Submitted:
21 March 2024
Posted:
23 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Modification Methods of Thermal Stability of Silicone Nanocomposites
2.1. Enhancement of Thermal Stability by Modification of Siloxane Molecular Structure
- − breaking the Si-O-Si bond leading to a rearrangement reaction,
- − oxidation of side groups in the polysiloxane chain causing a change in the structure of the polysiloxane chain.
2.2. Enhancement of Thermal Stability by Inorganic Nanoadditives
2.3. Enhancement of the thermal stability by carbon nanomaterials
3. The Effect of the Dispersion of Additives in the Matrix on Thermal Resistance of Silicone Nanocomposites
4. Analysis of Thermal Stability Mechanisms of Silicone Nanocomposites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dvornic, P.R. Thermal properties of polysiloxanes in Silicon-Containing Polymers The Science and Technology of Their Synthesis and Applications. Jones, R.G.; Jones, R.G., Ando, W., Chojnowski, J., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 185–213. [Google Scholar]
- Dobkowski, Z.; Zielecka, M. Thermal analysis of the poly(siloxane)-poly(tetrafluoroethylene) coating system. J. Therm. Anal. Calorim. 2002, 68, 147–158. [Google Scholar] [CrossRef]
- Dvornic, P.R.; Lenz, R.W. High Temperature Siloxane Elastomers. Huthig & Wepf: Heidelberg, Germany; New York, NY, USA, 1990.
- Sobolevskii, M.V.; Skorokhodov, I.I.; Ditsent, V.Ye.; Sobolevskaya, L.V.; Vovshin, E.I.; Blekh, L.M. Thermally induced changes in oligomethylphenylsiloxanes. Polymer Science U.S.S.R. 1974, 16, 840–846. [Google Scholar] [CrossRef]
- Zhou,W. ; Yang, H.; Guo, X.; Lu, J. Thermal degradation behaviors of some branched and linear polysiloxanes. Polym. Degrad. Stabil. 2006, 91, 1471–1475. [Google Scholar] [CrossRef]
- Zielecka, M.; Rabajczyk, A.; Cygańczuk, K.; Pastuszka,Ł. ; Jurecki, L. Silicone Resin-Based Intumescent Paints. Materials 2020, 13, 4785. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; Rezac, M.E. The effect of phenyl content on the degradation of poly(dimethyldiphenyl)siloxane copolymers. Polym. Degrad. Stabil. 2001, 74, 363–370. [Google Scholar] [CrossRef]
- Grassie, N.; Francey, K.F.; Macfarlane, I.G. The thermal degradation of polysiloxanes - Part 4: Poly(dimethyl/diphenyl siloxane). Polym. Degrad. Stabil. 1980, 2, 67–83. [Google Scholar] [CrossRef]
- Iji, M.; Serizawa, S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices. Polym. Adv. Technol. 1998, 9, 593–600. [Google Scholar] [CrossRef]
- Heilen, W. Silicone Resins and Their Combinations. Vincentz Network GmbH & Co KG: Hannover, Germany, 2005; pp. 1–102.
- Xu, X.; Wu, C.; Zhang, B.; Dong, H. Preparation, structure characterization, and thermal performance of phenyl-modified MQ silicone resins. J. Appl. Polym. Sci. 2013, 128, 4189–4200. [Google Scholar] [CrossRef]
- Wu, C.-B.; Jin, Y.-H.; Li, W.; Gao, D.-H.; Jia, M.-Q. Synthesis of Methylphenyldisiloxanes High Perform. Polym. 2010, 22, 959. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, J.; Liu, X.; Ji, H.; He, R.; Pimhataivoot, P.; Chen, X. Versatile cascade esterification route to MQ Resins. ACS Omega 2018, 3, 4054–4062. [Google Scholar] [CrossRef]
