Submitted:
22 March 2024
Posted:
25 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Weldability
3. Technics for Joining of Vehicle Components Made of Al Alloy
3.1. Various Kinds of Welding Process
3.1.1. Conventional Welding
3.1.2. Friction Stir Welding

3.1.3. Resistance Spot Welding
3.1.4. Gas Metal Arc Welding GMAW
3.1.5. Cold Metal Transfer Welding
3.1.6. Collision Welding
3.1.7. Magnetic Pulse Welding
3.1.8. Laser Welding
3.2. Problems during Welding Process
3.3. Al Alloys for Welding
| Group of aluminium alloys | Main alloy components | Durability | Weldability |
|---|---|---|---|
| 2XXX | Al – Cu | High | Low |
| 5XXX | Al – Mg | Increased | High |
| 6XXX | Al – Si – Mg | Increased | High |
| 7XXX | Al – Zn | High | Low |
3.3.1. Similar Al Alloys
3.3.2. Dissimilar Al Alloys
4. Features of Al Welded Joints and Phenomena Occurred Therein
4.1. TIG and MIG Welding Methods
4.2. Cold Metal Transfer CMT Welding Method
4.3. Laser Welding
4.4. Laser-MIG Hybrid Welding
4.5. The Laser -MIG Hybrid Welding Seems to be Particularly Useful for Some Al Alloys of 5xxx Series. Such a Technique Is Under Continuous Development Laser Mirror Imagewelding and Laser Impact Welding
4.6. Electron Beam Welding
4.7. Resistance Spot Welding RSW
4.8. Friction Welding
4.8.1. Friction Stir Welding
4.8.1.1. Positioning of Alloy
| Refs. | Alloy Combinations | Thick (mm) | Alloy Positioning | ||
|---|---|---|---|---|---|
| Configuration | AS | RS | |||
| 262 | Butt | 2024-T351/5083-H112 | 6.35 | 2024 | 5083 |
| 262 | Butt | 7075-T651/2024-T351 | 6.35 | 7075 | 2024 |
| 264 | Butt | 7075-T651/2024-T351 | 6 | Both | Both |
| 265 | Butt | 7075-T651/5083-H111 | 6 | Both | Both |
| 265 | Butt | 5052/AlMg2Si | 8 | Al- Mg2Si | 5052 |
| 270 | Butt | 2024-T351 /6061-T6 | 6 | 2024 | 6061 |
| 271 | Butt | 6061-T6/6351T6 | 6.35 | Both | Both |
| 272,328 | Butt | 6082-T6/7075-T6 | 10 | 7075 | 6082 |
| 273 | Butt | 6061-T651and 5A06-H112 | 5 | 6061 | 5A06 |
| 274 | Butt | 6101-T6/6351-T6 | 12 | 6101 | 6351 |
| 275 | Butt | 2024-T3/6063-T6 | 8 | 2024 | 6063 |
| 276 | Butt | 2219-T87/2195-T8 | 7.2 | Both | Both |
| 277 | Butt | 2017A-T451/cast AlSi9Mg | 6 | 2017A | AlSi9Mg |
| 280 | Butt | 5083-H111/6082-T6 | 5 | 6082NR | 5083NR |
| 144 | Butt | 5083-H111/6351-T6 | 6 | 6351 | 5083 |
| 144 | Butt | 5083-H111/6351 | 6 | 6351 | 5083 |
| 282 | Butt | 2024-T6/7075-T6 | 5 | 2024 | 7075 |
| 283,284 | Butt | Al-Mg-Si/Al-Zn-Mg | 15 | Both | Both |
| 286 | Butt | UFG 1050/6061-T6 | 2 | Both | Both |
| 287 | Butt | 2024-T3/2198-T3 | 3.18 | 2198 | 2024 |
| 288,289 | Butt | 6061-T6/7050-T7451 | 5 | 7050 | 6061 |
| 290 | Butt | 5086-O/6061-T6 | 6 | 6061 | 5086 |
| 291 | Butt | 2050-T4/6061-T651 | 20 | Both | Both |
| 292 | Butt | 5083-O/6082-T6 | NR(~7) | 5083 | 6082 |
| 293 | Butt | A319/A413 cast | 10 | A413 | A319 |
| 294 | Butt | 7075-O/6061-O 7075-T6/6061-T6 |
3.17 | 6061 | 7075 |
| 295 | Butt | 6061-T6/7075-T6 | 4.6 | Both | Both |
| 297 | Butt | 5083-O/6061-T6 | 6 | 6061 | 5083 |
| 302,303 | Butt | A356/6061-T6 | 3 | 6061 | A356 |
| 304 | Butt | 2219-T87/5083-H321 | 6 | 2219 | 5083 |
| 305 | Butt | 6061 cast/6061 rolled | 6 | Both | Both |
| 306 | Butt | 6351-T6/5083-H111 | 6 | 6351 | 5083 |
| 127 | Butt | 5052-H34/5023-T4 | ~1.5 | 5052 | 5023 |
| 307 | Butt | 5052-H34/5023-T4 | 1.5 & 1.6 | Both | Both |
| 308 | Butt | 7050-T7451/2024-T351 | 25.4 | 2024 | 7050 |
| 260 | Butt | 2024-T351/6056-T4 | 4 | 2024 | 6056 |
| 261 | Butt | cast A 356/6061 | 4 | Both | Both |
| 57 | Butt | 2017-T351 | 5 | Both | Both |
| 309 | Butt | 1050-H24 | 5 | Both | Both |
| 310 | Butt | 2017A-T451/AlSi9Mg | 6 | 2017A | AlSi9Mg |
| 311 | Butt | 2017A | 6 | Both | Both |
| 312 | Butt | 7003-T4/7046-T4 | 3 | 7003 | 7046 |
| 314 | Butt | 6013-T4/7003 | 2.8 | Both | Both |
| 313 | Butt | 6013-T6 | 5 | Both | Both |
| 316 | Butt | 6061-T6 | 9.5 | Both | Both |
| 317 | Butt | 6061-T6/7075-T6 | 6 | 6061 | 7075 |
| 279 | Underwater Butt |
6061-T6/7075-T6 | 5 | 6061 | 7075 |
| 46,268, 326 | Butt NA Butt |
2017A-T451/ 7075-T651 |
6 | Both | Both |
| 298,299 | NA Butt | 6351-T6/5083-H111 | 6 | 6351 | 5083 |
| 300,301 | NA Butt | 2014-T6/6061-T6 | 4.7 | Both | Both |
| 278 | NA | 5083-H12/6061-T6 | 1.5 | 6061 | 5083 |
| 285 | NA | 2024-T3/6061-T6 | 4.8 | 2024 | 6061 |
| 281 | NA | 5052/6061 | 1, 1.5 | 6061 | 5052 |
| 266 | NA | 2024-T4/7075-T6 | 4 | 2024 | 7075 |
| 267 | NA | 6351-T6/5083-H111 | 6 | 6351 | 5083 |
| 315 | Lap | 6111-T4/5023-T4 | 1 | Both | Both |
| 296 | Lap | 2024-T3/7075-T6 | 5 | Both | Both |
| 47 | Lap | 6111-T4/5023-T4 | 1 | Both | Both |
| 61 | Lap | 7075-T6/2024-T3 7075-upper; 2024-lower |
3 | 2024 | 7075 |
4.8.1.2. Tool Rotation and Welding Speeds
| Refs | Alloy Combinations | Thick | Rotation Speed | Welding Speed | Plunge depth | Tool tilt angle | Downward force |
|---|---|---|---|---|---|---|---|
| [mm] | [rpm] | [mm/min] | [mm] | [°] | [kN] | ||
| 262 | 2024-T351/5083-H112 | 6.35 | 600 | 150 | |||
| 262 | 7075-T651/2024-T351 | 6.35 | 600 | 150 | |||
| 264 | 7075-T651/2024-T351 | 6 | 900 | 150 | |||
| 61 | 7075-T6/2024-T3 Lap joint: 7075-upper; 2024-lower |
3 | 600 | 30, 60, 90, 120 | 0.2 | 2.5 | |
| 265 | 7075-T651/5083-H111 | 6 | 280,355, 450, 560 | 140 | 26.4 | ||
| 266 | 2024-T4/7075-T6 | 4 | 1140 | 32 | |||
| 267 | 6351-T6/5083-H111 | 6 | 800,1000 1200 | 45, 60, 75 | |||
| 46,265 326 | 2017A-T451/7075-T651 | 6 | 355 | 112 | 1.5 | 32.8 | |
| 327 | 5083-O/6063-T6 | 6 | 900 | 60 | |||
| 269 | 5052andAlMg2Si | 8 | 1000 | 80 | 2.5 | ||
| 270 | 2024-T351/6061-T6 | 6 | 800 | 31.5 | 2 | ||
| 271 | 6061-T6/6351-T6 | 6.35 | 600,900, 1200 | 30, 60, 90 | |||
| 272,328 | 6082-T6/7075-T6 | 10 | 950, 1000 | 80, 100 | |||
| 273 | 6061-T651/5A06-H112 | 5 | 600, 900, 1200 | 100, 150 | 4.7 | 2 | |
| 274 | 6101-T6/6351-T6 | 12 | 900,1100, 1300 | 16 | |||
| 275 | 2024-T3/6063-T6 | 8 | 900,1120 1400 | 125, 160, 200 | 2.5 | ||
| 276 | 2219-T87/2195-T8 | 7.2 | 400, 600, 800 | 120, 180, 240, 300 | |||
| 277 | 2017A-T451/cast AlSi9Mg | 6 | 355 | 112 | |||
| 278 | 5083-H12/6061-T6 | 1.5 | 700,1800 2500 | 25, 30, 212.5, 400 | |||
| 279 | 6061-T6/7075-T6 | 5 | 1000, 1375, 1750, 2125, 2500 | 50, 125, 200, 275, 350 | 0.2 | 3 | |
| 280 | 5083-H111/6082-T6 | 5 | 400,500, 630, 800 | 40, 50, 63, 80 | 2 | ||
| 144 | 5083-H111/6351-T6 | 6 | 800-1200 | 45-85 | 1 | 15 | |
| 281 | 5052/6061 | 1, 1.5 | 1500 | 63, 98 | |||
| 282 | 2024-T6/ 7075-T6 |
5 | 1200 | 12 | 8 | ||
| 283,284 | Al-Mg-Si/Al-Zn-Mg | 15 | 800 | 180 | 0.2 | 2.5 | |
| 285 | 2024-T3/6061-T6 | 4.8 | 500, 650, 840 | 45, 65 | 2 | ||
| 286 | UFG 1050/6061-T6 | 2 | 800 | 400, 600, 800, 1000 | 3 | 8 | |
| 329 | 2024-T6/ 6061-T6 |
4 | 1000 | 500 | 2.5 | ||
| 288,289 | 6061-T6/7050-T7451 | 5 | 270, 340, 310 | 114 | |||
| 47 | 6111-T4/5023-T4 Lap joint |
1 | 1500 1000 |
100 700 |
|||
| 290 | 5086-O/6061-T6 | 6 | 1100 | 22 | 1 | 12 | |
| 291 | 2050-T4/6061-T651 | 20 | 150, 300, 300 | 101, 203, 406 | |||
| 292 | 5083-O/6082-T6 | NR(~7) | 400 | 400 | |||
| 293 | A319/ A413 cast |
10 | 630, 800, 1000 | 20, 40, 63 | 1 | 3 | |
| 294 | 7075-O/6061-O 7075-T6/6061-T6 |
3.17 | 1000 1500 |
150 400 |
|||
| 295 | 6061-T6/7075-T6 | 4.6 | 700-1450 | 100 | |||
| 296 | 2024-T3/7075-T6 Lap joint |
5 | 1500 | 50, 150, 225, 300 | 0.2 | 2.5 | |
| 297 | 5083-O/6061-T6 | 6 | 600, 750, 900 | 20, 40 | |||
| 298 | 6351-T6/5083-H111 | 6 | 950 | 36, 63, 90 | |||
| 300 | 2014-T6/6061-T6 | 4.7 | 500, 1500 | 90 | |||
| 299 | 6351-T6/5083-H111 | 6 | 600-1300 | 36-90 | 9.8, 12.25, 14.7, 17.18, 19.6 | ||
| 302 | A356/6061-T6 | 3 | 1000 | 70-240 | 3 | ||
| 330 | 2198-T351/7075-T6 Lap joint |
3 & 1.9 | 830 | 40 | 2 | ||
| 304 | 2219-T87/5083-H321 | 6 | 400-800 | 15-60 | |||
| 305 | 6061 cast/6061 rolled | 6 | 800,1000 1200, 1400 | 50 | 8 | ||
| 306 | 6351-T6/5083-H111 | 6 | 600, 950, 1300 | 60 | 0 | 8 | |
| 127 | 5052-H34/5023-T4 | ~1.5 | 1500 | 100-700 | 3 | ||
| 303 | A356/6061-T6 | 3 | 1000, 1400 | 80, 240 | |||
| 307 | 5052-H34/5023-T4 | 1.5 & 1.6 | 1000, 1500 | 100, 200, 300, 400 | 3 | ||
| 308 | 7050-T7451/2024-T351 | 25.4 | NA | 50.8 | |||
| 332 | 5182-O/5754-O 5182-O/6022-T4 5754-O/6022-T4 |
~2 | 500, 1000, 1500 | 130, 240, 400 | |||
| 333 | 6061-T6/2024-T3 | 12.7 | 151-914 | 57-330 | |||
| 260 | 2024-T351/6056-T4 | 4 | 500-1200 | 150-400 | |||
| 261 | cast A 356/wrought 6061 | 4 | 1600 | 78-267 | 3 | ||
| 312 | 7003-T4/7046-T4 | 3 | 2000 | 400 | 0.3 | 2.5 | |
| 321 | 2219-T6/5083-H116 | 5 | 400, 800, 1200, 1600, 2000 | 30, 210, 390, 570, 750 | |||
| 335 | 6063/5083 | 6 | 600,800, 1000 | 40 | 4 | ||
| 336 | 2618-T87/5086-H321 | 6 | 450,600, 750, 850 | 15, 35, 50, 65 | |||
| 337 | 2014-T6 | 3 | 1070, 1520, 2140 | 40, 80, 112 | |||
| 338 | 3003-H12 | 3 | 1070, 1520, 2140 | 40, 80, 112, 160, 224 | |||
| 339 | 3003-O | 3 | 1070, 1520, 2140 | 40, 80, 112 | |||
| 340 | 2024-T4 | 4 | 350 | 210 | |||
| 341 | 2024-T4 | 3 | 300-1300 | 40-145 | 2.7, 2.9 | 6 | |
| 342 | 2024-T351 | 6 | 750 | 73, 116, 150 | |||
| 343 | 2014-T6 | 8 | 300-800 | 50-300 | |||
| 17 | 2014 | NA | 931 | 41 | |||
| 344 | 2014-T6 | 5 | 900 | 40 | 2.5 | 5 | |
| 57 | 2017-T351 | 5 | 1500 | 25-600 | 3 | ||
| 309 | 1050-H24 | 5 | 600-2000 | 100-800 | 3 | ||
| 310 | 2017A-T451 /AlSi9Mg |
6 | 560 | 1120 | 1.5 | ||
| 311 | 2017A | 6 | 355, 900 | 280 | 1.5 | ||
| 346 | 3003-H14 | 3 | 1500 | 80 | |||
| 347 | 3003 | 2 | 1000, 1500, 2000 | 200, 300, 400 | |||
| 348 | 3003-H24 | 3 | 500,800, 1000 | 50, 80 | |||
| 313 | 6013-T6 | 5 | 500, 630, 800 | 50 | |||
| 322 | 5754-H111/7075-T651 | 5 | 1000, 1250 | 80, 100, 125 | |||
| 349 | 3003-H17 | 5 | 2000 | 1500, 3000 | 0.2 | ||
| 350 | 3003 | 5 | 663,800, 1000, 1200, 1336 | 20, 40, 70, 100, 120 | 0.65, 1, 1.5, 2, 2.35 | ||
| 351 | 3004 | 5 | 95-600 | 115-925 | |||
| 352 | 5083-H111/7020-T651 | 5 | 400,800, 1200 | 100, 200, 300 | |||
| 353 | 5454-O | 1, 1.4 | 500-2500 | 100 | |||
| 354 | AA1100 | 5 | 562,700, 800,900, 1037 | 40.54, 75, 100, 125, 159.5 | 3.62, 5, 6, 7, 8.38 | ||
| 355 | 7003-T4/6060-T4 | 4.5 | 1000 | 40, 120, 240 | |||
| 315 | 6111-T4/5023-T4 | 1 | 1000, 1250, 1500 | 100, 300, 500, 700 | |||
| 356 | 6181-T4 | 1, 2 | 1300, 1600, 2000 | 800, 1000, 1125, 1500 | 1.5, 3 | 4.5, 5.5 | |
| 357 | 6061-T6 | 1 | 11000 | 200-500 | 0.05 | ||
| 316 | 6061-T6 | 9.5 | 1000 | 90 | |||
| 317 | 6061-T6/7075-T6 | 6 | 765 | 31.5 | 2 |
4.8.1.3. Tool Geometry
| Refs. | Alloy Combinations | Thick (mm) | Tool profile (-) | Shoulder diameter | Pin diameter/ length/ taper angle |
Tool material hardness | |
|---|---|---|---|---|---|---|---|
| Shoulder | Pin | [mm] | [mm]/ [mm]/ [°] | [HRC] | |||
| 264 | 7075-T651/2024-T351 | 6 | concave | conical threaded and with flute radius (0, 2, 3, 6, and ∞mm)) | 18 | 6/5.7 | AISI H13 |
| 61 | 7075-T6/ 2024-T3 Lap joint: 7075-upper; 2024-lower |
3 | concentric-circles- flute |
tapered | 13.5 | 6/3,4,5/16.7 | |
| 265 | 7075-T651/5083-H111 | 6 | spiral (convex scrolled) | triflute, tapered with a thread |
24 | 10/5.8; 10 (6 on tip)/5.8 |
HS 6-5-2 |
| 267 | 6351-T6/ 5083-H111 |
6 | partial impeller, full impeller, flat grove | cylindrical or conical with and without threads | |||
| 46 268,, 326 | 2017A-T451/7075-T651 | 6 | scrolled | tapered threaded | 24 | 6-4.5/5.7 | HS 6-5-2 |
| 327 | 5083-O/6063- T6 |
6 | 18 | 5 | |||
| 269 | 5052/Al-Mg2Si | 8 | concave | conical | 18 | 6-4/5.7 | H13 steel |
| 270 | 2024-T351/6061-T6 | 6 | conical with 4° cavity | square frustum | 18 | 7-3.5/5.9 | H13 steel |
| 271 | 6061-T6/ 6351-T6 |
6.35 | cylindrical scrolled | cylindrical | 14 | 4/5 | molybdenum M42/ HRC 63 |
| 273 | 6061-T651/5A06-H112 | 5 | cylindrical | conical | 16 | 5-4.2/4.6 | |
| 275 | 2024-T3/ 6063-T6 |
8 | conical triangular | D5 steel/60 | |||
| 276 | 2219-T87/2195-T8 | 7.2 | spiral | 16 | H13 steel | ||
| 277 | 2017A-T451/cast AlSi9Mg | 6 | scrolled | tapered threaded | 24 | 6-4.5/5.7 | HS 6-5-2 |
| 278 | 5083-H12/ 6061-T6 |
1.5 | 10-14 | 2-4 | |||
| 279 | 6061-T6/ 7075-T6 |
5 | conic threated | 15 | 5/4.7/5° | 2344 steel/52 | |
