Submitted:
02 April 2024
Posted:
02 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Application of Artificial Intelligence in Neonatology
2.1. Neurocritical Care
2.1.1. Electroencephalography
2.1.2. Magnetic Resonance Imaging
2.2. Respiratory System
2.3. Ophthalmology
2.4. Vital Signs
2.5. Gastrointestinal System
2.6. Jaundice
2.7. Sepsis
2.8. Patent Ductus Arteriosus
2.9. Neurodevelopmental Outcome
2.10. Mortality
3. Limitations and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Price, W.N., 2nd; Gerke, S.; Cohen, I.G. Potential Liability for Physicians Using Artificial Intelligence. JAMA 2019, 322, 1765–1766. [Google Scholar] [CrossRef] [PubMed]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr Rev Musculoskelet Med 2020, 13, 69–76. [Google Scholar] [CrossRef]
- Adegboro, C.O.; Choudhury, A.; Asan, O.; Kelly, M.M. Artificial Intelligence to Improve Health Outcomes in the NICU and PICU: A Systematic Review. Hosp Pediatr 2022, 12, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Asan, O. Role of Artificial Intelligence in Patient Safety Outcomes: Systematic Literature Review. JMIR Med Inform 2020, 8, e18599. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.; Renjilian, E.; Asan, O. Use of machine learning in geriatric clinical care for chronic diseases: a systematic literature review. JAMIA Open 2020, 3, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Olive, M.K.; Owens, G.E. Current monitoring and innovative predictive modeling to improve care in the pediatric cardiac intensive care unit. Transl Pediatr 2018, 7, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Piccialli, F.; Somma, V.D.; Giampaolo, F.; Cuomo, S.; Fortino, G. A survey on deep learning in medicine: Why, how and when? Information Fusion 2021, 66, 111–137. [Google Scholar] [CrossRef]
- Burt, J.R.; Torosdagli, N.; Khosravan, N.; RaviPrakash, H.; Mortazi, A.; Tissavirasingham, F.; Hussein, S.; Bagci, U. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br J Radiol 2018, 91, 20170545. [Google Scholar] [CrossRef]
- Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J Biomed Inform 2017, 73, 14–29. [Google Scholar] [CrossRef]
- Nadkarni, P.M.; Ohno-Machado, L.; Chapman, W.W. Natural language processing: an introduction. J Am Med Inform Assoc 2011, 18, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, B.H.; Bower, M.R.; Stengel, K.A.; Worrell, G.A.; Stead, M. Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods 2009, 180, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.D.; Hobbs, G.R.; Mullett, M. Neonatal seizures: incidence, onset, and etiology by gestational age. J Perinatol 1999, 19, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.P.; Banwell, B.; Berg, R.A.; Dlugos, D.J.; Donnelly, M.; Ichord, R.; Kessler, S.K.; Lavelle, J.; Massey, S.L.; Hewlett, J.; et al. Impact of an ICU EEG monitoring pathway on timeliness of therapeutic intervention and electrographic seizure termination. Epilepsia 2016, 57, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Payne, E.T.; Zhao, X.Y.; Frndova, H.; McBain, K.; Sharma, R.; Hutchison, J.S.; Hahn, C.D. Seizure burden is independently associated with short term outcome in critically ill children. Brain 2014, 137, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.E.; Specchio, N.; Shinnar, S.; Holmes, G.L. Seizing control of epileptic activity can improve outcome. Epilepsia 2015, 56, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.M.; Boylan, G.B.; Ali, I.; Ryan, C.A.; Murphy, B.P.; Connolly, S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2008, 93, F187–F191. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A.; Clancy, R.R. Characterization of neonatal seizures by conventional EEG and single-channel EEG. Clin Neurophysiol 2007, 118, 2156–2161. [Google Scholar] [CrossRef]
- Scher, M.S.; Alvin, J.; Gaus, L.; Minnigh, B.; Painter, M.J. Uncoupling of EEG-clinical neonatal seizures after antiepileptic drug use. Pediatr Neurol 2003, 28, 277–280. [Google Scholar] [CrossRef] [PubMed]
- McCoy, B.; Hahn, C.D. Continuous EEG monitoring in the neonatal intensive care unit. J Clin Neurophysiol 2013, 30, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A. Continuous long-term electroencephalography: the gold standard for neonatal seizure diagnosis. Semin Fetal Neonatal Med 2015, 20, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Shellhaas, R.A.; Chang, T.; Tsuchida, T.; Scher, M.S.; Riviello, J.J.; Abend, N.S.; Nguyen, S.; Wusthoff, C.J.; Clancy, R.R. The American Clinical Neurophysiology Society's Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol 2011, 28, 611–617. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.S.; Toet, M.C. Amplitude integrated electroencephalography in the full-term newborn. Clin Perinatol 2006, 33, 619–632. [Google Scholar] [CrossRef] [PubMed]
- de Vries, L.S.; Hellstrom-Westas, L. Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed 2005, 90, F201–F207. [Google Scholar] [CrossRef] [PubMed]