- Ji, J.; Ge, X.; Pang, X.; Liu, R.; Wen, S.; Sun, J.; Liang,W. ; Ge, J.; Chen, X. Synthesis and characterization of room temperature vulcanized silicone rubber using methoxyl-capped MQ silicone resin as self-reinforced cross-linker. Polymers 2019, 11, 1142. [Google Scholar] [CrossRef]
- Pan, K.; Zeng, X.; Li, H.; Liao, F.; Zhang, H.L.; Yin, C.Y. Synthesis of phenyl silicone resin with epoxy and acrylate group and its adhesion enhancement for addition-cure silicone encapsulant with high refractive index. J. Adhes. Sci. Technol. 2016, 30, 2699–2709. [Google Scholar] [CrossRef]
- Robeynsa, C.; Picardb, L.; Ganachauda, F. Synthesis, characterization and modification of silicone resins: An “Augmented Review”. Progress in Organic Coatings 2018, 125, 287–315. [Google Scholar] [CrossRef]
- Shit, S.C.; Shah, P. A review on silicone rubber. Natl. Acad. Sci. Lett. 2013, 36, 355–365. [Google Scholar] [CrossRef]
- Kendrick, T.C.; Parbhoo, B.; White, J.W. ;. The chemistry of organic silicon compounds. In: Patai, S.; Rappoport, Z.; [Eds]. New York: John Wiley and Sons; 1989. p. 1289. [Google Scholar]
- Grassie, N.; Francey, K.F.; Macfarlane, I.G. The thermal degradation of polysiloxanes - Part 4: Poly(dimethyl/diphenyl siloxane). Polym Degrad Stab 1980, 2, 67–83. [Google Scholar] [CrossRef]
- Grassie, N.; Francey, K.F. The thermal degradation of polysiloxanes - Part 3: Poly(dimethyl/methyl phenyl siloxane). Polym Degrad Stab 1980, 2, 53–66. [Google Scholar] [CrossRef]
- Visser, S.A.; Hewitt, C.E.; Binga, T.D. Stability of filled poly(dimethylsiloxane) and poly(diphenylsiloxane-co dimethylsiloxane) elastomers to cyclic stress at elevated temperature. J. Polym. Sci. B Polym. Phys. 1996, 34, 1679–1689. [Google Scholar] [CrossRef]
- Mogon, P.; Anthony, R.S.; Robert, S.M. Sensitivity of condensation cured polysiloxane rubbers to sealed and open-to-air thermal ageing regimes. Polym Test 2005, 24, 663–668. [Google Scholar] [CrossRef]
- Yao, Y.; Lu, G.Q.; Boroyevich, D.; Ngo, K.D.T. Effect of Al2O3 fibers on the high temperature stability of silicone elastomer, Polymer 2014, 55, 4232–4240. 55. [CrossRef]
- Shentu, B.; Gan, T.; Weng, Z. Modification of Fe2O3 and its effect on the heat resistance of silicone rubber. J. Appl. Polym. Sci. 2009, 113, 3202–3206. [Google Scholar] [CrossRef]
- Lin, J.; Su, S.; He, Y.; Kang, F. Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New Carbon Mater. 2020, 35, 66–72. [Google Scholar] [CrossRef]
- Shimizu, T.; Kishi, R.; Kobashi, K.; Morimoto, T.; Okazaki, T.; Yamada, T.; Hata, K. Improved thermal stability of silicone rubber nanocomposites with low filler content, achieved by well-dispersed carbon nanotubes. Compos. Commun. 2020, 22, 100482. [Google Scholar] [CrossRef]
- Rao, V.V.; Dixit, P.; Krishna, R.H.; Ramakrishna Murthy, K. Experimental Investigation of Nano Al2O3 Filled Silicone Rubber Specimen Used in Outdoor Insulation. Surf. Engin. Appl. Electrochem. 2023, 59, 422–432. [Google Scholar] [CrossRef]
- Lorenzo, M. Novel fillers for enhancing thermal conductivity of rubber nanocomposites. PhD program in Material Science and Nanotechnology Cycle XXXV. SCUOLA DI DOTTORATO UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA. 2022, pp. 141.