| 280 | 5083-H111/6082-T6 | 5 | triangular, pentagonal | 20 | 5-6 | DIN EN 1.7131 steel | |
| 144 | 5083-H111/6351-T6 | 6 | straight square | 18 | 6/5.6 | ||
| 282 | 2024-T6/ 7075-T6 |
5 | flat | smooth cylindrical | 15-16 | 3-8/4.7 | high carbon steel |
| 283 284 | Al-Mg-Si/Al-Zn-Mg | 15 | 35 | 20-12/14.5 | |||
| 285 | 2024-T3/ 6061-T6 |
4.8 | concaved | tapered threaded | 20 | 4 | |
| 286 | UFG 1050/6061-T6 | 2 | concave | thread | 12 | 4/1.8 | steel |
| 329 | 2024-T6/ 6061-T6 |
4 | concentric circles | conical thread, deep groove thread, conical cam thread | 18 | 7-5/3.7 | |
| 288289 | 6061-T6/7050-T7451 | 5 | cylindrical threaded | 18 | 10 | ||
| 47 | 6111-T4/ 5023-T4 Lap joint |
1 | threaded | 8 | 3/1.45 | ||
| 290 | 5086-O/ 6061-T6 | 6 | straight cylindrical, threaded cylindrical, tapered cylindrical | 18 | 6-5/5.7 | steel HSS | |
| 291 | 2050-T4/ 6061-T651 |
20 | single scroll | conical threaded | 25.4 | 15.9/12.7/8° | steel H13 |
| 292 | 5083-O/ 6082-T6 |
NR(~7) | scroll | triflute | 25 | 8/6.4 | |
| 293 | A319/A413 cast | 10 | conical threated | 26 | 10-6/9 | steel H13 | |
| 294 | 7075-O/ 6061-O 7075-T6/ 6061-T6 |
3.17 | concave | cylindrical threaded | 15 | 4/3 | steel H13/52 |
| 295 | 6061-T6/ 7075-T6 |
4.6 | concave | conical threaded | 15 | 7-5.2/4.7 | steel H13 |
| 296 | 2024-T3/ 7075-T6 Lap joint |
5 | concave | cylindrical threaded | 15 | 6-4/6 | steel H13/52 |
| 300 | 2014-T6/ 6061-T6 |
4.7 | scrolled | cylindrical threaded | 15 | 5/4.4 | |
| 299 | 6351-T6/ 5083-H111 |
6 | with concentric circular slots | straight square, tapered square, straight hexagon, straight octagon, tapered octagon without draft | 18 | 6/5.6 | high carbon high chromium steel |
| 302 | A356/6061-T6 | 3 | concave | cylindrical | 15 | 5/2.6 | high speed steel |
| 330 | 2198-T351/7075-T6 Lap joint |
3 and 1.9 | flat | conical | 15.5 | max 4/3.1 | |
| 304 | 2219-T87/5083-H321 | 6 | straight cylinder, tapered cylinder, cylindrical threaded tapered threaded | 9, 12, 15, 18 | 6/5.7 | Steel H13/50-55 VHN | |
| 305 | 6061 cast/6061 rolled | 6 | with concentric circular slots | hexagonal | 19.2 | 6/5.8 | HCHCr steel/ 62 |
| 306 | 6351-T6/5083-H111 | 6 | flat | straight square, straight hexagon, straight octagon, tapered square, tapered octagon | 18 | 6/5.7 | High carbon high chromium steel/63 HRC |
| 127 | 5052-H34/ 5023-T4 |
~1.5 | cylindrical threaded | 12 | 3.8/1.45 | ||
| 303 | A356/6061-T6 | 3 | cylindrical | 15 | 5/2.6 | HSS steel | |
| 307 | 5052-H34/ 5023-T4 |
1.5 & 1.6 | cylindrical threaded | 8 | 3/1.45 | ||
| 308 | 7050-T7451/2024-T351 | 25.4 | threaded | ||||
| 332 | 5182-O/ 5754-O 5182-O/ 6022-T4 5754-O/ 6022-T4 |
~2 | concave | cylindrical threaded | 10.2 | 3.18/1.95 | H13 steel |
| 333 | 6061-T6/ 2024-T3 |
12.7 | threaded | ||||
| 260 | 2024-T351/6056-T4 | 4 | concave | cylindrical threaded | 15 | 5 | |
| 261 | cast A356/ wrought 6061 |
4 | screw-like | ||||
| 57 | 2017-T351 | 5 | 15 | 6/4.7 | |||
| 309 | 1050-H24 | 5 | 15 | 6/4.7 | |||
| 26 | 2017A-T451/AlSi9Mg | 6 | cylindrical threaded | 22 | 8 | ||
| 311 | 2017A | 6 | 25 | 8 | |||
| 357 | 6061-T6 | 1 | flat | quadrangular prism, quadrangular frustum pyramid, frustum | 7 | 2-1.5/0.9 | |
| 335 | 6063/5083 | 6 | Straight cylindrical | 20 | 5/5 | steel HSS | |
| 356 | 6181-T4 | 1, 2 | concave, scroll | cylindrical and threaded | 13 | 5, 6.5, 7 | |
| 336 | 2618-T87/5086-H321 | 6 | Straight cylinder, tapered cylinder, cylindrical threaded tapered threaded | 24, 30, 33, 36 | 12/5.7 | steel H13 | |
| 340 | 2024-T4 | 4 | triflute with round bottom pin, triflat with round bottom pin, triflute with flat bottom pin, triflat with flat bottom pin | high speed steel SW7M |
|||
| 341 | 2024-T4 | 3 | cylindrical, concave | tapered unthreaded, tapered threaded |
20 | 6/3 | |
| 344 | 2014-T6 | 5 | straight cylindrical, tapered cylindrical | 18 | 6/4.8 | stainless steel | |
| 365 | 7075-T6 | 1, 0.8 | concave | cylindrical threaded | 10 | 4/1.2 | Schilling 10S4ZGO/54-56 |
| 347 | 3003 | 2 | flat | conical | 19.5 | 6.8-5/1.7 | X210Cr12 steel |
| 349 | 3003-H17 | 5 | conical threated | 16 | 6/4.7/2.5° | ||
| 350 | 3003 | 5 | concave | square | 18 | 6/4.75 | steel H13/45 |
| 351 | 3004 | 5 | flat | cylindrical threated tapered threated | 21 | 10/4.5/10° | |
| 354 | 1100 | 5 | 7.86, 12, 15, 18, 22.13 | 2.6, 4, 5, 6, 7.37 | high carbon steel 33, 40, 45, 50, 56 HRC |
||
| 316 | 6061-T6 | 9.5 | flat | composite (cylindrical shaft and cylindrical |
25.4 | 11/9(3) | H13 steel |
| 317 | 6061-T67075-T6 | 6 | flat | cylindrical | 21 | 6/6 | |
4.8.1.4. Microstructure Evolution
4.8.1.5. Mechanical Properties Hardness
4.8.1.6. Reinforcement of Weldment
4.8.2. Friction Stir Spot Welding
| Refs | Joint | Thickness | Rotational speed | Welding speed | Welding time | Plunge depth | Tool |
|---|---|---|---|---|---|---|---|
| [mm] | [rpm] | [mm/min] | [s] | [mm] | |||
| 405 | EN AW 5005 | 1.5 | 1500/2000 | 5/10 | Cylindrical Shoulder diameter 10/shoulder length 50/ Cylindrical Pin diameter 4mm/Pin height 2.2/2.6 mm/ AISI 1050 steel 52 HRC | ||
| 407 | EN AW 5005 | 1.5 | 1500/2000 | 5/10 | Cylindrical Shoulder diameter 10/shoulder length 50/ Cylindrical Pin diameter 4mm/Pin height 2.2/2.6 mm/ AISI 1050 steel 52 HRC | ||
| 393 | 1100 | 3 | 760/1065/1445/ 2000 | 40-64/28-40/23-57/32-40 | Cylindrical shoulder diameter 10/shoulder length 55/tapered pin min diameter 3, pin length 2/5/ tilt angle 10/ HSS material | ||
| 394 | 1100 | 5 | 1100-1500 | 20-60 | 0.1-0.5 | cylindrical shoulder diameter of 21 mm/square pin width 7 mm/ pin length of 4.5 mm / tool steel | |
| 395 | 1200 | 3 | Cylindrical pin with groove, and tapered pin/ H13-Tool Steel 56 HRC | ||||
| 410 | 2024 up/7075 bottom | 5 | 1500/2000/2500 | 20/40/60 | 3/3.3/3.6 | Cylindrical shoulder diameter 16 mm/ shoulder length 50 mm/ cylindrical pin diameter 4 mm/ pin length 2.5 mm | |
| 411 | 6063 | 1 | 1220/660/380 | Cylindrical shoulder diameter 12 mm/pin length 1.7 mm/ Pin Circular/Square/Triangular |
|||
| 412 | 6061-T6 | 2 | 1200/1400/1600/1800 | 10/15/20/25 | Cylindrical Shoulder Diameter 12/ Threaded Pin Diameter M5/ Pin Length 2.85/ H13 tool steel |
4.9. Gas Metal Arc Welding GMAW
4.10. Magnetic Pulse Welding MPW
4.11. Vaporizing Foil Actuator Welding VFAW
5. Summary
- -
- the absorption and subsequent entrapment of the ambient gases during welding;
- -
- the existing gas content in the base material;
- -
- the entrapment of gas bubbles due to the imperfect collapse of the keyhole during keyhole welding [443].
Author Contributions
Funding
Conflicts of Interest
References
- Dzikuć, M.; Adamczyk, J.; Piwowar, A. Problems associated with the emissions limitations from road transport in the Lubuskie Province (Poland). Atmospheric Environ. 2017, 160, 1–8, . [CrossRef]
- Lyu, P.; Wang, P.; Liu, Y.; Wang, Y. Review of the studies on emission evaluation approaches for operating vehicles. J. Traffic Transp. Eng. English Ed. 2021, 8, 493–509, . [CrossRef]
- Angnunavuri, P.N.; Kuranchie, F.A.; Attiogbe, F.; Nerquaye-Tetteh, E.N. The potential of integrating vehicular emissions policy into Ghana’s transport policy for sustainable urban mobility. SN Appl. Sci. 2019, 1, 1201, . [CrossRef]
- Correia, G.N.; Batista, T.P.; Marques, S.S.; Silva, C.M. How car material life-cycle emissions are considered in environmental rating methodologies? Suggestion of expedite models and discussion. Renew. Sustain. Energy Rev. 2014, 38, 20–35, . [CrossRef]
- Serrenho, A.C.; Norman, J.B.; Allwood, J.M. The impact of reducing car weight on global emissions: the future fleet in Great Britain. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2017, 375, 20160364, . [CrossRef]
- Neuer Audi Space Frame mit hohen Anteilen an Aluminium und CKF/New Audi Space Frame with increased content of aluminium and CFK. Audi. 2015, Aluminiumkarosserien/Aluminium car bodies, Vol. 3.
- Anwar, M.; Cahyono, S.I.; Wijang, W.R.; Diharjo, K. Application of Carbon Fiber-Based Composite for Electric Vehicle. Adv. Mater. Res. 2014, 896, 574–577, . [CrossRef]
- Ahmad, H.; A Markina, A.; Porotnikov, M.V.; Ahmad, F. A review of carbon fiber materials in automotive industry. IOP Conf. Series: Mater. Sci. Eng. 2020, 971, 032011, . [CrossRef]
- Harrison, N.R.; Luckey, S.G. Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075. SAE Int. J. Mater. Manuf. 2014, 7, 567–573, . [CrossRef]
- Kutsuna, M.; Kitamura, S.; Shibata, K.; Sakamoto, H.; Tsushima, K. Improvement of the Joint Performance in Laser Welding of Aluminium Alloys. Weld. World 2006, 50, 22–27, . [CrossRef]
- AlShaer, A.W., Li, L. and Mistry, A. Effect of filler wire properties on porosity formation in laser welding of AC-170PX aluminium alloy for light-weight automotive component manufacture. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015, Vol. 231, 6, pp. 1-13. [CrossRef]
- Arun, N., Cijo, M. and Joby, J. Influence of Gas Tungsten Arc welding parameters in Aluminium 5083 alloy. Inter. J. Eng. Sci. Inno. Technol. 2013, Vol. 2, 5, pp. 269-277.
- Kumar, A.; Sundarrajan, S. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Mater. Des. 2009, 30, 1288–1297, . [CrossRef]
- SZCZUCKA-LASOTA, B.; Węgrzyn, T.; Jurek, A. ALUMINUM ALLOY WELDING IN AUTOMOTIVE INDUSTRY. Transp. Probl. 2020, 15, 67–78, . [CrossRef]
- Red-Bag. Joint quality factor (joint efficiency coefficient). PCC User Manual version 4.4.x. Calculation. [Online] 10 January 2024. https://redbag.com/pcc/doc/calculations/jointqualityfactor.html].
- Cheng, J.; Song, G.; Zhang, X.; Liu, C.; Liu, L. Review of Techniques for Improvement of Softening Behavior of Age-Hardening Aluminum Alloy Welded Joints. Materials 2021, 14, 5804, . [CrossRef]
- Torzewski, J., Łazińska, M., Grzelak, K., Szachogłuchowicz, I. and Mierzyński, J. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welded Joint AA7020/AA5083 with Different Joining Parameters. Materials. 2022, Vol. 15, 5, p. 1910. [CrossRef]
- Fracture Toughness Behaviour of FSW Joints on Aluminium Alloys. von Strombeck, A., dos Santos, J.F., Torster, F., Laureano, P., Kogak, M. Threadhill P.L. (Ed.): First International Symposium on Friction Stir Welding - Proceedings, June 14-16, 1999, in Thousands Oaks, CA, USA. Cambridge, UK: The Welding Institute Ltd, 1999. CD-ROM;
- Experimental Investigation on Tensile Test Properties of EB Welded Joints of Aluminum 6061-T6 Alloy for Plate-type Fuel Assembly Fabrication. Kim, S.S., Kang, D.H., Jeong, Y.J., Park, J.M. Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 23-24, 2019].
- Lippold, J.C. Welding Metallurgy and Weldability. s.l. : John Wiley & Sons, Inc., 2015.
- Wojdat, T.; Kustroń, P.; Jaśkiewicz, K.; Pabian, J. Study of Corrosion, Structural, and Mechanical Properties of EN AW-6082 and EN AW-7075 Welded Joints. Materials 2021, 14, 4349, . [CrossRef]
- Lee, J.; Park, S.-Y.; Choi, B.-H. Evaluation of Fatigue Characteristics of Aluminum Alloys and Mechanical Components Using Extreme Value Statistics and C-Specimens. Metals 2021, 11, 1915, . [CrossRef]
- Li, H.; Gao, J.; Li, Q. Fatigue of Friction Stir Welded Aluminum Alloy Joints: A Review. Appl. Sci. 2018, 8, 2626, . [CrossRef]
- Bahaideen, F.B.; Saleem, A.M.; M.T, K.H.; Ripin, Z.M.; Ahmad, Z.A.; Samad, Z.; Badarulzman, N.A. Fatigue Behaviour of Aluminum Alloy at Elevated Temperature. Mod. Appl. Sci. 2009, 3, p52, . [CrossRef]
- Azadi, M.; Aroo, H. Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Mater. Res. Express 2019, 6, 115020, . [CrossRef]
- Chen, P. Fan, X., Yang, Q., Zhang, Z., Jia, Z. and Liu, Q. Creep behavior and microstructural evolution of 8030 aluminum alloys compressed at intermediate temperature. Journal of Materials Research and Technology. 2021, Vol. 12, pp. 1755-1761. [CrossRef]
- Li, Z. & Fu, Xue-Song & Chang, Z.-L & Zhou, Wen & Chen, Guo-Qing. Creep behavior and forecast of welded joint for 2219T87 aluminum alloy at room temperature. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals. 2014, Vol. 24, 9, pp. 2235-2242.