- Rakshasbhuvankar, A.; Rao, S.; Palumbo, L.; Ghosh, S.; Nagarajan, L. Amplitude Integrated Electroencephalography Compared With Conventional Video EEG for Neonatal Seizure Detection: A Diagnostic Accuracy Study. J Child Neurol 2017, 32, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Appendino, J.P.; McNamara, P.J.; Keyzers, M.; Stephens, D.; Hahn, C.D. The impact of amplitude-integrated electroencephalography on NICU practice. Can J Neurol Sci 2012, 39, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Temko, A.; Lightbody, G. Detecting Neonatal Seizures With Computer Algorithms. J Clin Neurophysiol 2016, 33, 394–402. [Google Scholar] [CrossRef] [PubMed]
- O'Shea, A.; Lightbody, G.; Boylan, G.; Temko, A. Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture. Neural Netw 2020, 123, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Hahn, J.S.; Heldt, G.P.; Coen, R.W. Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 1992, 82, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Gotman, J.; Flanagan, D.; Zhang, J.; Rosenblatt, B. Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr Clin Neurophysiol 1997, 103, 356–362. [Google Scholar] [CrossRef] [PubMed]
- O'Shea, A.; Ahmed, R.; Lightbody, G.; Pavlidis, E.; Lloyd, R.; Pisani, F.; Marnane, W.; Mathieson, S.; Boylan, G.; Temko, A. Deep Learning for EEG Seizure Detection in Preterm Infants. Int J Neural Syst 2021, 31, 2150008. [Google Scholar] [CrossRef] [PubMed]
- Pavel, A.M.; Rennie, J.M.; de Vries, L.S.; Blennow, M.; Foran, A.; Shah, D.K.; Pressler, R.M.; Kapellou, O.; Dempsey, E.M.; Mathieson, S.R.; et al. A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial. Lancet Child Adolesc Health 2020, 4, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, N.J.; Korotchikova, I.; Temko, A.; Lightbody, G.; Marnane, W.P.; Boylan, G.B. An automated system for grading EEG abnormality in term neonates with hypoxic-ischaemic encephalopathy. Ann Biomed Eng 2013, 41, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, S.R.; Stevenson, N.J.; Low, E.; Marnane, W.P.; Rennie, J.M.; Temko, A.; Lightbody, G.; Boylan, G.B. Validation of an automated seizure detection algorithm for term neonates. Clin Neurophysiol 2016, 127, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.H.; Pillay, K.; Dereymaeker, A.; Jansen, K.; Van Huffel, S.; Naulaers, G.; De Vos, M. A Deep Shared Multi-Scale Inception Network Enables Accurate Neonatal Quiet Sleep Detection With Limited EEG Channels. IEEE J Biomed Health Inform 2022, 26, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Raurale, S.A.; Boylan, G.B.; Mathieson, S.R.; Marnane, W.P.; Lightbody, G.; O'Toole, J.M. Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time-frequency distributions. J Neural Eng 2021, 18. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, S.M.; Pinchefsky, E.; Tse, I.; Marchi, V.; Kohonen, J.; Kauppila, M.; Airaksinen, M.; Tapani, K.; Nevalainen, P.; Hahn, C.; et al. Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization. Front Hum Neurosci 2021, 15, 675154. [Google Scholar] [CrossRef] [PubMed]
- Matic, V.; Cherian, P.J.; Koolen, N.; Naulaers, G.; Swarte, R.M.; Govaert, P.; Van Huffel, S.; De Vos, M. Holistic approach for automated background EEG assessment in asphyxiated full-term infants. J Neural Eng 2014, 11, 066007. [Google Scholar] [CrossRef]
- Pavel, A.M.; O'Toole, J.M.; Proietti, J.; Livingstone, V.; Mitra, S.; Marnane, W.P.; Finder, M.; Dempsey, E.M.; Murray, D.M.; Boylan, G.B.; et al. Machine learning for the early prediction of infants with electrographic seizures in neonatal hypoxic-ischemic encephalopathy. Epilepsia 2023, 64, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Serag, A.; Blesa, M.; Moore, E.J.; Pataky, R.; Sparrow, S.A.; Wilkinson, A.G.; Macnaught, G.; Semple, S.I.; Boardman, J.P. Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods. Sci Rep 2016, 6, 23470. [Google Scholar] [CrossRef] [PubMed]
- Blesa, M.; Galdi, P.; Cox, S.R.; Sullivan, G.; Stoye, D.Q.; Lamb, G.J.; Quigley, A.J.; Thrippleton, M.J.; Escudero, J.; Bastin, M.E.; et al. Hierarchical Complexity of the Macro-Scale Neonatal Brain. Cereb Cortex 2021, 31, 2071–2084. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.S.; Groenendaal, F.; van Haastert, I.C.; Eken, P.; Rademaker, K.J.; Meiners, L.C. Asymmetrical myelination of the posterior limb of the internal capsule in infants with periventricular haemorrhagic infarction: an early predictor of hemiplegia. Neuropediatrics 1999, 30, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Odding, E.; Roebroeck, M.E.; Stam, H.J. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disabil Rehabil 2006, 28, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Drougia, A.; Giapros, V.; Krallis, N.; Theocharis, P.; Nikaki, A.; Tzoufi, M.; Andronikou, S. Incidence and risk factors for cerebral palsy in infants with perinatal problems: a 15-year review. Early Hum Dev 2007, 83, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.; Galijasevic, M.; Regodic, M.; Grams, A.E.; Siedentopf, C.; Steiger, R.; Hammerl, M.; Haltmeier, M.; Gizewski, E.R.; Janjic, T. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates. Artif Intell Med 2022, 132, 102384. [Google Scholar] [CrossRef] [PubMed]
