). https://doi.org/10.1159/000515750 |
miR-10b-5p | |
| 149 | Xu, Y., et al. (2021). https://doi.org/10.1080/21655979.2021.1918991 | miR-191-5p | |
| 150 | Pan, S., et al. (2021). https://doi.org/10.1038/s41398-021-01240-x |
MiR-195 | |
| 151 | Li, H., et al. (2021). https://doi.org/10.1080/15376516.2021.1886211 | miR-191 | |
| 152 | Tang, Y., et al. (2021). https://doi.org/10.1371/journal.pone.0257280 | miR-155 | |
| 153 | Li, X., et al. (2021). https://doi.org/10.5114/fn.2021.105132 |
miR-1b | |
| 154 | Peng, D., et al. (2022). https://doi.org/10.7150/thno.70951 |
miR-206-3p | |
| 155 | Wu, Y., et al. (2021). https://doi.org/10.4103/0028-3886.333459 |
miR-191-5p | |
| 156 | Guan, W., et al. (2021). https://doi.org/10.1016/j.phrs.2021.105932 | miR-206-3p | |
| 157 | Zhang, Q., et al. (2021). https://doi.org/10.3389/fendo.2021.637384 | miR-103a-3p miR-10a-5p | |
| 158 | Ehinger, Y., et al. (2021). https://doi.org/10.1111/adb.12890 |
miR30a-5p miR-195-5p miR191-5p miR206-3p | |
| 159 | Fang, F., et al. (2022). https://doi.org/10.1186/s13019-022-01802-0 |
miR-182-5p | |
| 160 | Su, B., et al. (2022). https://doi.org/10.1080/21655979.2022.2059937 | miR-139-5p | |
| 161 | Yongguang, L., et al. (2022). https://doi.org/10.1186/s12906-021-03483-z |
miR-497 | |
| 162 | Tu, W., et al. (2022). https://doi.org/10.1155/2022/1489841 |
miR-206-3p | |
| 163 | Gao, J., et al. (2022). https://doi.org/10.1080/21655979.2022.2067293 | miR-155-5p | |
| 164 | Zhai, Y., et al. (2022). https://doi.org/10.1002/kjm2.12486 |
miR-210 | |
| 165 | Yu, H. C., et al. (2022). https://doi.org/10.3390/ijms23010570 |
miR-3168 | |
| 166 | Kang, E. M., et al. (2022). https://doi.org/10.1111/cns.13845 |
miR- 124-3p | |
| 167 | Li, C., et al. (2022). https://doi.org/10.3892/mmr.2021.12577 |
mir-182-5p | |
| 168 | Deng, L., et al. (2022). https://doi.org/10.1186/s13018-022-03315-x |
miR-210-3p | |
| 169 | Ding, J., Jiang, C., Yang, L., & Wang, X. (2022). https://doi.org/10.14715/CMB/2022.68.1.10 | miR-1-3p | |
| 170 | Ma, L., et al. (2022). https://doi.org/10.1038/s41398-022-02192-6 |
miR-132-5p | |
| 171 | Asadi, M. R., et al. (2022). https://doi.org/10.1186/s12888-022-04442-9 |
miR-16 | |
| 172 | Wang, L., et al. (2022). https://doi.org/10.1016/j.brainresbull.2022.03.002 | miR-551b-5p | |
| 173 | Zhang, Z., et al. (2022). https://doi.org/10.1016/j.bbrc.2022.05.038 | miR-382 miR-182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