- Fourmeau, M.; Børvik, T.; Benallal, A.; Hopperstad, O. Anisotropic failure modes of high-strength aluminium alloy under various stress states. Int. J. Plast. 2013, 48, 34–53, . [CrossRef]
- Bunaziv, I.; Akselsen, O.M.; Ren, X.; Nyhus, B.; Eriksson, M. Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys. Metals 2021, 11, 1150, . [CrossRef]
- Petrie, E.M. Adhesive Bonding of Aluminum Alloys. Met. Finish. 2007, 105, 49–56, . [CrossRef]
- Li, Y.-D.; Zhao, P.-Z.; Feng, Y.-J.; Cao, H.-L. Influence of anodic oxide film structure on adhesive bonding performance of 5754 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1836–1841, . [CrossRef]
- Lathabai, S. 20 - Joining of aluminium and its alloys. [book auth.] R. (Ed.) Lumley. Metals and Surface Engineering, Fundamentals of Aluminium Metallurgy. s.l. : Woodhead Publishing, 2011, pp. 607-654.
- He, X. A review of finite element analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 2011, 31, 248–264, . [CrossRef]
- Barnes, T.; Pashby, I. Joining techniques for aluminium spaceframes used in automobiles: Part II — adhesive bonding and mechanical fasteners. J. Am. Acad. Dermatol. 2000, 99, 72–79, . [CrossRef]
- Groche, P., Wohletz, S., Brenneis, M., Pabst, C. and Resch, F. Joining by forming - A review on joint mechanisms, applications and future trends. J. Mater. Process. Technol. 2014, Vol. 214, 10, pp. 1972-1994.
- Kim, D.C., Park, H.J., Hwang, I.S. and Kang, M.J. Resistance spot welding of aluminum alloy sheet 5J32 using SCR type and inverter type power supplies. Archives of Materials Science and Engineering. 2009, Vol. 38, 1, pp. 55-60.
- Sun, Z.; Karppi, R. The application of electron beam welding for the joining of dissimilar metals: an overview. J. Am. Acad. Dermatol. 1996, 59, 257–267, . [CrossRef]
- Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold metal transfer (CMT) technology - An overview. Def. Technol. 2018, 14, 28–44, . [CrossRef]
- Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh. An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminum Alloy. International Journal of Mechanical, Industrial Science and Engineering. 2013, Vol. 7, 11, pp. 795-798.
- Liu, Y.; Wang, W.; Xie, J.; Sun, S.; Wang, L.; Qian, Y.; Meng, Y.; Wei, Y. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding. Mater. Sci. Eng. A 2012, 549, 7–13, . [CrossRef]
- Wadelton, F. Aluminum 7005-6061 custom frames. Bicycle fabrication. [Online] www.frankthewelder.com.
- How To Advice and Tips for Welders of All Experience Levels. [Online] 10 January 2024. https://www.weldinghandbook.com/types-of-welding/\.
- Haboudou, A.; Peyre, P.; Vannes, A.; Peix, G. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mater. Sci. Eng. A 2003, 363, 40–52, . [CrossRef]
- Peng, Z.; Yang, S.; Wang, Z.; Gao, Z. Fatigue Property and Small Crack Propagation Mechanism of MIG Welding Joint of 6005A-T6 Aluminum Alloy. Materials 2022, 15, 4698, . [CrossRef]
- Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B.A. Development of a Robust and Cost-Effective Friction Stir Welding Process for Use in Advanced Military Vehicles. J. Mater. Eng. Perform. 2010, 20, 11–23, . [CrossRef]
- Hamilton, C.; Dymek, S.; Kopyściański, M.; Węglowska, A.; Pietras, A. Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding. Metals 2018, 8, 324, . [CrossRef]
- Yoon, T.-J.; Yun, J.-G.; Kang, C.-Y. Formation mechanism of typical onion ring structures and void defects in friction stir lap welded dissimilar aluminum alloys. Mater. Des. 2016, 90, 568–578, . [CrossRef]
- Mishra, R.S. and Ma, Z.Y. Friction stir welding and processing. Materials Science and Engineering: R: Reports. 2005, Vol. 50, 1-2, pp. 1-78. [CrossRef]
- Mishra, R.S.; Komarasamy, M. Friction Stir Welding of High Strength 7XXX Aluminum Alloys; Elsevier BV: Amsterdam, NX, Netherlands, 2016; ISBN: 9780128094655.
- Mishra, R.S.; Sidhar, H. Friction Stir Welding of 2XXX Aluminum Alloys Including Al-Li Alloys; Elsevier BV: Amsterdam, NX, Netherlands, 2017; ISBN: .
- Uday, M.B.; Ahmad Fauzi, M.N.; Zuhailawati, H.; Ismail, A.B. Advances in friction welding process: a review. Sci. Technol. Weld. Join. 2010, 15, 534–558, . [CrossRef]
- Threadgill, P.L., Leonard, A.J., Shercliff, H.R. and Withers, P.J. Friction stir welding of aluminium alloys. Int. Mater. Rev. 2009, Vol. 54, 2, pp. 49-93. [CrossRef]
- Kumar, N.; Yuan, W.; Mishra, R.S. Friction Stir Welding of Dissimilar Alloys and Materials; Elsevier BV: Amsterdam, NX, Netherlands, 2015; ISBN: 9780128024188.
- DebRoy, T.; Bhadeshia, H.K.D.H. Friction stir welding of dissimilar alloys – a perspective. Sci. Technol. Weld. Join. 2010, 15, 266–270, . [CrossRef]
- Murr, L.E. A Review of FSW Research on Dissimilar Metal and Alloy Systems. J. Mater. Eng. Perform. 2010, 19, 1071–1089, . [CrossRef]
- Chen, Y.; Liu, H.; Feng, J. Friction stir welding characteristics of different heat-treated-state 2219 aluminum alloy plates. Mater. Sci. Eng. A 2006, 420, 21–25, . [CrossRef]
- Liu, H.J., Fujii, H., Maeda, M. and Nogi, K. Tensile properties and fracture locations of friction stir welded joints of 2017-T351 aluminum alloy. J Mater Process Technol. 2003, Vol. 142, 3, pp. 692-696. [CrossRef]
- Meng, X.; Xu, Z.; Huang, Y.; Xie, Y.; Wang, Y.; Wan, L.; Lv, Z.; Cao, J. Interface characteristic and tensile property of friction stir lap welding of dissimilar aircraft 2060-T8 and 2099-T83 Al–Li alloys. Int. J. Adv. Manuf. Technol. 2017, 94, 1253–1261, . [CrossRef]
- Costa, M.I., Verdera, D., Leitão, C. and Rodrigues, D.M. Dissimilar friction stir lap welding of AA 5754-H22/AA 6082-T6 aluminium alloys: influence of material properties and tool geometry on weld strength. Mater Des. 2015, Vol. 87, pp. 721-731. [CrossRef]
- Kallee, S.W Industrial applications of friction stir welding. [book auth.] D. Lohwasser and Z. (Eds.) Chen. Welding and Other Joining Technologies, Friction Stir Welding. s.l. : Woodhead Publishing, 2010, pp. 118-163.
- Ge, Z.; Gao, S.; Ji, S.; Yan, D. Effect of pin length and welding speed on lap joint quality of friction stir welded dissimilar aluminum alloys. Int. J. Adv. Manuf. Technol. 2018, 98, 1461–1469, . [CrossRef]
- Khan, N.Z.; Khan, Z.A.; Siddiquee, A.N. Effect of Shoulder Diameter to Pin Diameter (D/d) Ratio on Tensile Strength of Friction Stir Welded 6063 Aluminium Alloy. Mater. Today: Proc. 2015, 2, 1450–1457, . [CrossRef]
- Vimalraj, C.; Kah, P. Experimental Review on Friction Stir Welding of Aluminium Alloys with Nanoparticles. Metals 2021, 11, 390, . [CrossRef]
- Burek, R.; Wydrzyński, D.; Sęp, J.; Więckowski, W. The effect of tool wear on the quality of lap joints between 7075 t6 aluminum alloy sheet metal created with the FSW method. Eksploat. i Niezawodn. - Maint. Reliab. 2018, 20, 100–106, . [CrossRef]
- Brown, B.M. A comparison of AC and DC resistance welding of automotive steels. Welding Journal. 1987, Vol. 66, 1, pp. 18-23.
- Guo, H.; Hu, J.; Tsai, H.L. Three-Dimensional Modeling of Gas Metal Arc Welding of Aluminum Alloys. J. Manuf. Sci. Eng. 2010, 132, 021011, . [CrossRef]
- Furukawa, K. New CMT arc welding process – welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Weld. Int. 2006, 20, 440–445, . [CrossRef]
- Chinnasamy, R.; Chelladurai, S.J.S.; Sonar, T. Investigation on Microstructure and Tensile Properties of High-Strength AA2014 Aluminium Alloy Welds Joined by Pulsed CMT Welding Process. Adv. Mater. Sci. Eng. 2021, 2021, 1–8, . [CrossRef]
- Pickin, C.G.; Young, K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci. Technol. Weld. Join. 2006, 11, 583–585, . [CrossRef]
- Pickin, C.; Williams, S.; Lunt, M. Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding. J. Am. Acad. Dermatol. 2011, 211, 496–502, . [CrossRef]
- Kah, P.; Suoranta, R.; Martikainen, J. Advanced gas metal arc welding processes. Int. J. Adv. Manuf. Technol. 2012, 67, 655–674, . [CrossRef]
- Schierl, A. The CMT-process - a revolution in welding technology. Weld World. 2005, Vol. 49, 9, p. 38.
- Gullino, A.; Matteis, P.; D’aiuto, F. Review of Aluminum-To-Steel Welding Technologies for Car-Body Applications. Metals 2019, 9, 315, . [CrossRef]
- Dutra, J.C.; e Silva, R.H.G.; Marques, C. Melting and welding power characteristics of MIG–CMT versus conventional MIG for aluminium 5183. Weld. Int. 2013, 29, 181–186, . [CrossRef]
- Zhang, Y. Investigation of magnetic pulse welding on lap joint of similar and dissimilar materials. PhD Thesis. s.l. : The Ohio State University, 2010.
- Bellmann, J.; Lueg-Althoff, J.; Niessen, B.; Böhme, M.; Schumacher, E.; Beyer, E.; Leyens, C.; Tekkaya, A.E.; Groche, P.; Wagner, M.F.-X.; et al. Particle Ejection by Jetting and Related Effects in Impact Welding Processes. Metals 2020, 10, 1108, . [CrossRef]
- Niessen, B., Schumacher, E., Lueg-Althoff, J., Bellmann, J., Böhme, M., Böhm, S., Tekkaya, A.E., Beyer, E., Leyens, C. and Wagner, M.F.-X. Interface Formation during Collision Welding of Aluminum. Metals 2020, Vol. 10, p. 1202. [CrossRef]
- Wang, H.; Wang, Y. High-Velocity Impact Welding Process: A Review. Metals 2019, 9, 144, . [CrossRef]
- Schumacher, E.; Rebensdorf, A.; Böhm, S. Influence of the jet velocity on the weld quality of magnetic pulse welded dissimilar sheet joints of aluminum and steel. Mater. und Werkst. 2019, 50, 965–973, . [CrossRef]
- Carpenter, S.H. and Wittman, R.H. Explosion Welding. Ann. Rev. Mater. Sci. 1975, Vol. 5, pp. 177–199. [CrossRef]
- Deribas, A.A.; Zakharenko, I.D. Surface effects with oblique collisions between metallic plates. Combust. Explos. Shock. Waves 1974, 10, 358–367, . [CrossRef]
- Patra, S.; Arora, K.S.; Shome, M.; Bysakh, S. Interface characteristics and performance of magnetic pulse welded copper-Steel tubes. J. Am. Acad. Dermatol. 2017, 245, 278–286, . [CrossRef]
- Zhang, Y.; Babu, S.S.; Prothe, C.; Blakely, M.; Kwasegroch, J.; LaHa, M.; Daehn, G.S. Application of high velocity impact welding at varied different length scales. J. Am. Acad. Dermatol. 2011, 211, 944–952, . [CrossRef]
- Kapil, A.; Sharma, A. Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J. Clean. Prod. 2015, 100, 35–58, . [CrossRef]
- Jassim, A. Comparison of magnetic pulse welding with other welding methods. J. Energy Power Eng. 2011, Vol. 5, pp. 1173–1178.
- Aizawa, T., Kashani, M. and Okagawa, K. Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints. Welding Journal. 2007, Vol. 86, pp. 119-124.
- Qi, N.; Wang, L.; Zhao, Y.; Tian, S.; Zhan, X. The tensile properties of 2219 aluminum alloy plate butt joint welded by novel laser mirror welding. Opt. Laser Technol. 2021, 149, 107796, . [CrossRef]
- Theron, M., Burger, H.P., Van Rooyen, C. and lvanchev, L.H. Laser welding of A357 aluminium alloy. International Congress on Applications of Lasers & Electro-Optics. 2008, Vol. P112. [CrossRef]
- Peterson, W., Pakalnins, E. and Carpenter, J.A. Longlife electrodes for resistance spot welding of aluminium sheet alloys and coated high strength steel sheet. FY Progress Report. 2004, pp. 237-244.
- Boomer, D.R., Hunter, J.A. and Castle, D.R. A new approach for robust high productivity resistance spot welding of aluminium. SAE Transactions. 2003, Vol. 112, pp. 280-292.
- Spinella, D.J., Brockenbrough, J.R. and Fridy, J.M. Trends in aluminium resistance spot welding for the auto industry. Welding Journal. 2005, Vol. 84, 1, pp. 34-40.
- Bamberg, P.; Seewald, R.; Schiebahn, A.; Reisgen, U.; Precoma, N.; Epperlein, M. Improvement of the resistance spot welding of Al-Mg-Si alloys by using cladding technology: An optical and mechanical characterization study. J. Adv. Join. Process. 2022, 5, 100090, . [CrossRef]
- Indira Rani, M. and Marpu, R.N. Effect of Pulsed Current TIG Welding Parameters on Mechanical Properties of J-Joint Strength of AA6351. The International Journal of Engineering and Science (IJES). 2012, Vol. 1, 1, pp. 1-5.
- Howard, R.D. Industrial Heating. Aluminum Heat Treatment Processes, Applications and Equipment. [Online] 1 February 2007. https://www.industrialheating.com/articles/87310-aluminum-heat-treatment-processes-applications-and-equipment.
- Spira, N. Aluminum in Cars: Aluminum Alloys for Car Bodies. Kloeckner Metals. [Online] 07 July 2021. https://www.kloecknermetals.com/blog/aluminum-in-cars.
- EngineersEdge. Aluminium plate,Aluminium Cast and Wrough Engineering Specifications. [Online] 15 March 2023. https://www.engineersedge.com/aluminum_plate.htm.
- Davis, J.R. Aluminum and Aluminum Alloys. Cleveland : ASM International, 1993.
- Bamberg, P.; Gintrowski, G.; Liang, Z.; Schiebahn, A.; Reisgen, U.; Precoma, N.; Geffers, C. Development of a new approach to resistance spot weld AW-7075 aluminum alloys for structural applications: an experimental study – Part 1. J. Mater. Res. Technol. 2021, 15, 5569–5581, . [CrossRef]
- Elrefaey, A. Effectiveness of cold metal transfer process for welding 7075 aluminium alloys. Sci. Technol. Weld. Join. 2015, 20, 280–285, . [CrossRef]
- Kumar, N.P.; Vendan, S.A.; Shanmugam, N.S. Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061. J. Alloy. Compd. 2016, 658, 255–264, . [CrossRef]
- Zhang, C.; Li, G.; Gao, M.; Yan, J.; Zeng, X.Y. Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int. J. Adv. Manuf. Technol. 2013, 68, 1253–1260, . [CrossRef]
- Ahmad, R.; Bakar, M. Effect of a post-weld heat treatment on the mechanical and microstructure properties of AA6061 joints welded by the gas metal arc welding cold metal transfer method. Mater. Des. 2011, 32, 5120–5126, . [CrossRef]
- Benoit, A.; Paillard, P.; Baudin, T.; Klosek, V.; Mottin, J.-B. Comparison of four arc welding processes used for aluminium alloy cladding. Sci. Technol. Weld. Join. 2015, 20, 75–81, . [CrossRef]
- Cong, B.; Ding, J.; Williams, S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int. J. Adv. Manuf. Technol. 2014, 76, 1593–1606, . [CrossRef]
- Rajeev, G.P.; Kamaraj, M.; Bakshi, S.R. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique. JOM 2014, 66, 1061–1067, . [CrossRef]
- Luijendijk, T. Welding of dissimilar aluminium alloys. Journal of Materials Processing Technology. 2000, Vol. 103, 1, pp. 29-35. [CrossRef]
- Kaba, L.; Djeghlal, M.E.; Ouallam, S.; Kahla, S. Dissimilar welding of aluminum alloys 2024 T3 and 7075 T6 by TIG process with double tungsten electrodes. Int. J. Adv. Manuf. Technol. 2021, 118, 937–948, . [CrossRef]
- Jweeg, M.J.; Resan, K.K.; A Abbod, E.; Al-Waily, M. Dissimilar Aluminium Alloys Welding by Friction Stir Processing and Reverse Rotation Friction Stir Processing. IOP Conf. Series: Mater. Sci. Eng. 2018, 454, 012059, . [CrossRef]
- Friedman, P.A.; Kridli, G.T. Microstructural and Mechanical Investigation of Aluminum Tailor-Welded Blanks. J. Mater. Eng. Perform. 2000, 9, 541–551, . [CrossRef]
- Prediction of Strain Distribution in Aluminium Tailor Welded Blanks for Different Welding Techniques. Buste, A., Lalbin, X. and Worswick, M.J. [ed.] M. Bouchard and A. (Eds.) Faucher. Montreal : Canadian Institute of Mining, Metallurgy, and Petroleum, 1999. Proc. Int. Symp. on Light Metals . pp. 485-500. [CrossRef]
- Davies, R.W.; Grant, G.J.; Khaleel, M.A.; Smith, M.T.; Oliver, H.E. Forming-limit diagrams of aluminum tailor-welded blank weld material. Met. Mater. Trans. A 2001, 32, 275–283, . [CrossRef]
- Pickering, E., Glagola, M., Ramage, R., and Taylor, G. Production and Performance of High Speed GTA Welded Aluminum Tailored Blanks. SAE Technical Paper. 1995, p. 950722.