- Dean, B.; Ginnell, L.; Boardman, J.P.; Fletcher-Watson, S. Social cognition following preterm birth: A systematic review. Neurosci Biobehav Rev 2021, 124, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Batalle, D.; Edwards, A.D.; O'Muircheartaigh, J. Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 2018, 59, 350–371. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.; Aljabar, P.; Nongena, P.; Kennea, N.; Gonzalez-Cinca, N.; Falconer, S.; Chew, A.T.M.; Harper, N.; Wurie, J.; Rutherford, M.A.; et al. Multimodal image analysis of clinical influences on preterm brain development. Ann Neurol 2017, 82, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Galdi, P.; Blesa, M.; Stoye, D.Q.; Sullivan, G.; Lamb, G.J.; Quigley, A.J.; Thrippleton, M.J.; Bastin, M.E.; Boardman, J.P. Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin 2020, 25, 102195. [Google Scholar] [CrossRef] [PubMed]
- Makropoulos, A.; Gousias, I.S.; Ledig, C.; Aljabar, P.; Serag, A.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J.; Rueckert, D. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 2014, 33, 1818–1831. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Acosta, R.; Enguix, V.; Suffren, S.; Ortmann, J.; Luck, D.; Dolz, J.; Lodygensky, G.A. Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation. Front Neurosci 2020, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Verder, H.; Heiring, C.; Ramanathan, R.; Scoutaris, N.; Verder, P.; Jessen, T.E.; Hoskuldsson, A.; Bender, L.; Dahl, M.; Eschen, C.; et al. Bronchopulmonary dysplasia predicted at birth by artificial intelligence. Acta Paediatr 2021, 110, 503–509. [Google Scholar] [CrossRef]
- Ahmed, W.; Veluthandath, A.V.; Rowe, D.J.; Madsen, J.; Clark, H.W.; Postle, A.D.; Wilkinson, J.S.; Murugan, G.S. Prediction of Neonatal Respiratory Distress Biomarker Concentration by Application of Machine Learning to Mid-Infrared Spectra. Sensors (Basel) 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, F.; Migliaro, F.; Verdoliva, L.; Gragnaniello, D.; Poggi, G.; Kosova, R.; Sansone, C.; Vallone, G.; Capasso, L. Visual assessment versus computer-assisted gray scale analysis in the ultrasound evaluation of neonatal respiratory status. PLoS One 2018, 13, e0202397. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Chen, H.; Dong, X.; Chen, J.; Mei, M.; Lu, Y.; Yang, L.; Wu, B.; Cao, Y.; Wang, J.; et al. Bronchopulmonary Dysplasia Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front Genet 2021, 12, 689071. [Google Scholar] [CrossRef] [PubMed]
- Leigh, R.M.; Pham, A.; Rao, S.S.; Vora, F.M.; Hou, G.; Kent, C.; Rodriguez, A.; Narang, A.; Tan, J.B.C.; Chou, F.S. Machine learning for prediction of bronchopulmonary dysplasia-free survival among very preterm infants. BMC Pediatr 2022, 22, 542. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; He, W.; Li, X.; Chen, J.; Cao, Y.; Zhou, W.; Shen, Q.; Zhang, X.; Ta, D. Early severity prediction of BPD for premature infants from chest X-ray images using deep learning: A study at the 28th day of oxygen inhalation. Comput Methods Programs Biomed 2022, 221, 106869. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Wagner, C.L.; Annibale, D.J.; Hulsey, T.C.; Knapp, R.G.; Almeida, J.S. Predicting extubation outcome in preterm newborns: a comparison of neural networks with clinical expertise and statistical modeling. Pediatr Res 2004, 56, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Precup, D.; Robles-Rubio, C.A.; Brown, K.A.; Kanbar, L.; Kaczmarek, J.; Chawla, S.; Sant'Anna, G.M.; Kearney, R.E. Prediction of extubation readiness in extreme preterm infants based on measures of cardiorespiratory variability. Annu Int Conf IEEE Eng Med Biol Soc 2012, 2012, 5630–5633. [Google Scholar] [CrossRef] [PubMed]
- Mikhno, A.; Ennett, C.M. Prediction of extubation failure for neonates with respiratory distress syndrome using the MIMIC-II clinical database. Annu Int Conf IEEE Eng Med Biol Soc 2012, 2012, 5094–5097. [Google Scholar] [CrossRef] [PubMed]
- Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kennedy, K.A.; Stoll, B.J.; Buchter, S.; Laptook, A.R.; Ehrenkranz, R.A.; et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med 2011, 183, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Sandhu, J.; Chou, F.S. Developing a machine learning-based tool to extend the usability of the NICHD BPD Outcome Estimator to the Asian population. PLoS One 2022, 17, e0272709. [Google Scholar] [CrossRef] [PubMed]
- Eichenwald, E.C.; Committee on, F.; Newborn, A.A.o.P. Apnea of Prematurity. Pediatrics 2016, 137. [Google Scholar] [CrossRef]
- Amin, S.B.; Burnell, E. Monitoring apnea of prematurity: validity of nursing documentation and bedside cardiorespiratory monitor. Am J Perinatol 2013, 30, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Varisco, G.; Peng, Z.; Kommers, D.; Zhan, Z.; Cottaar, W.; Andriessen, P.; Long, X.; van Pul, C. Central apnea detection in premature infants using machine learning. Comput Methods Programs Biomed 2022, 226, 107155. [Google Scholar] [CrossRef] [PubMed]