- Nazir, M.T.; Phung, B.T.; Yeoh, G.H.; Yasin, G.; Akram, S.; Bhutta, M.; Mehmood, M.; Hussain, S.; Yu, S.; Kabir, I. Enhanced dielectric and thermal performance by fabricating coalesced network of alumina trihydrate/boron nitride in silicone rubber for electrical insulation. Bull. Mater. Sci. 2020, 43, 1–5. [Google Scholar] [CrossRef]
- Kemaloglu, S.; Ozkoc, G.; Aytac, A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 2010, 499, 40–47. [Google Scholar] [CrossRef]
- Khalaj, M.; Zarabi Golkhatmi, S.; Alem, S.A.A.; Baghchesaraee, K.; Hasanzadeh Azar, M.; Angizi, S. Recent Progress in the Study of Thermal Properties and Tribological Behaviors of Hexagonal Boron Nitride-Reinforced Composites. J. Compos. Sci. 2020, 4, 116. [Google Scholar] [CrossRef]
- Farahani, A.; Jamshidi, M.; Foroutan, M. Improving thermal/electrical properties of silicone rubber nanocomposite using exfoliated boron nitride nanosheets made by an effective/novel exfoliating agent. Materials & Design 2023, 229, 111935. [Google Scholar] [CrossRef]
- Pradhan, B.; Srivastava, S.K.; Ananthakrishnan, R.; Saxena, A. Preparation and characterization of exfoliated layered double hydroxide/silicone rubber nanocomposites. J. Appl. Polym. Sci. 2011, 119, 343–351. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Nazir, M.T.; Phung, B.T.; Hoffman, M.; Yu, S.; Li, S. Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties. Mater. Lett. 2017, 209, 421–424. [Google Scholar] [CrossRef]
- Mishraa, R.M.; Rai, J.S.P. Preparation and properties of nanocomposites based on polyetherimide (PEI)/silicone rubber reinforced with halloysite nanotubes. Indian Journal of Pure & Applied Physics 2018, 56, 787–791. [Google Scholar]
- Xu, X.; Liu, J.; Chen, P.; Wei, D.; Yong, G.; Lu, X.; Xiao, H. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. J. Appl. Polym. Sci. 2016, 133, 44117. [Google Scholar] [CrossRef]
- Huang, P.; Shi, H.-Q.; Xiao, H.M.; Li, Y-Q. ; Hu, N., Fu, S-Y. High performance surface-modified TiO2/silicone nanocomposite. Sci Rep 2017, 7, 5951. [Google Scholar] [CrossRef]
- Nabil, M.; Motaweh, H.A. Enhanced Thermal Stability of Promising Nano-Porous Silicon Powder. Advances in Nanoparticles 2016, 5, 199–205. [Google Scholar] [CrossRef]
- Kang, M.J.; Jin, F.L.; Park, S.J. Influence of ozone-treated silica nanoparticles on mechanical interfacial behavior and thermal stability of silicone composites. J. Nanosci. Nanotechnol. 2018, 18, 6244–6248. [Google Scholar] [CrossRef]
- Tamore, M.S.; Ratna, D.; Mishra, S. Effect of functionalized multi-walled carbon nanotubes on physicomechanical properties of silicone rubber nanocomposites. J. Compos. Mater. 2019, 53, 3157–3168. [Google Scholar] [CrossRef]
- Gan, L.; Shang, S.; Yuen, C.W.M.; Jiang, S.; Luo, N.M. Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos. Part B 2015, 69, 237–242. [Google Scholar] [CrossRef]
- Song, Y.; Yu, J.; Yu, L.; Alam, F.E.; Dai, W.; Li, C.; Jiang, N. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets. Mater. Des. 2015, 88, 950–957. [Google Scholar] [CrossRef]
- Wang, X.; Dou, W. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim. Acta 2012, 529, 25–28. [Google Scholar] [CrossRef]
- Cao, K.; Li, B.; Jiao, Y.; Lu, Y.; Wang, L.; Guo, Y.; Dai, P. Enhancement of thermal and mechanical properties of silicone rubber with γ-ray irradiation-induced polysilane-modified graphene oxide/carbon nanotube hybrid fillers. RSC Advances 2021, 53, 33354–33360. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dong, L.; Chen, Y.; Luo, C.; Zhou, J.; Liu, G.; Ren, H. Thermally Conductive and Antistatic Properties of Silicone Rubber Reinforced by the Modified Graphene Oxide. Polymers 2022, 14, 4703. [Google Scholar] [CrossRef]
- Wang, C.; Shen, J.; Hao, Z.; Luo, Z.; Shen, Z.; Li, X.; Yang, L.; Zhou, Q. Flexible silicone rubber/carbon fiber/nano-diamond composites with enhanced thermal conductivity via reducing the interface thermal resistance. Journal of Polymer Engineering 2022, 42, 544–553. [Google Scholar] [CrossRef]