- Gungor, B.; Kaluc, E.; Taban, E.; SIK ŞŞ, A. Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys. Mater. Des. 2014, 54, 207–211, . [CrossRef]
- Totten, G.E. and Mackenzie, S. Handbook of aluminum. vol 1. Physical metallurgy and processes. Marcel Dekker Inc. : s.n., 2003. pp. 66-73. Vol. 1.
- Mathers, G. The welding of aluminium and its alloys . Cambridge : Woodhead Publishing Limited, 2002.
- Elrefaey, A.; Ross, N.G. Microstructure and Mechanical Properties of Cold Metal Transfer Welding Similar and Dissimilar Aluminum Alloys. Acta Met. Sin. (English Lett. 2015, 28, 715–724, . [CrossRef]
- Boşneag, A.; A Constantin, M.; Niţu, E.; Iordache, M. Friction Stir Welding of three dissimilar aluminium alloy used in aeronautics industry. IOP Conf. Series: Mater. Sci. Eng. 2017, 252, 012041, . [CrossRef]
- Sharma, S. and Upadhyay, V. Friction Stir Welding of Dissimilar Aluminum Alloys AA5086 and AA7039. J. Phys.: Conf. Ser. 2019, Vol. 1240, p. 012160. [CrossRef]
- Pourabbas, M.; Abdollah-Zadeh, A.; Sarvari, M.; Pouranvari, M.; Miresmaeili, R. Investigation of structural and mechanical properties of magnetic pulse welded dissimilar aluminum alloys. J. Manuf. Process. 2018, 37, 292–304, . [CrossRef]
- Meng, Z., Wang, X., Guo, W., Hu, Z., Vivek, A., Hua, L. and Daehn, G.S. Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, Vol. 34, pp. 368-372. [CrossRef]
- Kou, S. The Partially Melted Zone. Welding Metallurgy. 2. New-Jersey : A John Wiley & Sons, Inc., Publication, 2002, 3, pp. 304-328.
- Huang, C. and Kou, S. Liquation Mechanisms in Multi-Component Aluminum Alloys During Welding. Welding Journal. 2002, Vol. 81, 10, pp. 211s-222s.
- Huang, C. and Kou, S. Liquation cracking in partial-penetration aluminum welds: Effect of penetration oscillation and backfilling. Welding Journal. 2003, Vol. 82, pp. 184s-194s.
- Huang, C. and Kou, S. Liquation Cracking in Full-Penetration Al-Mg-Si Welds. Welding Journal. 2004, Vol. 83, pp. 111s-122s.
- Song, S.-W.; Lee, S.-H.; Kim, B.-C.; Yoon, T.-J.; Kim, N.-K.; Kim, I.-B.; Kang, C.-Y. Liquation Cracking of Dissimilar Aluminum Alloys during Friction Stir Welding. Mater. Trans. 2011, 52, 254–257, . [CrossRef]
- Cornacchia, G. and Cecchel, S. Study and Characterization of EN AW 6181/6082-T6 and EN AC 42100-T6 Aluminum Alloy Welding of Structural Applications: Metal Inert Gas (MIG), Cold Metal Transfer (CMT), and Fiber Laser-MIG Hybrid Comparison. Metals. 2020, Vol. 10, 4, p. 441. [CrossRef]
- Dalle Donne, C., Braun, R., Staniek, G., Jung, A. and Kaysser, W.A. Mikrostrukturelle, mechanische und korrosive Eigenschaften reibrührgeschweißter Stumpfnähte in Aluminiumlegierungen. Materialwissenschaft und Werkstofftechnik./Materials Science & Engineering Technology. 1998, Vol. 29, 10, pp. 609-617. [CrossRef]
- Hassan, K.A.A.; Prangnell, P.B.; Norman, A.F.; Price, D.A.; Williams, S.W. Effect of welding parameters on nugget zone microstructure and properties in high strength aluminium alloy friction stir welds. Sci. Technol. Weld. Join. 2003, 8, 257–268, . [CrossRef]
- Wang, P., Chen, K., Jiang, H., Chen, S. and Hu, G. Microstructures and properties of TIG welded joint of 7003 aluminum alloy. Materials Science and Engineering of Powder Metallurgy. 2016, Vol. 2016, 6, pp. 832-839.
- An Experimental Investigation of the Heat Affected Zone (HAZ) Properties of AA6060 and AA7046 Following Different Heat Treatment Schedules. Alisibramulisi, A., Myhr, O., Lademo, O.-G. and Larsen, P. Yokohama: The Japan Institute of Light Metals, 2010. Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan. pp. 994-999.
- Haryadi, G.D.; Kim, S.J. Influences of post weld heat treatment on fatigue crack growth behavior of TIG welding of 6013 T4 aluminum alloy joint (Part 1. Fatigue crack growth across the weld metal). J. Mech. Sci. Technol. 2011, 25, 2161–2170, . [CrossRef]
- Hou, B., Zhao, Y., Zhou, C., Xie, M. and Hu, Z. Research on Welding Properties of Al-Mg Alloy Welding Wire Containing In. Material Sciences. 2019, Vol. 9, 3, pp. 189-195.
- Shanavas, S.; Dhas, J.R. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process – A comparative study. IOP Conf. Series: Mater. Sci. Eng. 2017, 247, 012016, . [CrossRef]
- Vijay Mohan Shetty, V.M., Vattem, R.K. and Musku, S. Optimization and Evaluation of Ageing Parameters on Mechanical Properties of AA 6061AND AA 5154 Welded Joints using Taguchi Method. International Journal of Engineering Sciences & Researches Technology. 2018, Vol. 7, 5, pp. 64-72.
- Zhu, G.; Wang, S.; Zhang, M.; Yang, X.; Liu, W.; Wang, G. Application of laser cleaning in postwelding treatment of aluminum alloy. Appl. Opt. 2020, 59, 10967–10972, . [CrossRef]
- Mossman, M.M. and Lippold, J.C. Weldability Testing of Dissimilar Combinations of 5000- and 6000-Series Aluminum Alloys. Welding Journal. 2002, Vol. September, pp. 188s-194s.
- European aluminium. Joining - Arc Welding, the Aluminium Automotive Manual. [Online] 2015. [Cited: 18 February 2020.] https://www.european-aluminium.eu/media/1518/3-arc-welding_2015_new.pdf.
- Peter, I.; Rosso, M. Study of 7075 Aluminium Alloy Joints. Sci. Bull. Valahia Univ. - Mater. Mech. 2017, 15, 7–11, . [CrossRef]
- Kang, M.; Kim, C. A Review of Joining Processes for High Strength 7xxx Series Aluminum Alloys. J. Weld. Join. 2017, 35, 79–88, . [CrossRef]
- Niu, L.-Q., Li, X.-Y., Zhang, L., Liang, X.-B. and Li, M. Correlation Between Microstructure and Mechanical Properties of 2219-T8 Aluminum Alloy Joints by VPTIG Welding[J]. Acta Metallurgica Sinica (English Letters). 2017, Vol. 30, 5, pp. 438-446. [CrossRef]
- Kwon, Y.; Weckman, D.C. Analytical thermal model of conduction mode double sided arc welding. Sci. Technol. Weld. Join. 2008, 13, 539–549, . [CrossRef]
- Nyrkova, L.; E.O. Paton Electric Welding Institute NAS of Ukraine; Labur, T.; Shevtsov, E.; Nazarenko, O.; Dorofeev, A.; Osadchuk, S.; Yavorska, M.; Poklyatsky, A.; Fedorchuk, V.; et al. Complex of properties of 2219 alloy weld joint in T62 state under modeling operating conditions. 2022, 28, 14–29, . [CrossRef]
- Su, D.; Zhang, J.; Wang, B. The microstructure and weldability in welded joints for AA 5356 aluminum alloy after adding modified trace amounts of Sc and Zr. J. Manuf. Process. 2020, 57, 488–498, . [CrossRef]
- Palanivel, R., Laubscher, R.F., Dinaharan, I. and Murugan, N. Developing a Friction-StirWeldingWindow for Joining the Dissimilar Aluminum Alloys AA6351 and AA5083. Mater. Technol. 2017, Vol. 51, 1, pp. 5-9.
- Kumar, A.; Sundarrajan, S. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments. Mater. Des. 2009, 30, 1288–1297, . [CrossRef]
- Singh, A.K., Dey, V. and Rai, R.N. Techniques to improve weld penetration in TIG welding (A review). Materials Today: Proceedings 2017, Vol. 4, 2, A, pp. 1252-1259. [CrossRef]
- Chen, Q.; Lin, S.; Yang, C.; Fan, C.; Ge, H. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum. Ultrason. Sonochemistry 2017, 39, 403–413, . [CrossRef]
- Gupta, Y., Tanwar, A. and Gupta, R. Investigation of Microstructure and Mechanical Properties of TIG and MIG Welding Using Aluminium Alloy. IOSR Journal of Mechanical and Civil Engineering 2016, Vol. 13, 5, pp. 121-126.
- Zhang, Y.M.; Pan, C.; Male, A.T. Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process. Met. Mater. Trans. A 2000, 31, 2537–2543, . [CrossRef]
- Squillace, A.; De Fenzo, A.; Giorleo, G.; Bellucci, F. A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. J. Am. Acad. Dermatol. 2004, 152, 97–105, . [CrossRef]
- Wang, X.; Wang, K.; Shen, Y.; Hu, K. Comparison of fatigue property between friction stir and TIG welds. J. Univ. Sci. Technol. Beijing, Miner. Met. Mater. 2008, 15, 280–284, . [CrossRef]
- Cabello M., Ruckert G., Huneau S. B. and Marya S. Comparison of TIG welded and friction stir welded Al–4.5Mg–0.26Sc alloy, Journal of Materials Processing Technology 2008, Vol. 197, 1-3, pp. 337-343. [CrossRef]
- Zhao J., Jiang F., Jian H., Wen K., Jiang L. and Chen X. Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al–Mg–Sc alloy plates. Materials & Design 2010, Vol. 31, 1, pp. 306-311. [CrossRef]
- Malarvizhia S. and Balasubramanian V. Effects of welding processes and post-weld aging treatment on fatigue behavior of AA2219 aluminium alloy joints. Journal of Materials Engineering and Performance 2011, Vol. 20, 3, pp. 359-367. [CrossRef]
- Zhen H., Yong P., Zhi Y. and Xue L. Comparison of FSW and TIG welded joints in Al-Mg-Mn-Sc-Zr alloy plates. Transactions of Nonferrous Metals Society of China 2011, Vol. 21, pp. 1685-1691. [CrossRef]
- Anjaneya Prasad B. and Prasanna P. Experimental Comparison of the MIG and Friction Stir Welding Processes for AA 6061(AlMgSiCu) Aluminium Alloy. International Journal of Mining, Metallurgy & Mechanical Engineering 2013, Vol. 1, pp. 137-140.
- Jannet, S., Mathews, P.K. and Raja, R. Comparative investigation of Friction stir welding & Fusion welding of 6061T-6 & 5083-0 Aluminium Alloys based on mechanical properties & microstructure. Journal of Achievements in Materials & Manufacturing Engg. 2013, Vol. 61, pp. 181-186.
- Sasidharan, B., Narayanan, K.P. and Prakash. R.S. Tensile & Microstructural characteristics of DCSP TIG welded & Friction stir welded AA2219 Aluminum Alloy. International Journal of Design & Manufacturing Technology 2014, Vol. 5, pp. 121-129.
- Ashwani Kumar, Shakti Singh Gautam and Alok Kumar. Heat input & joint efficiency of three welding processes TIG, MIG & FSW using AA6061. International Journal of Mechanical Engg. & Robotic Research 2014, Vol. 1, pp. 89-94.
- Navyashree, S. and Sivaramakrishna, V. Experimental Investigation of Friction Stir Welding and TIG Welding for Al-6082. International Journal of Innovative Research in Science, Engg. & Technology 2015, Vol. 4, pp. 5292-5298.
- Vimalraj, C., Kah, P., Mvola, B. and Martikainen, J. Effect of nanomaterial addition using gmaw and gtaw processes. Rev. Adv. Mater. Sci. 2016, Vol. 44, pp. 370–382.
- Kumar, A. and Milton, M.S. A Comparison of Welding Techniques of Aluminium Alloys. A Literature Review. International Journal of Scientific Research in Science, Engineering and Technology 2016, Vol. 2, 3, pp. 172-175.
- Singh, S.; Kumar, V.; Kumar, S.; Kumar, A. Variant of MIG welding of similar and dissimilar metals: A review. Mater. Today: Proc. 2021, 56, 3550–3555, . [CrossRef]
- Nie, F.; Dong, H.; Chen, S.; Li, P.; Wang, L.; Zhao, Z.; Li, X.; Zhang, H. Microstructure and Mechanical Properties of Pulse MIG Welded 6061/A356 Aluminum Alloy Dissimilar Butt Joints. J. Mater. Sci. Technol. 2018, 34, 551–560, . [CrossRef]
- Warinsiriruk, E.; Greebmalai, J.; Sangsuriyun, M. Effect of Double Pulse MIG Welding on Porosity Formation on Aluminium 5083 Fillet Joint. MATEC Web Conf. 2019, 269, 01002, . [CrossRef]
- Bai, Y.; Gao, H.-M.; Qiu, L. Droplet transition for plasma-MIG welding on aluminium alloys. Trans. Nonferrous Met. Soc. China 2010, 20, 2234–2239, . [CrossRef]
- Liu, J.; Zhu, H.; Li, Z.; Cui, W.; Shi, Y. Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding. Opt. Laser Technol. 2019, 119, 105619, . [CrossRef]
- Chen, C.; Fan, C.; Lin, S.; Cai, X.; Zhou, L.; Ye, S.; Yang, C. Effect of ultrasonic pattern on weld appearance and droplet transfer in ultrasonic assisted MIG welding process. J. Manuf. Process. 2018, 35, 368–372, . [CrossRef]
- Wojdat, T., Kustroń, P., Jaskiewicz, K., Zwierzchowski, M. and Margielewska, A. Numerical modelling of welding of car body sheets made of selected aluminum alloys. Arch. Metall. Mater. 2019, Vol. 64, 4, pp. 1403-1409. [CrossRef]
- Pfeifer, T. and Rykała, J. Welding EN AW7075 Aluminium Alloy Sheets—Low-energy Versus Pulsed Current. Inst. Weld. Bull. Gliwice. 2014, Vol. 5, pp. 137-144.
- The CMT process a revolution in welding technology. Bruckner, J., Wagner, J. and Arenholz, E. San Francisco : s.n., 2005. Proceedings of the International Light Metals Technology Conference 2005, San Francisco, CA, USA. pp. 275-284.
- Pfeifer, T. and Stano, S. Modern methods of weldbrazing in the aspect of quality and properties of joints. Weld. Technol. Rev. 2016, Vol. 9, pp. 95-102.
- Talalaev, R.; Veinthal, R.; Laansoo, A.; Sarkans, M. Cold metal transfer (CMT) welding of thin sheet metal products. Estonian J. Eng. 2012, 18, 243, . [CrossRef]
- Feng, J.; Zhang, H.; He, P. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater. Des. 2009, 30, 1850–1852, . [CrossRef]
- Dutra, J.C.; e Silva, R.H.G.; Savi, B.M.; Marques, C.; Alarcon, O.E. Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087). Weld. World 2015, 59, 797–807, . [CrossRef]
- Shu, F.Y., Tian, Z., Lu, Y.H., He, W.X., Lu, F.Y., Lin, J.J., Zhao, H.Y. and Xu, B.S. Prediction of vulnerable zones based on residual stress and microstructure in cmt welded aluminium alloy joint. Trans Nonferrous Met. Soc China. 2015, Vol. 25, 8, pp. 2701-2707. [CrossRef]
- Shu, F.Y., Lu, Y.H., Liu, Y.X., Xu, F.J., Sun, Z., He, P. and Xu, B.S. FEM modeling of softened base metal in narrow-gap joint by CMT+Pmix welding procedure. Trans Nonferrous Met. Soc China. 2014, Vol. 24, 6, pp. 1830-1835. [CrossRef]
- Kotsikos, G.; Robinson, M.; Zangani, D.; Roberts, J. Investigation of the weld unzipping failure mode during collisions of welded aluminium rail vehicles. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2008, 222, 59–68, . [CrossRef]
- Improving the Crashworthiness of Aluminium Rail Vehicles. Zangani, D., Robinson, M. and Kotsikos, G. [ed.] S., Rodopoulos, C. Pantelakis. s.l. : Springer, Dordrecht, 2009. Engineering Against Fracture. [CrossRef]
- Gay, R., Robinson, M. and Zangani, D. Crashworthiness of Joints in Aluminium Rail Vehicles. [Online] 2022. https://trimis.ec.europa.eu/sites/default/files/project/documents/20091125_164508_79987_ALJOIN%20overview%20paper.pdf.