- Barrero-Castillero, A.; Corwin, B.K.; VanderVeen, D.K.; Wang, J.C. Workforce Shortage for Retinopathy of Prematurity Care and Emerging Role of Telehealth and Artificial Intelligence. Pediatr Clin North Am 2020, 67, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Ataer-Cansizoglu, E.; Bolon-Canedo, V.; Campbell, J.P.; Bozkurt, A.; Erdogmus, D.; Kalpathy-Cramer, J.; Patel, S.; Jonas, K.; Chan, R.V.; Ostmo, S.; et al. Computer-Based Image Analysis for Plus Disease Diagnosis in Retinopathy of Prematurity: Performance of the "i-ROP" System and Image Features Associated With Expert Diagnosis. Transl Vis Sci Technol 2015, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Redd, T.K.; Campbell, J.P.; Brown, J.M.; Kim, S.J.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol 2018. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Hu, Y.; Mo, Z.; Wu, R.; Zhang, X.; Yang, Y.; Liu, B.; Xiao, Y.; Zeng, X.; Lin, Z.; et al. Development and Validation of a Deep Learning Model to Predict the Occurrence and Severity of Retinopathy of Prematurity. JAMA Netw Open 2022, 5, e2217447. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.F.; Melia, M.; Buffenn, A.N.; Lambert, S.R.; Recchia, F.M.; Simpson, J.L.; Yang, M.B. Detection of clinically significant retinopathy of prematurity using wide-angle digital retinal photography: a report by the American Academy of Ophthalmology. Ophthalmology 2012, 119, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Biten, H.; Redd, T.K.; Moleta, C.; Campbell, J.P.; Ostmo, S.; Jonas, K.; Chan, R.V.P.; Chiang, M.F. Imaging; Informatics in Retinopathy of Prematurity Research, C. Diagnostic Accuracy of Ophthalmoscopy vs Telemedicine in Examinations for Retinopathy of Prematurity. JAMA Ophthalmol 2018, 136, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.M.; Campbell, J.P.; Beers, A.; Chang, K.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; et al. Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmol 2018, 136, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Brown, J.M.; Gupta, K.; Campbell, J.P.; Ostmo, S.; Chan, R.V.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kim, S.J.; et al. Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmol 2019, 137, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.P.; Singh, P.; Redd, T.K.; Brown, J.M.; Shah, P.K.; Subramanian, P.; Rajan, R.; Valikodath, N.; Cole, E.; Ostmo, S.; et al. Applications of Artificial Intelligence for Retinopathy of Prematurity Screening. Pediatrics 2021, 147. [Google Scholar] [CrossRef] [PubMed]
- Tsien, C.L.; Kohane, I.S.; McIntosh, N. Multiple signal integration by decision tree induction to detect artifacts in the neonatal intensive care unit. Artif Intell Med 2000, 19, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Saria, S.; Rajani, A.K.; Gould, J.; Koller, D.; Penn, A.A. Integration of early physiological responses predicts later illness severity in preterm infants. Sci Transl Med 2010, 2, 48ra65. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Quiros, L.; Kommers, D.; Wolvers, M.K.; Oosterwijk, L.; Arents, N.; van der Sluijs-Bens, J.; Cottaar, E.J.E.; Andriessen, P.; van Pul, C. Prediction of Late-Onset Sepsis in Preterm Infants Using Monitoring Signals and Machine Learning. Crit Care Explor 2021, 3, e0302. [Google Scholar] [CrossRef] [PubMed]
- Lyra, S.; Rixen, J.; Heimann, K.; Karthik, S.; Joseph, J.; Jayaraman, K.; Orlikowsky, T.; Sivaprakasam, M.; Leonhardt, S.; Hoog Antink, C. Camera fusion for real-time temperature monitoring of neonates using deep learning. Med Biol Eng Comput 2022, 60, 1787–1800. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Kim, D.; Na, J.Y.; Jung, D.; Ahn, J.H.; Kim, T.H.; Park, H.K. Development of artificial neural networks for early prediction of intestinal perforation in preterm infants. Sci Rep 2022, 12, 12112. [Google Scholar] [CrossRef]
- Greenbury, S.F.; Ougham, K.; Wu, J.; Battersby, C.; Gale, C.; Modi, N.; Angelini, E.D. Identification of variation in nutritional practice in neonatal units in England and association with clinical outcomes using agnostic machine learning. Sci Rep 2021, 11, 7178. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Yoon, S.J.; Lee, H.S.; Park, G.; Lim, J.; Shin, J.E.; Eun, H.S.; Park, M.S.; Lee, S.M. Application of Machine Learning Approaches to Predict Postnatal Growth Failure in Very Low Birth Weight Infants. Yonsei Med J 2022, 63, 640–647. [Google Scholar] [CrossRef]
- Althnian, A.; Almanea, N.; Aloboud, N. Neonatal Jaundice Diagnosis Using a Smartphone Camera Based on Eye, Skin, and Fused Features with Transfer Learning. Sensors (Basel) 2021, 21. [Google Scholar] [CrossRef] [PubMed]
- Guedalia, J.; Farkash, R.; Wasserteil, N.; Kasirer, Y.; Rottenstreich, M.; Unger, R.; Grisaru Granovsky, S. Primary risk stratification for neonatal jaundice among term neonates using machine learning algorithm. Early Hum Dev 2022, 165, 105538. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Sanchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Rupprecht, S.; Kunstler, E.C.S.; Hoyer, D. Heart rate variability as a marker and predictor of inflammation, nosocomial infection, and sepsis - A systematic review. Auton Neurosci 2023, 249, 103116. [Google Scholar] [CrossRef] [PubMed]
- El-Khuffash, A.; Bussmann, N.; Breatnach, C.R.; Smith, A.; Tully, E.; Griffin, J.; McCallion, N.; Corcoran, J.D.; Fernandez, E.; Looi, C.; et al. A Pilot Randomized Controlled Trial of Early Targeted Patent Ductus Arteriosus Treatment Using a Risk Based Severity Score (The PDA RCT). J Pediatr 2021, 229, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Na, J.Y.; Kim, D.; Kwon, A.M.; Jeon, J.Y.; Kim, H.; Kim, C.R.; Lee, H.J.; Lee, J.; Park, H.K. Artificial intelligence model comparison for risk factor analysis of patent ductus arteriosus in nationwide very low birth weight infants cohort. Sci Rep 2021, 11, 22353. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Quintana, S.; Schwarz, C.E.; Shelevytsky, I.; Shelevytska, V.; Semenova, O.; Factor, A.; Popovici, E.; Temko, A. A Framework for AI-Assisted Detection of Patent Ductus Arteriosus from Neonatal Phonocardiogram. Healthcare (Basel) 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Fisher, P.; Bauml, J.G.; Daamen, M.; Baumann, N.; Zimmer, C.; Bartmann, P.; Boecker, H.; Wolke, D.; Sorg, C.; et al. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp 2019, 40, 4239–4252. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Sestieri, C.; Navarra, R.; Wise, R.G.; Caulo, M. Distinct effects of prematurity on MRI metrics of brain functional connectivity, activity, and structure: Univariate and multivariate analyses. Hum Brain Mapp 2021, 42, 3593–3607. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.; Aljabar, P.; Arichi, T.; Tusor, N.; Cox, D.; Merchant, N.; Nongena, P.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J. Machine-learning to characterise neonatal functional connectivity in the preterm brain. Neuroimage 2016, 124, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Smyser, C.D.; Dosenbach, N.U.; Smyser, T.A.; Snyder, A.Z.; Rogers, C.E.; Inder, T.E.; Schlaggar, B.L.; Neil, J.J. Prediction of brain maturity in infants using machine-learning algorithms. Neuroimage 2016, 136, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Awate, S.P.; Licht, D.J.; Gee, J.C. Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors. Med Image Comput Comput Assist Interv 2007, 10, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, V.A.; Glocker, B.; Hahner, N.; Eixarch, E.; Sanroma, G.; Gratacos, E.; Rueckert, D.; Gonzalez Ballester, M.A.; Piella, G. Learning and combining image neighborhoods using random forests for neonatal brain disease classification. Med Image Anal 2017, 42, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Sripada, K.; Bjuland, K.J.; Solsnes, A.E.; Haberg, A.K.; Grunewaldt, K.H.; Lohaugen, G.C.; Rimol, L.M.; Skranes, J. Trajectories of brain development in school-age children born preterm with very low birth weight. Sci Rep 2018, 8, 15553. [Google Scholar] [CrossRef] [PubMed]
- Keunen, K.; Counsell, S.J.; Benders, M. The emergence of functional architecture during early brain development. Neuroimage 2017, 160, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, W.; Grewen, K.; Gilmore, J.H. Functional Connectivity of the Infant Human Brain: Plastic and Modifiable. Neuroscientist 2017, 23, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.Y.; Tuan, T.A.; Broekman, B.F.; Ong, M.Y.; Chong, Y.S.; Kwek, K.; Shek, L.P.; Saw, S.M.; Gluckman, P.D.; Fortier, M.V.; et al. Neonatal neural networks predict children behavioral profiles later in life. Hum Brain Mapp 2017, 38, 1362–1373. [Google Scholar] [CrossRef]
- Schadl, K.; Vassar, R.; Cahill-Rowley, K.; Yeom, K.W.; Stevenson, D.K.; Rose, J. Prediction of cognitive and motor development in preterm children using exhaustive feature selection and cross-validation of near-term white matter microstructure. Neuroimage Clin 2018, 17, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Vassar, R.; Schadl, K.; Cahill-Rowley, K.; Yeom, K.; Stevenson, D.; Rose, J. Neonatal Brain Microstructure and Machine-Learning-Based Prediction of Early Language Development in Children Born Very Preterm. Pediatr Neurol 2020, 108, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Nie, J.; Zhang, G.; Fang, R.; Xu, X.; Wu, Z.; Hu, D.; Wang, L.; Zhang, H.; et al. Brain Connectivity Based Graph Convolutional Networks and Its Application to Infant Age Prediction. IEEE Trans Med Imaging 2022, 41, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Li, H.; Dillman, J.R.; Altaye, M.; Wang, H.; Parikh, N.A.; He, L. A self-training deep neural network for early prediction of cognitive deficits in very preterm infants using brain functional connectome data. Pediatr Radiol 2022, 52, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.L.; Wang, Z.; Aljabar, P.; Ball, G.; Mirza, G.; Saxena, A.; Counsell, S.J.; Hajnal, J.V.; Montana, G.; Edwards, A.D. Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants. Proc Natl Acad Sci U S A 2017, 114, 13744–13749. [Google Scholar] [CrossRef] [PubMed]
- Valavani, E.; Blesa, M.; Galdi, P.; Sullivan, G.; Dean, B.; Cruickshank, H.; Sitko-Rudnicka, M.; Bastin, M.E.; Chin, R.F.M.; MacIntyre, D.J.; et al. Language function following preterm birth: prediction using machine learning. Pediatr Res 2022, 92, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Balta, D.; Kuo, H.; Wang, J.; Porco, I.G.; Morozova, O.; Schladen, M.M.; Cereatti, A.; Lum, P.S.; Della Croce, U. Characterization of Infants' General Movements Using a Commercial RGB-Depth Sensor and a Deep Neural Network Tracking Processing Tool: An Exploratory Study. Sensors (Basel) 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, S.A. Advancements in neonatology through quality improvement. J Perinatol 2022, 42, 1277–1282. [Google Scholar] [CrossRef]
- Podda, M.; Bacciu, D.; Micheli, A.; Bellu, R.; Placidi, G.; Gagliardi, L. A machine learning approach to estimating preterm infants survival: development of the Preterm Infants Survival Assessment (PISA) predictor. Sci Rep 2018, 8, 13743. [Google Scholar] [CrossRef] [PubMed]