- Zhao, Y.; Chen, F.; Cao, S.; Chen, C.; Xie, R. Effect of CMT Welding Heat Input on Microstructure and Properties of 2A14 Aluminum Alloy Joint. Metals 2022, 12, 2100, . [CrossRef]
- Shanker, H.; Wattal, R. Comparative study of microstructural and mechanical properties of robotic CMT and GMAW welded 7475-T7351 aluminium alloy joints. Mater. Today Commun. 2023, 37, . [CrossRef]
- Tian, Y.; Shen, J.; Hu, S.; Gou, J. Macrostructure, microstructure and wear performance of Al alloy cladding fabricated by CMT technique. Eng. Res. Express 2020, 2, 015026, . [CrossRef]
- Yang, G.; Guan, K.; Zou, L.; Sun, Y.; Yang, X. Weld Defect Detection of a CMT Arc-Welded Aluminum Alloy Sheet Based on Arc Sound Signal Processing. Appl. Sci. 2023, 13, 5152, . [CrossRef]
- Srinivasan, D.; Sevvel, P.; Solomon, I.J.; Tanushkumaar, P. A review on Cold Metal Transfer (CMT) technology of welding. Mater. Today: Proc. 2022, 64, 108–115, . [CrossRef]
- Zhang, H.; Feng, J.; He, P.; Zhang, B.; Chen, J.; Wang, L. The arc characteristics and metal transfer behaviour of cold metal transfer and its use in joining aluminium to zinc-coated steel. Mater. Sci. Eng. A 2009, 499, 111–113, . [CrossRef]
- Shang, J.; Wang, K.; Zhou, Q.; Zhang, D.; Huang, J.; Li, G. Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater. Des. 2012, 34, 559–565, . [CrossRef]
- Cao, R.; Wen, B.; Chen, J.; Wang, P.-C. Cold Metal Transfer joining of magnesium AZ31B-to-aluminum A6061-T6. Mater. Sci. Eng. A 2013, 560, 256–266, . [CrossRef]
- Singh, I.J.; Murtaza, Q.; Kumar, P. A comprehensive review on effect of cold metal transfer welding parameters on dissimilar and similar metal welding. J. Eng. Res. 2023, . [CrossRef]
- Gierth, M.; Henckell, P.; Ali, Y.; Scholl, J.; Bergmann, J.P. Wire Arc Additive Manufacturing (WAAM) of Aluminum Alloy AlMg5Mn with Energy-Reduced Gas Metal Arc Welding (GMAW). Materials 2020, 13, 2671, . [CrossRef]
- Bergmann, J.P.; Bielenin, M.; Feustel, T. Aluminum welding by combining a diode laser with a pulsed Nd:YAG laser. Weld. World 2015, 59, 307–315, . [CrossRef]
- Park, Y.W.; Rhee, S. Process modeling and parameter optimization using neural network and genetic algorithms for aluminum laser welding automation. Int. J. Adv. Manuf. Technol. 2007, 37, 1014–1021, . [CrossRef]
- Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation. Schempp, P., Tang, Z., Cross, C., Pittner, A., Seefeld, T. and Rethmeier, M. Chicago : s.n., 2012. ASM Proceedings of the 9th International Conference: Trends in Welding Research June 4–8, 2012, Chicago, Illinois, USA. pp. 98-107.
- Zhao, H.; DebRoy, T. Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. J. Appl. Phys. 2003, 93, 10089–10096, . [CrossRef]
- Pastor, M., Zhao, H., Martukanitz, R.P. and Debroy, T. Porosity, underfill and magnesium lose during continuous wave Nd: YAG laser welding of thin plates of aluminum alloys 5182 and 5754 78: 207-s. Welding Journal. 1999, Vol. 78, 6, pp. 207s-216s.
- Sheikhi, M.; Ghaini, F.M.; Assadi, H. Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloy. Acta Mater. 2015, 82, 491–502, . [CrossRef]
- Yi, H., Jian, H. and Pulin, N. Microstructures and Textures of 6016 and 5182 Aluminum Laser Welded Joints. Chinese Journal of Lasers. 2019, Vol. 46, 4, p. 0402003.
- Sánchez-Amaya, J.; Delgado, T.; González-Rovira, L.; Botana, F. Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Appl. Surf. Sci. 2009, 255, 9512–9521, . [CrossRef]
- Strengthening mechanism in laser-welded 2219 aluminium alloy under the cooperative effects of aging treatment and pulsed electromagnetic loadings. Mater. Sci. Eng. A 2018, Vol. 714, pp. 124–139. [CrossRef]
- Wang, Z.; Oliveira, J.; Zeng, Z.; Bu, X.; Peng, B.; Shao, X. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt. Laser Technol. 2018, 111, 58–65, . [CrossRef]
- Peng, G.; Li, L.; Wang, J.; Xia, H.; Meng, S.; Gong, J. Effect of subatmospheric pressures on weld formation and mechanical properties during disk laser welding of 5A06 aluminium alloy. J. Am. Acad. Dermatol. 2019, 277, 116457, . [CrossRef]
- Braun, R. Nd:YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders. Mater. Sci. Eng. A 2006, 426, 250–262, . [CrossRef]
- Zhang, L., Li, X., Nie, Z., Huang, H. and Sun, J. Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam. Mater. Des. 2015, Vol. 83, pp. 451–458. [CrossRef]
- Enz, J.; Khomenko, V.; Riekehr, S.; Ventzke, V.; Huber, N.; Kashaev, N. Single-sided laser beam welding of a dissimilar AA2024–AA7050 T-joint. Mater. Des. 2015, 76, 110–116, . [CrossRef]
- Viscusi, A.; Leitão, C.; Rodrigues, D.; Scherillo, F.; Squillace, A.; Carrino, L. Laser beam welded joints of dissimilar heat treatable aluminium alloys. J. Am. Acad. Dermatol. 2016, 236, 48–55, . [CrossRef]
- Enz, J.; Kumar, M.; Riekehr, S.; Ventzke, V.; Huber, N.; Kashaev, N. Mechanical properties of laser beam welded similar and dissimilar aluminum alloys. J. Manuf. Process. 2017, 29, 272–280, . [CrossRef]
- Bunaziv, I.; Akselsen, O.M.; Salminen, A.; Unt, A. Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy. J. Mater. Process. Technol. 2016, 233, 107–114, . [CrossRef]
- Bunaziv, I.; Akselsen, O.M.; Ren, X.; Nyhus, B.; Eriksson, M. Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys. Metals 2021, 11, 1150, . [CrossRef]
- Shibata, K.; Sakamoto, H.; Iwase, T. Laser-MIG Hybrid Welding of Aluminium Alloys. Weld. World 2006, 50, 28–34, . [CrossRef]
- Han, X.; Yang, Z.; Ma, Y.; Shi, C.; Xin, Z. Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint. Opt. Laser Technol. 2020, 132, 106511, . [CrossRef]
- Katayama, S.; Uchiumi, S.; Mizutani, M.; Wang, J.; Fujii, K. Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding. Weld. Int. 2007, 21, 25–31, . [CrossRef]
- Yan, J.; Zeng, X.; Gao, M.; Lai, J.; Lin, T. Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO2 laser-MIG hybrid welding. Appl. Surf. Sci. 2009, 255, 7307–7313, . [CrossRef]
- Ahn, J.; Chen, L.; He, E.; Davies, C.; Dear, J. Effect of filler metal feed rate and composition on microstructure and mechanical properties of fibre laser welded AA 2024-T3. J. Manuf. Process. 2017, 25, 26–36, . [CrossRef]
- Ahn, J.; He, E.; Chen, L.; Dear, J.; Davies, C. The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3. J. Manuf. Process. 2017, 29, 62–73, . [CrossRef]
- Ahn, J.; Chen, L.; He, E.; Dear, J.; Davies, C. Optimisation of process parameters and weld shape of high power Yb-fibre laser welded 2024-T3 aluminium alloy. J. Manuf. Process. 2018, 34, 70–85, . [CrossRef]
- Yan, S.; Nie, Y.; Zhu, Z.; Chen, H.; Gou, G.; Yu, J.; Wang, G. Characteristics of microstructure and fatigue resistance of hybrid fiber laser-MIG welded Al–Mg alloy joints. Appl. Surf. Sci. 2014, 298, 12–18, . [CrossRef]
- Huang, L.; Wu, D.; Hua, X.; Liu, S.; Jiang, Z.; Li, F.; Wang, H.; Shi, S. Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J. Manuf. Process. 2018, 31, 514–522, . [CrossRef]
- Leo, P.; D'Ostuni, S.; Casalino, G. Hybrid welding of AA5754 annealed alloy: Role of post weld heat treatment on microstructure and mechanical properties. Mater. Des. 2016, 90, 777–786, . [CrossRef]
- Yan, S.; Chen, H.; Zhu, Z.; Gou, G. Hybrid laser-Metal Inert Gas welding of Al–Mg–Si alloy joints: Microstructure and mechanical properties. Mater. Des. 2014, 61, 160–167, . [CrossRef]
- Zhang, C.; Gao, M.; Jiang, M.; Zeng, X. Effect of Weld Characteristic on Mechanical Strength of Laser-Arc Hybrid-Welded Al-Mg-Si-Mn Aluminum Alloy. Met. Mater. Trans. A 2016, 47, 5438–5449, . [CrossRef]
- Yan, S.; Xing, B.; Zhou, H.; Xiao, Y.; Qin, Q.-H.; Chen, H. Effect of filling materials on the microstructure and properties of hybrid laser welded Al-Mg-Si alloys joints. Mater. Charact. 2018, 144, 205–218, . [CrossRef]
- Wang, H.; Liu, X.; Liu, L. Research on Laser-TIG Hybrid Welding of 6061-T6 Aluminum Alloys Joint and Post Heat Treatment. Metals 2020, 10, 130, . [CrossRef]
- Hu, B.; Richardson, I. Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Mater. Sci. Eng. A 2007, 459, 94–100, . [CrossRef]
- Ola, O.; Doern, F. Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques. Mater. Des. 2015, 77, 50–58, . [CrossRef]
- Allen, C.; Verhaeghe, G.; Hilton, P.; Heason, C.P.; Prangnell, P.B. Laser and Hybrid Laser-MIG Welding of 6.35 and 12.7mm Thick Aluminium Aerospace Alloy. Mater. Sci. Forum 2006, 519-521, 1139–1144, . [CrossRef]
- Korzhyk, V., Khaskin, V., Grinyuk, A.A., Shcheretskyi, V., Oleinychenko, T. and Babych, O. Hybrid Laser-MIG Welding of Aluminum Alloys Al-Mg-Mn, Al-Cu-Mg and Al-Mg-Li Systems. Environment Technology Resources Proceedings of III International Scientific and Practical Conference Chicago, USA 1-3 September 2021, pp. 125-132 .
- Nathish, .P.V., Naveen Ram kumar M., Raghul Raaj, K. and Omprakasam, S. Hybrid Laser Beam Welding of Aluminium Alloys. International Research Journal of Engineering and Technology 2017, Vol. 4, 11, pp. 520-524.
- Daehn, G.S. and Lippold, J.C. Low-Temperature Spot Impact Welding Driven without Contact. U.S. Patent No. PCT/US09/36499, 27 December 2011.
- Zhao, Y.; Lei, Z.; Chen, Y.; Tao, W. A comparative study of laser-arc double-sided welding and double-sided arc welding of 6mm 5A06 aluminium alloy. Mater. Des. 2011, 32, 2165–2171, . [CrossRef]
- Han, B., Chen, Y.B., Wang, T., Lei, Z.L., Li, H., Guo, S., and Li, P. Nano-indentation investigation on the local softening of equiaxed zone in 2060–T8/2099-T83 aluminum-lithium alloys T-joints welded by double-sided laser beam welding. J. Alloy Compd. 2018, Vol. 756, pp. 145-162. [CrossRef]
- Chen, X., Lei, Z., Chen, Y., Han, B., Jiang, M., Tian, Z., Bi, J. and Lin, S. Nano-indentation and in-situ investigations of double-sided laser beam welded 2060–T8/2099-T83 Al-Li alloys T-joints. Mat. Sci Eng A-Struct. 2019, Vol. 756, pp. 291-301. [CrossRef]
- Sadeh, S., Gleason, G.H. Hatamleh, M.I., Sunny, S.F., Yu, H., Malik, A.S. and Qian, D. Simulation and Experimental Comparison of Laser Impact Welding with a Plasma Pressure Model. Metals 2019, Vol. 9, p. 1196. [CrossRef]
- Wang, X.; Gu, C.; Zheng, Y.; Shen, Z.; Liu, H. Laser shock welding of aluminum/aluminum and aluminum/copper plates. Mater. Des. 2014, 56, 26–30, . [CrossRef]
- Peyre, P., Berthe, L. and Fabbro, R. Laser shock processing of materials: Basics mechanisms and applications. In Proceedings of the 65th Laser Materials Processing Conference, Tokyo, Japan, 2–5 December 2005; pp. 95–109.
- Wang, X.; Gu, Y.; Qiu, T.; Ma, Y.; Zhang, D.; Liu, H. An experimental and numerical study of laser impact spot welding. Mater. Des. 2015, 65, 1143–1152, . [CrossRef]
- Çam, G.; Ventzke, V.; Dos Santos, J.; Koçak, M.; Jennequin, G.; Gonthier-Maurin, P. Characterisation of electron beam welded aluminium alloys. Sci. Technol. Weld. Join. 1999, 4, 317–323, . [CrossRef]
- Fujii, H., Umakoshi, H., Aoki, Y. and Nogi, K. Bubble formationin aluminium alloy during electron beam welding. Journal of Materials Processing Technology 2004, Vol. 155-156, 1-3, pp. 1252–1255. [CrossRef]
- Elseddig, Z.A., Sobih, M., Almazy, Kh. and Sallam, M. Experimental investigation of electron beam welding of AA1350aluminum alloy. in Proceedings of the in 14th International Conference on Applied Mechanics and Mechanical Engineering, Cairo, Egypt, 2010.
- Sobih, M., Elseddig, Z., Almazy, K., Youssef, A. and Sallam, M. Optimization of EBW parameters for 2219 al-alloy using greyrelation method. Advanced Materials Research 2012, Vol. 591-593, pp. 507-514. [CrossRef]
- Sobih, M.; Elseddig, Z.; Almazy, K.; Sallam, M. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy. Indian J. Mater. Sci. 2016, 2016, 1–6, . [CrossRef]
- Saha, D.C.; Park, Y.-D. A Review on Al-Al/Al-Steel Resistance Spot Welding Technologies for Light Weight Vehicles. J. Weld. Join. 2011, 29, 35–40, . [CrossRef]
- Auhl, J.R. and Patrick, E.P. A fresh look at resistance spot welding of aluminium automotive components. SAE Technical Paper. 1994, p. 940160.
- Rönnhult, T.; Rilby, U.; Olefjord, I. The surface state and weldability of aluminium alloys. Mater. Sci. Eng. 1980, 42, 329–336, . [CrossRef]
- Li, Z., Hao, C., ZHANG, J. and Zhang, H. Effects of Sheet Surface Conditions on Electrode Life in Resistance Welding Aluminum. Welding journal. 2007, Vol. 86, 4, pp. 81s-89s.
- Newton, C., Thornton, M., Keay, B., Sheasby, P. and Boomer, D. How to Weld Bond Aluminium with Structural Adhesives. SAE Technical Paper. 1997, p. 970018.
- Miller, W.S.; Zhuang, L.; Bottema, J.; Wittebrood, A.J.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [CrossRef]
- Shah, U.; Liu, X. Effect of ultrasonic energy on the spot weldability of aluminum alloy AA6061. Mater. Des. 2020, 192, 108690, . [CrossRef]
- Qi, L.; Zhang, Q.; Ma, Y.; Xu, Y.; Han, X.; Li, Y. A comparative study on mechanical performance of traditional and magnetically assisted resistance spot welds of A7N01 aluminum alloy. J. Manuf. Process. 2021, 66, 133–144, . [CrossRef]
- Metal Suppliers Online. Aluminum 7178 aluminum - material property data sheet. [Online] https://www.suppliersonline.com/propertypages/7178.asp.
- Davis, J.R. Aluminum and Aluminum Alloys - Chapter. Alloying: Understanding the Basics. Materials Park, Ohio : ASM International, 2001, pp. 351-416.
- Fracchia, E.; Gobber, F.; Rosso, M. About weldability and welding of Al alloys: case study and problem solving. J. Achiev. Mater. Manuf. Eng. 2017, 2, 67–74, . [CrossRef]
- Matokhnyuk, L.E.; Byalonovich, A.V.; Gopkalo, E.E.; Vorob’ev, E.V.; Karaush, D.P.; Malyshko, V.I. Fatigue Resistance of 2219 Aluminum Alloy and its Welded Joints. Strength Mater. 2019, 51, 860–867, . [CrossRef]
- Manladan, S.M.; Yusof, F.; Ramesh, S.; Fadzil, M.; Luo, Z.; Ao, S. A review on resistance spot welding of aluminum alloys. Int. J. Adv. Manuf. Technol. 2016, 90, 605–634, . [CrossRef]
- Evaluation of Joint Performance of 5056 Aluminum Friction Welded Joints By Heat Input And Burn-Off Quantity. Ochi, H., Sawai, T., Yamamoto, Y., Ogawa, K. and Suga, Y. Seatle, Washington, USA : s.n., 2000. Paper presented at the Tenth International Offshore and Polar Engineering Conference Seattle, Washington, USA, May 2000.