- Ambalavanan, N.; Carlo, W.A.; Bobashev, G.; Mathias, E.; Liu, B.; Poole, K.; Fanaroff, A.A.; Stoll, B.J.; Ehrenkranz, R.; Wright, L.L.; et al. Prediction of death for extremely low birth weight neonates. Pediatrics 2005, 116, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- Mangold, C.; Zoretic, S.; Thallapureddy, K.; Moreira, A.; Chorath, K.; Moreira, A. Machine Learning Models for Predicting Neonatal Mortality: A Systematic Review. Neonatology 2021, 118, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.F.; Yang, C.; Lin, C.Y.; Chu, S.M.; Huang, H.R.; Chiang, M.C.; Wang, H.C.; Liao, W.C.; Fu, R.H.; Tsai, M.H. Machine Learning Algorithms to Predict Mortality of Neonates on Mechanical Intubation for Respiratory Failure. Biomedicines 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Do, H.J.; Moon, K.M.; Jin, H.S. Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using Data from a Nationwide Neonatal Network. Diagnostics (Basel) 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Benvenuto, D.; Fox-Good, C.; Alayli, Y.; Evans, M.; Jonsson, B.; Hakansson, S.; Harper, N.; Kim, J.; Norman, M.; et al. Development and Validation of a Mortality Prediction Model in Extremely Low Gestational Age Neonates. Neonatology 2022, 119, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.F.; Ortega, N.R. Fuzzy linguistic model for evaluating the risk of neonatal death. Rev Saude Publica 2002, 36, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, M.R.; Cummings, C.L. Critical decision-making in neonatology and pediatrics: the I-P-O framework. J Perinatol 2021, 41, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, G.; Gerke, S. The need for health AI ethics in medical school education. Adv Health Sci Educ Theory Pract 2021, 26, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Vitcov, G.G.; Cummings, C.L. Moral equivalence theory in neonatology. Semin Perinatol 2022, 46, 151525. [Google Scholar] [CrossRef] [PubMed]
| System | Aim | References | Artificial intelligence approach | Type of data analyzed | Outcome |
|---|---|---|---|---|---|
| Neurocritical Care | |||||
| Electro-encephalography | Automated seizures detection | O'Shea et al. [27], Liu et al. [28], Gotman et al. [29], O’Shea et al. [30], Pavel et al. [31], Mathieson et al. [33] | DL detection models based on SVM system [27,30], scored autocorrelation moment analysis [28], spectral analysis [29], and algorithm for automated neonatal seizure recognition [31], utilizing the AUROC | Continuous EEG data | The developed seizure detection algorithms achieved a 56% relative improvement, sensitivity 81.3%-84%, specificity 84.4%-98%, overall accuracy of 93.3%-98.5%, and a false detection rate of 0.04-1.7/h |
| Severity grading of neonatal HIE | Stevenson et al. [32], Raurale et al. [35], Moghadam et al. [36], Matic et al. [37], Pavel et al. [38] | ML classifier models of automated grading system based on a multi-class linear analysis [32], quadratic time-frequency distribution with a CNN [35], SVM, multilayer feedforward neural network or recurrent neural network [36], utilizing matthews correlation coefficient [38] and the AUROC | Continuous EEG and clinical data | ML models of automated grading system had an accuracy of 83%-97%. The clinical and qualitative-EEG model significantly had an MCC of 0.470. The performance for quantitative aEEG was MCC 0.381, AUROC 0.696 and clinical and quantitative aEEG was MCC 0.384, AUROC 0.720 | |
| Sleep stage classification | Ansari et al. [34] | Convolutional neural network inception block (SINC) | EEG data | The SINC-based model significantly outperformed neonatal quiet sleep detection algorithms, with mean Kappa 0.75-0.77 | |
| Magnetic Resonance Imaging | Automated segmentation and quantification of the PLIC | Grubel et al. [44] | CNN-based algorithm comprised of slice-selection modules and a multi-view segmentation model | MRI data | The method could identify a specific desired slice from the MRI volume data |
| Combination of structural and functional networks | Ball et al. [47], Galdi et al. [48] | A multivariate analysis combining multiple imaging modalities [47], or utilizing morphometric similarity networks [48] | MRI and clinical data | The model conformed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes. The regression model predicted post menstrual age at scan with an absolute error of 0.70 weeks, and an accuracy of 92% | |
| Generation of reliable and accurate segmentation | Makropoulos et al. [49], Ding et al. [50] | AI model using a framework for accurate intensity-based segmentation [49], or DSC for each tissue type [50] | MRI data | The model achieved highly accurate results across a wide range of gestational ages. The dual-modality HyperDense-Net achieved the best DSC values. The single-modality LiviaNET processed better T2W than T1W images. Both neural networks achieved previously reported performance | |
| Respiratory System | RDS severity | Ahmed et al. [52], Raimondi et al. [53] | ML model using attenuated total reflectance fourier transform infrared spectroscopy, callibration of principal component, and PLRS [52], or SVM regressor [53] | RDS biomarkers, lecithin and sphingomyelin (L/S ratio) and lung ultrasound both by visual and computer-assisted gray scale analysis | A three-factor PLSR model of second derivative spectra predicted L/S ratios with signifincat accuracy (R2 0.967). Visual assessment correlated with PaO2/FiO2 (r -0.55; p<0.0001) and the A-a gradient (r 0.59; p<0.0001). Oxygenation indices were associted with and the gray scale analysis of lung ultrasound scans |
| Prediction of BPD | Verder et al. [51], Dai et al. [54], Leigh et al. [55], Xing et al. [56], Laughon et al. [60], Patel et al. [61] | Model using SVM [51], logistic regression [55], XSEG-Net model combining digital image processing and human-computer interaction [56], C statistic [60], RF algorithm [61], and the AUROC | Perinatal, clinical, genetic, laboratory, X-ray imaging, and demographic data | Algorithm combining perinatal data, and gastric aspirates analysis resulted to a sensitivity of 88% and a specificity of 91%. The predictive model combinig BPD with risk gene sets and basic clinical risk factors, showed discrimination of AUROC 0.915. The AI models performance showed AUROC 0.757-0.934. The deep CNN model had accuracy, precision, sensitivity, and specificity of 95.58%, 95.61%, 95.67%, and 96.98%, respectively. Prediction from C statistic was 0.793-0.854 | |
| Extubation readiness | Mueller et al. [57], Precup et al. [58], Mikhno et al. [59] | ML approach of ANN [57], SVM [58], using multivariate logistic regression and the AUROC | Multiple clinical and laboratory, and measures of cardiorespiratory variability | The optimal models achieved an AUROC of 0.87-0.871, sensitivity of 70.1%, and specificity of 90%. AI predictive models compared well with the clinician's expertise, accurately classified infants who would fail extubation | |
| Automated detection of apneas | Varisco et al. [64] | Optimized algorithm for automated detection using logistic regression and the AUROC | ECG, chest impedance and oxygen saturation signal features | The apnea detection model returned AUROC of 0.88-0.90. Feature relevance was found to be the highest for features derived from the chest impedance | |
| Ophthalmology | Automated diagnosis of ROP | Ataer-Cansizoglu et al. [66], Redd et al. [67], Wu et al. [68], Biten et al. [70], Brown et al. [71], Taylor et al. [72], Campbell et al. [73] | DL computer-based image analysis system (i-ROP) [66,67], occurrence network and severity network of ROP [68], telemedicine diagnoses [70], deep CNN algorithm [71], quantitative severity scale for ROP [73], calculating the AUROC, accuracy, sensitivity, and specificity | Retina image | The i-ROP system had 95% accuracy for detecting preplus and plus disease. i-ROP had an AUROC of 0.960, 94% sensitivity, 79% specificity, 13% positive predictive value and 99.7% negative predictive value for detecting type 1 ROP. OC-Net had AUROC, accuracy, sensitivity, and specificity of 0.90, 52.8%, 100%, and 37.8%, respectively, while SE-Net 0.87, 68.0%, 100%, and 46.6%, respectively. Telemedicine had 78% sensitivity for zone I disease 79% for plus disease and 79% for type 2 ROP. Deep CNN algorithm had AUROC 0.94 for the diagnosis of normal and 0.98 for the diagnosis of plus disease, a sensitivity of 93% and specificity of 94%. The AI-based quantitative severity scale for ROP had AUROC of 0.98, with 100% sensitivity and 78% specificity |
| Vital Signs | Detect artifacts | Tsien et al. [74] | Decision tree induction model | Multiple physiologic data signals | The classification system evaluating physiologic data may be a viable approach to detecting artifacts |
| Predict overall mortality | Saria et al. [75] | Prediction algorithm (PhysiScore) based on a physiological assessment score | Apgar score and standard signals recorded noninvasively on admission | PhysiScore had 86% sensitive and 96% specificity in predicting overall morbidity. PhysiScore had accuarcy of 90%-100% in precting morbidity related to infection, and 96%-100% to cardiopulmonary events | |
| Temperature detection | Lyra et al. [77] | A combination of DL-based algorithms and camera modalities | Thermographic recordings | The detector showed a precision of 0.82. The evaluation of the temperature extraction revealed an absolute error of 0.55 oC | |
| Gastrointestinal System | Prediction of spontaneous intestinal perforation | Son et al. [78] | AI model of ANN using the receiver operating characteristic analysis | Clinical data | The ANN models showed an AUROC of 0.8797-0.8832 for predicting intestinal perforation |
| Prediction of postnatal growth failure | Han et al. [80] | ML models of extreme gradient boosting, random forest, support vector machine, and convolutional neural network, using multiple logistic regression | Clinical data | The model showed an AUROC of 0.74, and accuracy of 0.68 | |
| Jaundice | Detection of jaundice | Althnian et al. [81], Guedalia et al. [82] | DL and ML model using a combined data analysis approach with the AUROC | Eye, skin, and fused images | DL models performed the best with skin images. The ML diagnostic ability to evaluate the risk for jaundice was 0.748 |
| Sepsis | Prediction of EOS | Stocker et al. [85] | ML was used in form of a random forest classifier | Risk factors, clinical signs and biomarkers | The ML model achieved an AUROC of 83.41% and an area under the precision recall curve 28.42%. |