- Manjhi, S.K.; Das, A.; Prasad, S.B. Review on joining of aluminum alloy by solid-state welding technique. Mater. Today: Proc. 2020, 26, 1255–1261, . [CrossRef]
- Patel, V.; Li, W.; Wang, G.; Wang, F.; Vairis, A.; Niu, P. Friction Stir Welding of Dissimilar Aluminum Alloy Combinations: State-of-the-Art. Metals 2019, 9, 270, . [CrossRef]
- Barbini, A., Carstensen, J. and Dos Santos, J. Influence of Alloys Position, Rolling and Welding Directions on Properties of AA2024/AA7050 Dissimilar ButtWeld Obtained by Friction Stir Welding. Metals. 2018, Vol. 8, 4, p. 202. [CrossRef]
- Cavaliere, P.; De Santis, A.; Panella, F.; Squillace, A. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater. Des. 2009, 30, 609–616, . [CrossRef]
- Friction stir welding of dissimilar alloys for aircraft. Presented at the 5th International Symposium on Friction Stir Welding, Metz, France, 2004. Gérard, H. and Ehrström, J.C. 2004. Proceedings of International Friction Stirr Welding Symposium, Metz, France, 14–16 September 2004.
- Amancio-Filho, S.; Sheikhi, S.; dos Santos, J.; Bolfarini, C. Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. J. Am. Acad. Dermatol. 2008, 206, 132–142, . [CrossRef]
- Lee, W.-B.; Yeon, Y.-M.; Jung, S.-B. The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials. Scr. Mater. 2003, 49, 423–428, . [CrossRef]
- Niu, P.; Li, W.; Chen, D. Strain hardening behavior and mechanisms of friction stir welded dissimilar joints of aluminum alloys. Mater. Lett. 2018, 231, 68–71, . [CrossRef]
- Niu, P.; Li, W.; Li, N.; Xu, Y.; Chen, D. Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys. Mater. Charact. 2018, 147, 93–100, . [CrossRef]
- Hasan, M.M.; Ishak, M.; Rejab, M.R.M. Effect of pin tool flute radius on the material flow and tensile properties of dissimilar friction stir welded aluminum alloys. Int. J. Adv. Manuf. Technol. 2018, 98, 2747–2758, . [CrossRef]
- Kalemba-Rec, I.; Kopyściański, M.; Miara, D.; Krasnowski, K. Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys. Int. J. Adv. Manuf. Technol. 2018, 97, 2767–2779, . [CrossRef]
- Safarbali, B.; Shamanian, M.; Eslami, A. Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024-T4 and 7075-T6 aluminum alloys. Trans. Nonferrous Met. Soc. China 2018, 28, 1287–1297, . [CrossRef]
- Palanivel, R.; Laubscher, R.; Vigneshwaran, S.; Dinaharan, I. Prediction and optimization of the mechanical properties of dissimilar friction stir welding of aluminum alloys using design of experiments. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2016, 232, 1384–1394, . [CrossRef]
- Hamilton, C.; Dymek, S.; Dryzek, E.; Kopyściański, M.; Pietras, A.; Węglowska, A.; Wróbel, M. Application of positron lifetime annihilation spectroscopy for characterization of friction stir welded dissimilar aluminum alloys. Mater. Charact. 2017, 132, 431–436, . [CrossRef]
- Huang, B.W.; Qin, Q.D.; Zhang, D.H.; Wu, Y.J.; Su, X.D. Microstructure and Mechanical Properties of Dissimilar Joints of Al-Mg2Si and 5052 Aluminum Alloy by Friction Stir Welding. J. Mater. Eng. Perform. 2018, 27, 1898–1907, . [CrossRef]
- Moradi, M.M.; Aval, H.J.; Jamaati, R.; Amirkhanlou, S.; Ji, S. Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. J. Manuf. Process. 2018, 32, 1–10, . [CrossRef]
- Prasanth, R.S.S.; Raj, K.H. Determination of Optimal Process Parameters of Friction Stir Welding to Join Dissimilar Aluminum Alloys Using Artificial Bee Colony Algorithm. Trans. Indian Inst. Met. 2017, 71, 453–462, . [CrossRef]
- Azeez, S.; Akinlabi, E. Effect of processing parameters on microhardness and microstructure of a double-sided dissimilar friction stir welded aa6082-t6 and aa7075-t6 aluminum alloy. Mater. Today: Proc. 2018, 5, 18315–18324, . [CrossRef]
- Peng, G.; Ma, Y.; Hu, J.; Jiang, W.; Huan, Y.; Chen, Z.; Zhang, T. Nanoindentation Hardness Distribution and Strain Field and Fracture Evolution in Dissimilar Friction Stir-Welded AA 6061-AA 5A06 Aluminum Alloy Joints. Adv. Mater. Sci. Eng. 2018, 2018, 1–11, . [CrossRef]
- Das, U.; Toppo, V. Effect of Tool Rotational Speed on Temperature and Impact Strength of Friction Stir Welded Joint of Two Dissimilar Aluminum Alloys. Mater. Today: Proc. 2018, 5, 6170–6175, . [CrossRef]
- Sarsilmaz, F. Relationship between micro-structure and mechanical properties of dissimilar aluminum alloy plates by friction stir welding. Therm. Sci. 2018, 22, 55–66, . [CrossRef]
- No, K.; Yoo, J.-T.; Yoon, J.-H.; Lee, H.-S. Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys. Korean J. Mater. Res. 2017, 27, 331–338, . [CrossRef]
- Kopyściański, M.; Dymek, S.; Hamilton, C.; Węglowska, A.; Pietras, A.; Szczepanek, M.; Wojnarowska, M. Microstructure of Friction Stir Welded Dissimilar Wrought 2017A and Cast AlSi9Mg Aluminum Alloys. Acta Phys. Pol. A 2017, 131, 1390–1394, . [CrossRef]
- Ghaffarpour, M.; Kazemi, M.; Sefat, M.J.M.; Aziz, A.; Dehghani, K. Evaluation of dissimilar joints properties of 5083-H12 and 6061-T6 aluminum alloys produced by tungsten inert gas and friction stir welding. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 2015, 231, 297–308, . [CrossRef]
- Bijanrostami, K.; Barenji, R.V.; Hashemipour, M. Effect of Traverse and Rotational Speeds on the Tensile Behavior of the Underwater Dissimilar Friction Stir Welded Aluminum Alloys. J. Mater. Eng. Perform. 2017, 26, 909–920, . [CrossRef]
- Kasman, S.; Kahraman, F.; Emiralioğlu, A.; Kahraman, H. A Case Study for the Welding of Dissimilar EN AW 6082 and EN AW 5083 Aluminum Alloys by Friction Stir Welding. Metals 2016, 7, 6, . [CrossRef]
- Doley, J.K.; Kore, S.D. A Study on Friction Stir Welding of Dissimilar Thin Sheets of Aluminum Alloys AA 5052–AA 6061. J. Manuf. Sci. Eng. 2016, 138, 114502, . [CrossRef]
- Saravanan, V.; Rajakumar, S.; Banerjee, N.; Amuthakkannan, R. Effect of shoulder diameter to pin diameter ratio on microstructure and mechanical properties of dissimilar friction stir welded AA2024-T6 and AA7075-T6 aluminum alloy joints. Int. J. Adv. Manuf. Technol. 2016, 87, 3637–3645, . [CrossRef]
- Yan, Z., Liu, X. and Fang, H. Effect of Sheet Configuration on Microstructure and Mechanical Behaviors of Dissimilar Al–Mg–Si/Al–Zn–Mg Aluminum Alloys Friction Stir Welding Joints. J. Mater. Sci. Technol. 2016, 32, 1378–1385. 2016, Vol. 32, 12, pp. 1378-1385. [CrossRef]
- Yan, Z.-J., Liu, X.-S. and Fang, H.-Y. Fatigue Behavior of Dissimilar Al–Mg–Si/Al–Zn–Mg Aluminum Alloys Friction Stir Welding Joints. Acta Metall. Sinica 2016, 29, 1161–1168. 2016, Vol. 29, pp. 1161-1168. [CrossRef]
- Zapata, J.; Toro, M.; López, D. Residual stresses in friction stir dissimilar welding of aluminum alloys. J. Am. Acad. Dermatol. 2016, 229, 121–127, . [CrossRef]
- Sun, Y.; Tsuji, N.; Fujii, H. Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding between Ultrafine Grained 1050 and 6061-T6 Aluminum Alloys. Metals 2016, 6, 249, . [CrossRef]
- Texier, D.; Zedan, Y.; Amoros, T.; Feulvarch, E.; Stinville, J.; Bocher, P. Near-surface mechanical heterogeneities in a dissimilar aluminum alloys friction stir welded joint. Mater. Des. 2016, 108, 217–229, . [CrossRef]
- Rodriguez, R.I.; Jordon, J.B.; Allison, P.G.; Rushing, T.; Garcia, L. Low-cycle fatigue of dissimilar friction stir welded aluminum alloys. Mater. Sci. Eng. A 2016, 654, 236–248, . [CrossRef]
- Rodriguez, R.; Jordon, J.; Allison, P.; Rushing, T.; Garcia, L. Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Mater. Des. 2015, 83, 60–65, . [CrossRef]
- Ilangovan, M.; Rajendra Boopathy, S.; Balasubramanian, V. Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints. Def. Technol. 2015, 11, 174–184, . [CrossRef]
- Rabby, R.E.; Tang, W.; Reynolds, A.P. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci. Technol. Weld. Join. 2015, 20, 425–432, . [CrossRef]
- Donatus, U., Thompson, G.E. and Zhou, X. Anodizing Behavior of Friction StirWelded Dissimilar Aluminum Alloys. J. Electrochem. Soc. 2015, 162, C657–C665. 2015, Vol. 162, 12, pp. C657-C665. [CrossRef]
- Karam, A.; Mahmoud, T.S.; Zakaria, H.M.; Khalifa, T.A. Friction Stir Welding of Dissimilar A319 and A413 Cast Aluminum Alloys. Arab. J. Sci. Eng. 2014, 39, 6363–6373, . [CrossRef]
- İpekoğlu, G.; Çam, G. Effects of Initial Temper Condition and Postweld Heat Treatment on the Properties of Dissimilar Friction-Stir-Welded Joints between AA7075 and AA6061 Aluminum Alloys. Met. Mater. Trans. A 2014, 45, 3074–3087, . [CrossRef]
- Cole, E.G.; Fehrenbacher, A.; Duffie, N.A.; Zinn, M.R.; Pfefferkorn, F.E.; Ferrier, N.J. Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6. Int. J. Adv. Manuf. Technol. 2013, 71, 643–652, . [CrossRef]
- Song, Y.; Yang, X.; Cui, L.; Hou, X.; Shen, Z.; Xu, Y. Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Mater. Des. 2014, 55, 9–18, . [CrossRef]
- Jannet, S.; Mathews, P.K. Effect of Welding Parameters on Mechanical and Microstructural Properties of Dissimilar Aluminum Alloy Joints Produced by Friction Stir Welding. Appl. Mech. Mater. 2014, 592-594, 250–254, . [CrossRef]
- Palanivel, R.; Mathews, P.K.; Dinaharan, I.; Murugan, N. Mechanical and metallurgical properties of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Trans. Nonferrous Met. Soc. China 2014, 24, 58–65, . [CrossRef]
- Palanivel, R.; Mathews, P.K.; Murugan, N. Optimization of process parameters to maximize ultimate tensile strength of friction stir welded dissimilar aluminum alloys using response surface methodology. J. Central South Univ. 2013, 20, 2929–2938, . [CrossRef]
- Jonckheere, C.; de Meester, B.; Denquin, A.; Simar, A. Torque, temperature and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys. J. Am. Acad. Dermatol. 2013, 213, 826–837, . [CrossRef]
- Jonckheere, C., de Meester, B., Denquin, A. and Simar, A. Dissimilar friction stir welding of 2014 to 6061 aluminum alloys. Advanced Materials Research. 2012, Vol. 409, pp. 269-274. [CrossRef]
- Ghosh, M.; Husain, M.; Kumar, K.; Kailas, S.V. Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State. J. Mater. Eng. Perform. 2013, 22, 3890–3901, . [CrossRef]
- Ghosh, M.; Kumar, K.; Kailas, S.; Ray, A. Optimization of friction stir welding parameters for dissimilar aluminum alloys. Mater. Des. 2010, 31, 3033–3037, . [CrossRef]
- Koilraj, M.; Sundareswaran, V.; Vijayan, S.; Rao, S.K. Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 – Optimization of process parameters using Taguchi technique. Mater. Des. 2012, 42, 1–7, . [CrossRef]
- Dinaharan, I.; Kalaiselvan, K.; Vijay, S.; Raja, P. Effect of material location and tool rotational speed on microstructure and tensile strength of dissimilar friction stir welded aluminum alloys. Arch. Civ. Mech. Eng. 2012, 12, 446–454, . [CrossRef]
- Palanivel, R.; Mathews, P.K.; Murugan, N.; Dinaharan, I. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys. Mater. Des. 2012, 40, 7–16, . [CrossRef]
- Kim, N.K., Kim, B.C., An, Y.G., Jung, B.H. Song, S.W. and Kang, C.Y. The effect of material arrangement on mechanical properties in Friction Stir Welded dissimilar A5052/A5J32 aluminum alloys. Met. Mater. Int. 2009, Vol. 15, pp. 671-675. [CrossRef]
- Prime, M.B.; Gnaupel-Herold, T.; Baumann, J.A.; Lederich, R.J.; Bowden, D.M.; Sebring, R.J. Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld. Acta Mater. 2006, 54, 4013–4021, doi:10.1016/j.actamat.2006.04.034.
- Liu, H.J.; Fujii, H.; Maeda, M.; Nogi, K. Mechanical properties of friction stir welded joints of 1050 – H24 aluminium alloy. Sci. Technol. Weld. Join. 2003, 8, 450–454, . [CrossRef]
- Mroczka, K. Characteristics of Alsi9mg/2017A Aluminum Alloys Friction Stir Welded with Offset Welding Line and Root-Side Heating/ Charakterystyka Stopów Aluminium Alsi9mg/2017A Zgrzewanych Metodą Friction Stir Welding Z Przesunięcem Linii Zgrzewania I Dodatkowym Źródłem Ciepła Od Strony Grani. Arch. Met. Mater. 2014, 59, 1293–1299, . [CrossRef]
- Mroczka, K.; Dutkiewicz, J.; Pietras, A. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets. J. Microsc. 2010, 237, 521–525, . [CrossRef]
- Yang, M., Li, C., Liu, S., Ye, L., Tang, J. and Liao, Z. Effect of Artificial Aging on Microstructure and Mechanical Properties of Friction Stir Welded Joint of 7003/7046 Al-alloys. Chinese Journal of Materials Research. 2020, Vol. 34, 7, pp. 495-504.
- Kasman, S. and Ozan, S. Effect of pin offset on the mechanical properties of friction stir welded AA 6013 aluminum alloy plates/Pin-Offset-Einfluss auf die mechanischen Eigenschaften beim Rührreibschweißen von Blechen aus der Aluminiumlegierung AA 6013. Materialwiss. Werkstofftech. 2019, Vol. 50, p. 1511. [CrossRef]
- Zhao, Z.; Liang, H.; Zhao, Y.; Yan, K. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints. J. Mater. Eng. Perform. 2018, 27, 1777–1783, . [CrossRef]
- Yoon, T.J., Jung, B.H. and Kang, C.Y. The quantitative investigation of mechanical properties and characterization of fractured position for friction stir lap welded A6111/A5023. Mater. Des. 2015, Vol. 83, pp. 377-386. [CrossRef]
- Huarez, J.V.; Hernandez, R.G.; Almaraz, G.M.D.; López, J.V. Effect of Pre and Post Weld Heat Treatment on the Mechanical Properties of Friction Stir Welded AA6061-T6 Joint. Int. J. Automot. Mech. Eng. 2020, 17, 7882–7889, . [CrossRef]
- Godhani, P.S., Patel, V.V., Vora, J.J., Chaudhary, N.D. and Banka, R. Effect of Friction Stir Welding of Aluminum Alloys AA6061/AA7075: Temperature Measurement, Microstructure, and Mechanical Properties. [book auth.] D. Deb, V.E. Balas and R. (eds) Dey. In Innovations in Infrastructure. Proceedings of ICIIF 2018. s.l. : Springer, 2019, pp. 591-598.
- Chen, Y.; Wang, H.; Li, H.; Wang, X.; Ding, H.; Zhao, J.; Zhang, F. Investigation into the Dissimilar Friction Stir Welding of AA5052 and AA6061 Aluminum Alloys Using Pin-Eccentric Stir Tool. Metals 2019, 9, 718, . [CrossRef]
- Zhang, C.; Huang, G.; Cao, Y.; Zhu, Y.; Liu, Q. On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed. J. Manuf. Process. 2019, 37, 470–487, . [CrossRef]
- ShivaKumar, G.N.; Rajamurugan, G. Friction stir welding of dissimilar alloy combinations—A Review. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2022, 236, 6688–6705, . [CrossRef]
- Mastanaiah, P.; Sharma, A.; Reddy, G.M. Dissimilar Friction Stir Welds in AA2219-AA5083 Aluminium Alloys: Effect of Process Parameters on Material Inter-Mixing, Defect Formation, and Mechanical Properties. Trans. Indian Inst. Met. 2015, 69, 1397–1415, . [CrossRef]
- Kasman, S. and Yenier, Z. Analyzing dissimilar friction stir welding of AA5754/AA7075. Int. J. Adv. Manuf. Technol. 2013, Vol. 70, pp. 145-156. [CrossRef]
- Forcellese, A.; Simoncini, M.; Casalino, G. Influence of Process Parameters on the Vertical Forces Generated during Friction Stir Welding of AA6082-T6 and on the Mechanical Properties of the Joints. Metals 2017, 7, 350, . [CrossRef]
- Saeidi, M., Babak, M., Mohammad Kazem, B.G. and Ghader, F. Mathematical modeling and optimization of friction stir welding process parameters in AA5083 and AA7075 aluminum alloy joints. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2015, Vol. 230, pp. 1284-1294.
- Zhu, Z.; Wang, M.; Zhang, H.; Zhang, X.; Yu, T.; Wu, Z. A Finite Element Model to Simulate Defect Formation during Friction Stir Welding. Metals 2017, 7, 256, . [CrossRef]
- Hamilton, C.; Kopyściański, M.; Węglowska, A.; Dymek, S.; Pietras, A. A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding. Met. Mater. Trans. A 2016, 47, 4519–4529, . [CrossRef]
- Gupta, S.K., Pandey, K. and Kumar, R. Multi-objective optimization of friction stir welding process parameters for joining of dissimilar AA5083/AA6063 aluminium alloys using hybrid approach. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2016, Vol. 232, 4, pp. 343-353. [CrossRef]
- Azeez, S.; Akinlabi, E.; Kailas, S.; Brandi, S. Microstructural properties of a dissimilar friction stir welded thick aluminum aa6082-t6 and aa7075-t6 alloy. Mater. Today: Proc. 2018, 5, 18297–18306, . [CrossRef]
- Sun, Y.; Liu, W.; Li, Y.; Gong, W.; Ju, C. The Influence of Tool Shape on Plastic Metal Flow, Microstructure and Properties of Friction Stir Welded 2024 Aluminum Alloy Joints. Metals 2022, 12, 408, . [CrossRef]
- Velotti, C.; Astarita, A.; Squillace, A.; Ciliberto, S.; Villano, M.G.; Giuliani, M.; Prisco, U.; Montuori, M.; Giorleo, G.; Bellucci, F. On the critical technological issues of friction stir welding lap joints of dissimilar aluminum alloys. Surf. Interface Anal. 2013, 45, 1643–1648, . [CrossRef]
- Sivachidambaram, S., Rajamurugan, G. and Amirtharaj, D. Optimizing the parameters for friction stir welding of dissimilar aluminium alloys AA5383/AA7075. ARPN J Eng Appl Sci. 2015, Vol. 10, pp. 5434–5437.
- Miles, M.P.; Nelson, T.W.; Melton, D.W. Formability of friction-stir-welded dissimilar-aluminum-alloy sheets. Met. Mater. Trans. A 2005, 36, 3335–3342, . [CrossRef]
- Ouyang, J.H. and Kovacevic, R. Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys. Journal of Materials Engineering and Performance. 2002, Vol. 11, pp. 51-63. [CrossRef]
- Obtaining of aluminum alloys weld joints with specified strength properties by friction stir welding. Ivanov, A.N., Kalashnikova, T.A., Zhukov, L.L., Gurianov, D.A., Beloborodov, V.A., Kolubaev, E.A., Rubtsov, V.E., Tyurin, A.G., Bakshaev, V.A. and Nikitin, Y.V. 2022. AIP Conference Proceedings. Vol. 2467, p. 020058.
- Kumar, S.D. Investigation of mechanical behavior of friction stir welded joints of AA6063 with AA5083 aluminum alloys. Mech. Mech. Eng. 2019, 23, 59–63, . [CrossRef]
- Sasikala, G.; Jothiprakash, V.M.; Pant, B.; Subalakshmi, R.; Azhagan, M.T.; Arul, K.; Alonazi, W.B.; Karnan, M.; Kumar, S.P. Optimization of Process Parameters for Friction Stir Welding of Different Aluminum Alloys AA2618 to AA5086 by Taguchi Method. Adv. Mater. Sci. Eng. 2022, 2022, 1–9, . [CrossRef]
- Aydin, H.; Tutar, M.; Durmuş, A.; Bayram, A.; Sayaca, T. Effect of Welding Parameters on Tensile Properties and Fatigue Behavior of Friction Stir Welded 2014-T6 Aluminum Alloy. Trans. Indian Inst. Met. 2011, 65, 21–30, . [CrossRef]
- Aydin, H., Tutar, M., Yigit, K. and Bayram, A. Mechanical Properties of Friction Stir Welded 3003 Aluminum Alloy in Different Welding Conditions. International Journal of Mechanical And Production Engineering. 2017, Vol. 5, 12, pp. 92-96.
- Aydin, H., Bayram, A., Yildirim, M.T. and Yigit, K. Influence of Welding Parameters on the Fatigue Behaviours of Friction Stir Welds of 3003-O Aluminum Alloys. Materials Science (Medziagotyra). 2010, Vol. 16, 4, pp. 311-319.
- Weglowski, M.S., Pietras, A. and Weglowska, A. Effect of welding parameters on mechanical and microstructural properties of AL 2024 joints produced by friction stir welding. Journal of KONES. 2009, Vol. 16, 1, pp. 523-532.
- Nejad, S.G.; Yektapour, M.; Akbarifard, A. Friction stir welding of 2024 aluminum alloy: Study of major parameters and threading feature on probe. J. Mech. Sci. Technol. 2017, 31, 5435–5445, . [CrossRef]
- Mechanical behaviour of Al 2024 alloy welded by friction stir welding. Milčić, M., Vuherer, T., Radisavljević, I., Milčić, D., Kramberger, J. and Andjelkovic, B. Novi Sad, Serbia : s.n., 2018. IOP Conf. Ser.: Mater. Sci. Eng. The 10th International Symposium Machine and Industrial Design in Mechanical Engineering 6-8 June 2018. Vol. 393, p. 012107.
- Lin, S.B.; Zhao, Y.H.; Wu, L. Integral and layered mechanical properties of friction stir welded joints of 2014 aluminium alloy. Mater. Sci. Technol. 2006, 22, 995–998, . [CrossRef]
- Sinhmar, S.; Dwivedi, D.K. Investigation of mechanical and corrosion behavior of friction stir weld joint of aluminium alloy. Mater. Today: Proc. 2019, 18, 4542–4548, . [CrossRef]
- Ugender, S.; Kumar, A.; Reddy, A.S. Experimental Investigation of Tool Geometry on Mechanical Properties of Friction Stir Welding of AA 2014 Aluminium Alloy. Procedia Mater. Sci. 2014, 5, 824–831, . [CrossRef]
- Mroczka, K., Dutkiewicz, J. and Pietras, A. Structure and Properties of FSW Joints of 2017A Aluminum Alloy Welded at Different Pin-Tool Rate. ed. board Paweł Kurtyka et al., Insti. [ed.] P. Kurtyka. Problems of modern techniques in aspect of engineering and education. 2006, pp. 267-272.
- Takhakh, A.M.; Abdullah, A.M. An Experimental Investigation on Fatigue Properties of AA3003-H14 Aluminum alloy Friction Stir Welds. J. Eng. 2011, 17, 1391–1401, . [CrossRef]
- Chekalil, I.; Miloudi, A.; Planche, M.-P.; Ghazi, A. Prediction of mechanical behavior of friction stir welded joints of AA3003 aluminum alloy. 2020, 14, 153–168, . [CrossRef]
- Kasman, .; Ozan, S. Characterization of friction stir welded AA 3003-H24 aluminum alloy plates. 2022, 40, 620–629, . [CrossRef]
- Properties of Friction Stir Welded 3003-H17 Aluminum Alloy at High Travel Speeds. Xu, A. Zhuhai, China : s.n., 2020. The 6th International Conference on Materials, Mechanical Engineering and Automation Technology 1-3 May 202. Vol. 1676, p. 012114.
- Goyal, A., Rohilla, P.K. and Kaushik, A.K. Optimization of Friction Stir Welding Parameters for AA3003 Aluminum Alloy Joints Using Response Surface Methodology. International Journal of Mechanics and Solids. 2017, Vol. 12, 1, pp. 15-26.
- Janeczek, A.; Tomków, J.; Fydrych, D. The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints. Materials 2021, 14, 3244, . [CrossRef]
- Choi, W.-H.; Kwon, Y.-J.; Yoon, S.-O.; Kang, M.-S.; Lim, C.-Y.; Seo, J.-D.; Hong, S.-T.; Park, D.-H.; Lee, K.-H. Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets. J. Korean Weld. Join. Soc. 2011, 29, 56–64, . [CrossRef]
- Selvarajan, R. and Balasubramanian, V. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints. Journal of Materials Engineering and Performance. 2011, Vol. 21, 6, pp. 1-14. [CrossRef]
- Dong, J., Zhang, D., Zhang, W., Zhang, W. and Qiu, C. Microstructure and properties of underwater friction stir-welded 7003-T4/6060-T4 aluminum alloys. Journal of Materials Science. 2019, Vol. 54, 1-2, pp. 11254–11262. [CrossRef]
- Sheikhi, S.; dos Santos, J.F. Effect of process parameter on mechanical properties of friction stir welded tailored blanks from aluminium alloy 6181-T4. Sci. Technol. Weld. Join. 2007, 12, 370–375, . [CrossRef]
- Zhou, Y.; Chen, S.; Wang, J.; Wang, P.; Xia, J. Influences of Pin Shape on a High Rotation Speed Friction Stir Welding Joint of a 6061-T6 Aluminum Alloy Sheet. Metals 2018, 8, 987, . [CrossRef]
- Aval, H.J.; Serajzadeh, S.; Kokabi, A.H.; Loureiro, A. Effect of tool geometry on mechanical and microstructural behaviours in dissimilar friction stir welding of AA 5086–AA 6061. Sci. Technol. Weld. Join. 2011, 16, 597–604, . [CrossRef]
- Xu, W.; Liu, J.; Zhu, H. Analysis of residual stresses in thick aluminum friction stir welded butt joints. Mater. Des. 2011, 32, 2000–2005, . [CrossRef]
- Goel, P.; Siddiquee, A.N.; Khan, N.Z.; Hussain, M.A.; Khan, Z.A.; Abidi, M.H.; Al-Ahmari, A. Investigation on the Effect of Tool Pin Profiles on Mechanical and Microstructural Properties of Friction Stir Butt and Scarf Welded Aluminium Alloy 6063. Metals 2018, 8, 74, . [CrossRef]
- Friction Stir Processing as a Novel Technique to Achieve Superplasticity in Aluminum Alloys: Process Variables, Variants, and Applications|SpringerLink. Available online: https://link.springer.com/article/10.1007/s13632-016-0285-x (accessed on 24 March 2020).
- Patel, V.V.; Badheka, V.; Kumar, A. Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J. Am. Acad. Dermatol. 2017, 240, 68–76, . [CrossRef]
- Patel, V.V., Badheka, V.J. and Kumar, A. Influence of Pin Profile on the Tool Plunge Stage in Friction Stir Processing of Al–Zn–Mg–Cu Alloy. Trans. Indian Inst. Met. 2016, Vol. 70, 4, pp. 1151-1158. [CrossRef]
- Patel, V.; Li, W.; Vairis, A.; Badheka, V. Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement. Crit. Rev. Solid State Mater. Sci. 2019, 44, 378–426, . [CrossRef]
- Burek, R., Wydrzyński, D. and Sęp, J. Więckowski, W. The effect of tool wear on the quality of lap joints between 7075 T6 aluminium alloy sheet metal created with the FSW method. Eksploatacja i Niezawodnosc/Maintenance and Reliability. 2018, Vol. 20, 1, pp. 100-106.
- Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Shihab, S.K. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J. Alloy. Compd. 2015, 648, 360–367, . [CrossRef]
- Dialami, N.; Cervera, M.; Chiumenti, M. Numerical Modelling of Microstructure Evolution in Friction Stir Welding (FSW). Metals 2018, 8, 183, . [CrossRef]
- Nakamura, T.; Obikawa, T.; Nishizaki, I.; Enomoto, M.; Fang, Z. Friction Stir Welding of Non-Heat-Treatable High-Strength Alloy 5083-O. Metals 2018, 8, 208, . [CrossRef]
- Patel, V.V.; Badheka, V.; Kumar, A. Influence of Friction Stir Processed Parameters on Superplasticity of Al-Zn-Mg-Cu Alloy. Mater. Manuf. Process. 2016, 31, 1573–1582, . [CrossRef]
- Fadaeifard, F.; Matori, K.A.; Aziz, S.A.; Zolkarnain, L.; Rahim, M.A.Z.B.A. Effect of the Welding Speed on the Macrostructure, Microstructure and Mechanical Properties of AA6061-T6 Friction Stir Butt Welds. Metals 2017, 7, 48, . [CrossRef]
- Niu, P.; Li, W.; Vairis, A.; Chen, D. Cyclic deformation behavior of friction-stir-welded dissimilar AA5083-to-AA2024 joints: Effect of microstructure and loading history. Mater. Sci. Eng. A 2018, 744, 145–153, . [CrossRef]
- Ji, S.; Xing, J.; Yue, Y.; Ma, Y.; Zhang, L.; Gao, S. Design of Friction Stir Welding Tool for Avoiding Root Flaws. Materials 2013, 6, 5870–5877, . [CrossRef]
- Wan, L.; Huang, Y.; Guo, W.; Lv, S.; Feng, J. Mechanical Properties and Microstructure of 6082-T6 Aluminum Alloy Joints by Self-support Friction Stir Welding. J. Mater. Sci. Technol. 2014, 30, 1243–1250, . [CrossRef]
- Liu, L., Yang, K. and Yan, D. Refill Friction Stir SpotWelding of Dissimilar 6061/7075 Aluminum Alloy. High Temp. Mater. Process. 2019, Vol. 39, pp. 69-75. [CrossRef]
- Tra, T.H.; Okazaki, M.; Suzuki, K. Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure. Int. J. Fatigue 2012, 43, 23–29, . [CrossRef]
- KAFALI, H.; Ay, N. Mechanical Properties of 6013-T6 Aluminium Alloy Friction Stir Welded Plate. 2009, 13, 1–9, . [CrossRef]
- Saleh, A. Joining of AA2014 and AA5059 dissimilar aluminium alloys by Friction Stir Welding. J. Achiev. Mater. Manuf. Eng. 2019, 1, 15–20, . [CrossRef]
- Analysing the Friction Stir Welded Joints of AA2219 Al-Cu Alloy in Different Heat-Treated-State. Venkateswarlu, D., Cheepu, M., Kranthi kumar, B. and Mahapatra, M.M. Hyderabad, India : s.n., 2018. International Conference on Recent Advances in Materials, Mechanical and Civil Engineering 1–2 June 2017. Vol. 330, p. 012074.
- Kollapuri, T.; Manoharan, M.; Sadayan, R.B.; Sajja, R.K.R. A Study on the Corrosion Behaviour of Aluminium Alloy 2014 T-651 Friction Stir Welds Using Stress Corrosion Cracking. ASME 2015 International Mechanical Engineering Congress and Exposition. LOCATION OF CONFERENCE, USADATE OF CONFERENCE; .
- Tan, Y.; Wang, X.; Ma, M.; Zhang, J.; Liu, W.; Fu, R.; Xiang, S. A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Mater. Charact. 2017, 127, 41–52, . [CrossRef]
- Deng, Y.L., Deng, S.H., Ye, L.Y., Lin, S., Sun, L. and Ji, H. Effects of post-weld heat treatment on microstructures and mechanical properties of AA7204-T4 aluminum alloy FSW joint[J]. Journal of Materials Engineering. 2020, Vol. 48, 4, pp. 131-138.
- Unfried-Silgado, J., Rodriguez, J., Torres, A. and Carrasco, J. Effects of shoulder geometry of tool on microstructure and mechanical properties of friction stir welded joints of AA1100 aluminum alloy. DYNA. 2017, Vol. 84, 200, pp. 202-208.
- Chen Y, Wang H, Li H, et al. Investigation into the dissimilar friction stir welding of AA5052 and AA6061 aluminum 6702 Proc IMechE Part C: J Mechanical Engineering Science 236(12) alloys using pin-eccentric stir tool. Metals (Basel). 2019;9(7):1-12. [CrossRef]
- Guo, J.; Chen, H.; Sun, C.; Bi, G.; Sun, Z.; Wei, J. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater. Des. 2013, 56, 185–192, . [CrossRef]
- Sato, Y.S., Kurihara, Y. and Kokawa, H. Microstructural characteristics of dissimilar butt friction stir welds of AA7075 and AA2024. Proc. 6th Int. FSW Symp., Saint-Sauveur, Que., Canada, October (2006) TWI, CD-ROM.