| Prediction of LOS | Cabrera-Quiros et al. [76] | ML approaches of logistic regressor, naive Bayes, and nearest mean classifier | Heart rate variability, respiration, and body motion data | Using a combination of all features, classification of LOS showed a mean accuracy of 0.79 and mean precision rate of 0.82 three hours before the onset of sepsis | |
| Patent Ductus Arteriosus | Detection of PDA | Na et al. [86], Gomez-Quintana et al. [87] | ML algorithms of a RF, a decision tree-based theory, an L-GBM, a low-bias model formed by combining sequential weak models with a light computational algorithm, a multilayer perceptron, a feedforward ANN, a SVM, using multiple logistic regression | Database of risk factors and heart sounds data | L-GBM achieved an accuracy at predicting PDA of 0.77, AUROC of 0.82 and pecificity of 0.84. The RF model achieved an accuracy of 0.85, AUROC of 0.82 and sensitivity of 0.97 in determining sPDA therapy. ML-based on heart sounds system reached and AUROC of 77 % at detecting PDA |
| Neurodevelopmental outcome | Detection of neonates with cognitive impairment | Wee et al. [97], Ali et al. [101], Krishnan et al. [102] | Clustering coefficients of individual structures using SVM and canonical correlation analysis [97], self-training DNN [101], and ML using sparse reduced rank regression [102] | DTI tractography, brain functional connectome and cognitive assesment data, genomewide, SNP-based genotypes, and neurodevelopmental scales | The clustering coefficient of the DTI tractography were associated with internalizing and externalizing behaviors at 24 and 48 months of age. The self-training DNN model achieved an accuracy of 71.0%, a specificity of 71.5%, a sensitivity of 70.4% and an AUROC of 0.75. SNPs in PPARG were significantly overrepresented, in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay |
| Detection of neonates at risk of language impairment | Vassar et al. [99], Valavani et al. [103] | Multivariate models with leave-one-out cross-validation and exhaustive feature selection [99], and RF classifier [103] | MRI diffusion tensor imaging and neurodevelopmental scales | Model based on DTI had 89% and 86% sensitivity and specificity for composite, 100% and 90% for expressive, and 100% and 90% for receptive language, respectively. The RF classifier model achieved accuracy 91%, sensitivity 86%, and specificity 96%. | |
| Detection of neuromotor problems and risk of cerebral palsy | Balta et al. [104] | Tracking software of DeepLabCut using a k-means algorithm | Single videos of six poIs on the infant’s upper body | The results suggested that models may be potentially used for early identification of movement disorders | |
| Mortality | Prediction of mortality | Podda et al. [105], Ambalavanan et al. [107], Hsu et al. [109], Do et al. [110], Moreira et al. [111], Nascimento et al. [112] | ML algorithms including ANN [105,107], RF, bagged classification, and regression tree model [109], methodsincluding ANN, RF, and SVM [110], and a linguistic fuzzy model with minimum of Mamdani inference method [112], using logistic regression models and AUROC | Maternal, perinatal, clinical, and laboratory data | The ANN model had an AUROC of 0.85 for regression and 0.84 for neural networks, respectively. RF model showed an AUROC of 0.939 for the prediction of neonates with respiratory failure, and the bagged classification and regression tree model demonstrated an AUROC of 0.915. The model performances of AUROC equaled ANN 0.845, RF 0.826, and SVM 0.631. The Fuzzy model was able to capture the expert knowledge with strong correlation (r 0.96) |
| Challenges of artificial intelligence | Areas of improvement |
|---|---|
| Quality of the dataset | AI tools require high-quality data to be trained. Studies should address limitation including small sample sizes, improper management of missing information, and heterogeneity evaluation in various demographic subsets |
| Model performance evaluation | Model performance should be continually evaluated on the entire dataset. Apart from the area under the receiver operating characteristics curve, additional performance metrics, such as the precision-recall curve, specificity/sensitivity, and calibration metrics should be assessed |
| Clinical impact and external validation | External validation is crucial because, as in different dataset or in clinical practice, the tool's performance may degrade due to an over-modeling of the training data.Also, the effectiveness of AI should be evaluated in terms of calibration and discrimination quality as well as patient outcomes and the clinical workflow. |
| Comprehending | Bed-side models should enhance intelligence, interpretability, and transparency |
| Guidelines for critical evaluation, regulation, and oversight | methodological, critical appraisal, medicolegal problems, and necessary monitoring is required to guarantee the model’s safe and effective usage |
| Ethics | Informed consent, bias, patient privacy, and allocation are among the ethical issues with health AI, and negotiating their solutions can be challenging. Important decisions in neonatology are often accompanied by a complex and difficult ethical component, and multidisciplinary methods are necessary for advancement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