- da Silva, A.; Arruti, E.; Janeiro, G.; Aldanondo, E.; Alvarez, P.; Echeverria, A. Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds. Mater. Des. 2011, 32, 2021–2027, . [CrossRef]
- Dewangan, S.K., Tripathi, M.K. and Manoj, M.K. Effect of WSs on microstructure and mechanical properties of dissimilar friction stir welding of AA7075 and AA5083 alloy. Mater Today Proc. 2019, vol. 27, pp. 2713-2717. [CrossRef]
- Khan, N.Z.; Siddiquee, A.N.; Khan, Z.A.; Mukhopadhyay, A.K. Mechanical and microstructural behavior of friction stir welded similar and dissimilar sheets of AA2219 and AA7475 aluminium alloys. J. Alloy. Compd. 2017, 695, 2902–2908, . [CrossRef]
- Abidi, M.H.; Ali, N.; Ibrahimi, H.; Anjum, S.; Bajaj, D.; Siddiquee, A.N.; Alkahtani, M.; Rehman, A.U. T-FSW of Dissimilar Aerospace Grade Aluminium Alloys: Influence of Second Pass on Weld Defects. Metals 2020, 10, 525, . [CrossRef]
- Morikawa, K.; Kawai, G.; Ochi, H.; Yamamoto, Y.; Suga, Y. Strength of 2017 aluminium alloy stud joints by friction welding. Weld. Int. 2013, 27, 18–23, . [CrossRef]
- Dixit, S. Hardness Testing of Friction Stir Welded AA 1200 Aluminium Alloy. IJMSE. 2017, Vol. 8, 1, pp. 17-21.
- Attah, B.I.; Lawal, S.A.; Akinlabi, E.T.; Bala, K.C. Evaluation of mechanical properties of dissimilar aluminium alloys during friction stir welding using tapered tool. Cogent Eng. 2021, 8, . [CrossRef]
- Jassim, A.K. and Al-Subar, R.K. Studying the Possibility to Weld AA1100 Aluminum Alloy by Friction Stir Spot Welding. World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering. 2017, Vol. 11, 9, p. 10008041.
- Senapati, N.P.; Bhoi, R.K. Improving the Strength of Friction-Stir-Welded Joints of AA1100 Alloy. J. Mater. Eng. Perform. 2020, 30, 510–521, . [CrossRef]
- Joseph, M.G.; Shaji, J.; Francis, M.; Raghavan, A.; Shunmugesh, K. Measurement of Tensile Properties and Hardness of Friction Stir Welded Aluminium Alloy AA1200. Mater. Today: Proc. 2020, 24, 1987–1993, . [CrossRef]
- Sato, Y.; Kurihara, Y.; Park, S.; Kokawa, H.; Tsuji, N. Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding. Scr. Mater. 2004, 50, 57–60, . [CrossRef]
- Jannet, S.; Mathews, P.K.; Raja, R. Comparative investigation of friction stir welding and fusion welding of 6061 T6 – 5083 O aluminum alloy based on mechanical properties and microstructure. Bull. Pol. Acad. Sci. Tech. Sci. 2014, 62, 791–795, doi:10.2478/bpasts-2014-0086.
- Dolatkhah, A., Golbabaei, P., Besharati Givi, M.K. and Molaiekiya, F. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 2012, Vol. 37, pp. 458-464. [CrossRef]
- Bahrami, M.; Dehghani, K.; Givi, M.K.B. A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique. Mater. Des. 2014, 53, 217–225, . [CrossRef]
- Pantelis, D.I.; Karakizis, P.N.; Daniolos, N.M.; Charitidis, C.A.; Koumoulos, E.P.; Dragatogiannis, D.A. Microstructural Study and Mechanical Properties of Dissimilar Friction Stir Welded AA5083-H111 and AA6082-T6 Reinforced with SiC Nanoparticles. Mater. Manuf. Process. 2015, 31, 264–274, . [CrossRef]
- Dragatogiannis, D.A.; Koumoulos, E.P.; Kartsonakis, I.A.; Pantelis, D.I.; Karakizis, P.N.; Charitidis, C.A. Dissimilar Friction Stir Welding Between 5083 and 6082 Al Alloys Reinforced With TiC Nanoparticles. Mater. Manuf. Process. 2015, 31, 2101–2114, . [CrossRef]
- Scudino, S.; Liu, G.; Prashanth, K.; Bartusch, B.; Surreddi, K.; Murty, B.; Eckert, J. Mechanical properties of Al-based metal matrix composites reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 2009, 57, 2029–2039, . [CrossRef]
- Vimalraj, C.; Kah, P. Experimental Review on Friction Stir Welding of Aluminium Alloys with Nanoparticles. Metals 2021, 11, 390, . [CrossRef]
- Moradi, M.M., Jamshidi, A.H. and Jamaati, R. Effect of tool pin geometry and weld pass number on microstructural, natural aging and mechanical behaviour of SiC-incorporated dissimilar friction-stir-welded aluminium alloys. Sadhana - Acad Proc Eng Sci 2019, Vol. 44, pp. 1-9. [CrossRef]
- Kulekci, M.K.; Esme, U.; Er, O.; Kazancoglu, Y. Modeling and prediction of weld shear strength in friction stir spot welding using design of experiments and neural network. Mater. und Werkst. 2011, 42, 990–995, . [CrossRef]
- Scotchmer, N. and Chan, K. What's New for Welding Aluminum in the Auto Industry. Welding Journal. 2012, Vol. 91, 1, pp. 34-37.
- Kulekci, M. Effects of Process Parameters on Tensile Shear Strength of Friction Stir Spot Welded Aluminium Alloy (EN AW 5005). Arch. Met. Mater. 2014, 59, 221–224, . [CrossRef]
- Friction stir welding for the 21st century automotive industry. Hinrichs, J.F., Smith, C.B., Orsini, B.F., DeGeorge, R.J., Smale, B.J. and Ruehl, PC. Metz, France : The Welding Institute, 2004. Proceedings of the 5th International Symposium on Friction Stir Welding, 14-16 September 2004.
- Praveen, P.; Yarlagadda, P. Meeting challenges in welding of aluminum alloys through pulse gas metal arc welding. J. Am. Acad. Dermatol. 2005, 164-165, 1106–1112, . [CrossRef]
- Lewise, K.A.S., Dhas, J.E.R. and Pandiyarajan, R. Optimising aluminium 2024/7075 friction stir welded joints. Advances in Materials and Processing Technologies. 2022, Vol. 8, 4, pp. 4579-4597.
- Borah, M.J.; Rajbongshi, S.K.; Saha, N.; Buddhi, D. Friction stir spot welding process: an innovative approach for transforming from engineering design to production. Int. J. Interact. Des. Manuf. (IJIDeM) 2022, 17, 2259–2270, . [CrossRef]
- Suresh, S.; Elango, N.; Venkatesan, K.; Lim, W.H.; Palanikumar, K.; Rajesh, S. Sustainable friction stir spot welding of 6061-T6 aluminium alloy using improved non-dominated sorting teaching learning algorithm. J. Mater. Res. Technol. 2020, 9, 11650–11674, . [CrossRef]
- Zhu, Z.; Li, Y.; Zhang, M.; Hui, C. Effects of stress concentration on the fatigue strength of 7003-T5 aluminum alloy butt joints with weld reinforcement. Int. J. Mod. Phys. B 2015, 29, 1540023, . [CrossRef]
- Sangduang, W., Wattanathum, P. and Eidhed, K. The Study on welding Effect and Porosity Distribution of 5154 Aluminum Alloys by Gas Metal Arc Welding (GMAW). Thai Industrial Engineering Network Journal, 6(2), 59–67. 2020, Vol. 6, 2, pp. 59-67.
- Ramaswamy, A.; Malarvizhi, S.; Balasubramanian, V. Effect of variants of gas metal arc welding process on tensile properties of AA6061-T6 aluminium alloy joints. Int. J. Adv. Manuf. Technol. 2020, 108, 2967–2983, . [CrossRef]
- Mercan, E.; Ayan, Y.; Kahraman, N. Microstructure and Mechanical Properties of Aluminum Alloys AA5754 and AA6013 Joined by GMAW (Gas Metal Arc Welding) Method. Pamukkale Univ. J. Eng. Sci. 2020, 26, 82–87, . [CrossRef]
- Kaushal, C. and Sharma, L. To Determine Effects of Gas Metal Arc Welding (GMAW) Parameters on Mechanical Properties of Aluminium Alloys. International Journal of Innovative Research in Science, Engineering and Technology. 2015, Vol. 4, 6, pp. 4564-4572.
- evik, B. Gas tungsten arc welding of 7075 aluminum alloy: microstructure properties, impact strength, and weld defects. Mater. Res. Express. 2018, Vol. 5, 6, p. 066540. [CrossRef]
- Jin, L.; Yang, Y.; Yao, P.; Chen, W.; Qian, Z.; Xue, J. Investigation of the Difference in the Pulse Current in the Double Pulsed Gas Metal Arc Welding of Aluminum Alloys. Materials 2022, 15, 2513, . [CrossRef]
- Huang, L.; Hua, X.; Wu, D.; Jiang, Z.; Li, F.; Wang, H.; Shi, S. Microstructural characterization of 5083 aluminum alloy thick plates welded with GMAW and twin wire GMAW processes. Int. J. Adv. Manuf. Technol. 2017, 93, 1809–1817, . [CrossRef]
- Kim, C.; Ahn, Y.; Lee, K.-B.; Kim, D. High-deposition-rate position welding of Al 5083 alloy for spherical-type liquefied natural gas tank. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2015, 230, 818–824, . [CrossRef]
- Yu, H.; Tong, Y. Magnetic pulse welding of aluminum to steel using uniform pressure electromagnetic actuator. Int. J. Adv. Manuf. Technol. 2016, 91, 2257–2265, . [CrossRef]
- Drehmann, R.; Scheffler, C.; Winter, S.; Psyk, V.; Kräusel, V.; Lampke, T. Experimental and Numerical Investigations into Magnetic Pulse Welding of Aluminum Alloy 6016 to Hardened Steel 22MnB5. J. Manuf. Mater. Process. 2021, 5, 66, . [CrossRef]
- Khalil, C.; Marya, S.; Racineux, G. Magnetic Pulse Welding and Spot Welding with Improved Coil Efficiency—Application for Dissimilar Welding of Automotive Metal Alloys. J. Manuf. Mater. Process. 2020, 4, 69, . [CrossRef]
- Yan, Z.; Xiao, A.; Cui, X.; Guo, Y.; Lin, Y.; Zhang, L.; Zhao, P. Magnetic pulse welding of aluminum to steel tubes using a field-shaper with multiple seams. J. Manuf. Process. 2021, 65, 214–227, . [CrossRef]
- Chen, S.; Han, Y.; Gong, W.; Yuan, T.; Jiang, X. Mechanical properties and joining mechanism of magnetic pulse welding of aluminum and titanium. Int. J. Adv. Manuf. Technol. 2022, 120, 7115–7126, . [CrossRef]
- Magnetic Pulse Welding (MPW) Method for Dissimilar Sheet Metal Joints. Aizawa, T. and Kashani, M. Osaka, Japan : s.n., 2004. 57th Ann. Assembly of the Int. Institute of Welding (IIW) Osaka, 2004.
- Zhang, Y.; Babu, S.S.; Zhang, P.; Kenik, E.A.; Daehn, G.S. Microstructure characterisation of magnetic pulse welded AA6061-T6 by electron backscattered diffraction. Sci. Technol. Weld. Join. 2008, 13, 467–471, . [CrossRef]
- Pereira, D.; Oliveira, J.P.; Pardal, T.; Miranda, R.M.; Santos, T.G. Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Sci. Technol. Weld. Join. 2017, 23, 172–179, . [CrossRef]
- Okagawa, K.; Aizawa, T. Impact Seam Welding with Magnetic Pressure for Aluminum Sheets. Mater. Sci. Forum 2004, 465-466, 231–236, . [CrossRef]
- Raoelison; Sapanathan, T.; Padayodi, E.; Buiron, N.; Rachik, M. Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: Numerical computations of experimental observations. J. Mech. Phys. Solids 2016, 96, 147–161, . [CrossRef]
- Liu, B., Vivek, A., Daehn, G.S. Use of Vaporizing Foil Actuator for Impact Welding of Aluminum Alloy Sheets with Steel and Magnesium Alloys. [ed.] M. (eds) Hyland. Light Metals. s.l. : Springer, Cham., 2015.
- Vivek, A.; Hansen, S.; Liu, B.; Daehn, G.S. Vaporizing foil actuator: A tool for collision welding. J. Am. Acad. Dermatol. 2013, 213, 2304–2311, . [CrossRef]
- Hahn, M.; Weddeling, C.; Taber, G.; Vivek, A.; Daehn, G.S.; Tekkaya, A.E. Vaporizing foil actuator welding as a competing technology to magnetic pulse welding. J. Am. Acad. Dermatol. 2016, 230, 8–20, . [CrossRef]
- Kapil, A. Aspects of Vaporizing Foil Actuator Welding for Practical Automotive Applications. PhD Thesis. Ohio : The Ohio State University, 2020.
- Kapil, A.; Lee, T.; Vivek, A.; Bockbrader, J.; Abke, T.; Daehn, G. Benchmarking strength and fatigue properties of spot impact welds. J. Am. Acad. Dermatol. 2018, 255, 219–233, . [CrossRef]
- Nassiri, A.; Kinsey, B. Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). J. Manuf. Process. 2016, 24, 376–381, . [CrossRef]
- Groche, P.; Becker, M.; Pabst, C. Process window acquisition for impact welding processes. Mater. Des. 2017, 118, 286–293, . [CrossRef]
- Hansen, S.R.; Vivek, A.; Daehn, G.S. Impact Welding of Aluminum Alloys 6061 and 5052 by Vaporizing Foil Actuators: Heat-Affected Zone Size and Peel Strength. J. Manuf. Sci. Eng. 2015, 137, . [CrossRef]
- Hansen, S.R., Vivek, A. and Daehn, G.S. Control of Velocity, Driving Pressure, and Planarity During Flyer Launch with Vaporizing Foil Actuator. 6th International Conference on High Speed Forming - 2014, 325-334. http://dx.doi.org/10.17877/DE290R-732.
- Meng, Z., Su, S., Mao, Y., Vivek, A., Huang, S.Y., Hua, L., Chen, S., Daehn, G.S. Welding of 2024-7075 Aluminum Alloys and 5A06 Aluminum to Stainless Steel 321 by Vaporizing Foil Actuator. International Conference on High Speed Forming 14th May to 16th May 2018 at the Ohio State University in Columbus, USA.
- Current Research and Challenges in Innovative Technology of Joining Dissimilar Materials for Electric Vehicles. Li, H., Liu, X., Zhang, Y., Ma, M., Li, G.Y. and Senkara, J.. Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), February 2019.
- Li, D.; Slater, C.; Cai, H.; Hou, X.; Li, Y.; Wang, Q. Joining Technologies for Aluminium Castings—A Review. Coatings 2023, 13, 958, . [CrossRef]
- Cavaliere P. et al. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater. Des. (2009). [CrossRef]
- Khodir, S.A.; Shibayanagi, T. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng. B 2008, 148, 82–87, . [CrossRef]
- Song Y. et al. Defect features and mechanical properties of friction stir lap welded dissimilar AA2024–AA7075 aluminum alloy sheets. Mater. Des. (2014). [CrossRef]
- Dragatogiannis, D.A.; Kollaros, D.; Karakizis, P.; Pantelis, D.; Lin, J.; Charitidis, C. Friction Stir Welding between 6082 and 7075 Aluminum Alloys Thermal Treated for Automotive Applications. Mater. Perform. Charact. 2019, 8, 571–589, . [CrossRef]
- Venkateswarlu, D. Nageswararao, P., Mahapatra, M.M., Harsha, S.P. and Mandal, N. R. Venkateswarlu, D., Nageswararao, P., Mahapatra, M.M. and Mandal N.R. Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys. J. of Materi Eng and Perform 2015, Vol. 24, pp. 4809–4824. [CrossRef]
- Pouranvari, M.; Marashi, S.P.H. Critical review of automotive steels spot welding: process, structure and properties. Sci. Technol. Weld. Join. 2013, 18, 361–403, . [CrossRef]
- Armao, F. Aluminum Workshop: Adding weld strength with aging [Online] 20 November 2014. https://www.thefabricator.com/thewelder/article/aluminumwelding/aluminum-workshop-adding-weld-strength-with-aging.
- Lumley, R.N., Morton, A.J., O'Donnell, R.G. and Polmear, I.J. New heat treatments for age-hardenable aluminum alloys. Heat Treating Progress. 2005, Vol. 5, 2, pp. 23-29.
- Fujita, T., Hasegawa, K., Mitao, S., Niikura, M., Koike, T., Funakawa, M., Yoshihara, N. and Ohori, K. A new paint-bake-hardenable aluminum alloy for auto body sheet applications. SAE Transactions. 1995, Vol. 104, 5, pp. 667-672.
- Engler, O.; Myhr, O.R. Effect of Natural Ageing on Strength and Anisotropy in Aluminium Alloy AA 6005C. Mater. Sci. Forum 2016, 877, 688–694, . [CrossRef]

| Welding process | Pros | Cons |
|---|---|---|
| MIG | - allowed welding several types of alloys in all positions, - high welding efficiency - higher from coated electrodes and TIG method, - relatively low cost of welding consumables, - high quality of welds, - allowed automation the method |
- quality of produced welds affected by skills and experience of a welder, - high purchase costs of equipment and accessories, and - the necessity to use an additional binder |
| TIG | - allowed welding several types of alloys in all positions, - allowed welding thin metal sheets, - high quality of welds, - easy control and handling of the welding process, - lack of liquid metal splashing, - no needs to use an additional binder, - allowed automation the method applied without an additional binder. |
- low welding speed and low efficiency, especially in case of thicker components, - quality of produced welds affected by skills of a welder, - impossible automation the method applied with an additional binder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