- Bian, S. A Study of the Material Properties of Silicone Nanocomposites Developed by Electrospinning. Doctoral Thesis, . Waterloo, Ontario, Canada, 2013. [Google Scholar]
- Han, R.; Wang, Z.; Zhang, Y.; Niu, K. Thermal stability of CeO2/graphene/phenylsilicone rubber composites. Polym. Test. 2019, 75, 277–283. [Google Scholar] [CrossRef]
- Yang, H.; Yao, X.; Zheng, Z.; Gong, L.; Yuan, L.; Yuan, Y.; Liu, Y. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing. Compos. Sci. Technol. 2018, 167, 371–378. [Google Scholar] [CrossRef]
- Fang, S.; Hu, Y.; Song, L.; Zhan, J.; He, Q. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J. Mater. Sci. 2008, 43, 1057–1062. [Google Scholar] [CrossRef]
- Shimizu, T.; Kishi, R.; Kobashi, K.; Morimoto, T.; Okazaki, T.; Yamada, T.; Hata, K. Improved thermal stability of silicone rubber nanocomposites with low filler content, achieved by well-dispersed carbon nanotubes. Compos. Commun. 2020, 22, 100482. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. Similarities and differences with random ionomers. Macromolecules 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Han, R.; Wang, Z.; Zhang, Y.; Niu, K. Thermal stability of CeO2/graphene/phenyl silicone rubber composites. Polym. Test. 2019, 75, 277–283. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yang, L.; Liu, B.; Xie, S.; Qi, R.; Zhan, Y.; Xia, H. Graphene-Based Hybrid Fillers for Rubber Composites. Molecules 2024, 29, 1009. [Google Scholar] [CrossRef] [PubMed]
- Araby, S.; Zhang, L.; Kuan, H.-C.; Dai, J.-B.; Majewski, P.; Ma, J. A novel approach to electrically and thermally conductive elastomers using graphene. Polymer 2013, 54, 3663–3670. [Google Scholar] [CrossRef]
- Kang, H.; Zuo, K.; Wang, Z.; Zhang, L.; Liu, L.; Guo, B. Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Compos. Sci. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Ata, S.; Tomonoh, S.; Yamada, T.; Hata, K. Improvement in thermal durability of fluorinated rubber by the addition of single-walled carbon nanotubes as a thermally stable radical scavenger. Polymer 2017, 119, 112–117. [Google Scholar] [CrossRef]
- Bai, L.; Bai, Y.; Zheng, J. Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane. J. Mater. Sci. 2017, 52, 7516–7529. [Google Scholar] [CrossRef]
- Hill, R.F.; Supancic, P.H. Thermal conductivity of platelet-filled polymer composites. J. Am. Ceram. Soc. 2001, 85, 851–857. [Google Scholar] [CrossRef]
- Vinod, P.; Babu, M.S.; Danikas, M.G.; Kornhuber, S.; Sarathi, R. Mathematical Modelling on Thermal Conductivity of Silicone Rubber Micro Nanocomposites by including Agglomeration Effect. Journal of Engineering Science and Technology Review 2022, I, 35–40. [Google Scholar] [CrossRef]
- Agrawal, A.; Satapathy, A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Therm Sci 2015, 89, 203–209. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Wang, X.J.; Quan, Y.Y.; Pei, L.X. Conjugate heat conduction in filled composite materials considering interactions between the filler and base materials. Int. J. Heat Mass Transfer 2013, 64, 735–742. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Wang, X.J.; Pei, L.X. Nonlinear programming optimization of filler shapes for composite materials with inverse problem technique to maximize heat conductivity. Int. J. Heat Mass Transfer 2012, 55, 7287–7296. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, L.Z.; Pei, L.X. Thermal conductivity augmentation of composite polymer materials with artificially controlled filler shapes. J. Appl. Polym. Sci. 2014, 131, 3747–3757. [Google Scholar] [CrossRef]
| Structure element | Unit | Organosilicon polymers | Organic polymers |
|---|---|---|---|
| Interatomic distances | [nm] | Si-O 0.163 | C-C 0.143 |
| Angles between bonds | [deg] | Si-O-Si 143 | C-O-C 112 |
| Energy of bong formation | [kJ/mol] | Si-O 445 Si-C 306 |
C-O 358 C-C 318-352 |
| Type of organosilicon polymer | R/Si | Ph/Me mol% | Solid residue wt.% in air 800 °C | T5 | Ref |
|---|---|---|---|---|---|
| PDMS linear | 2 | 0/100 | 39 | 175 | [5,7] |
| Ph/Me polysiloxane linear | 2 | 75/25 | 26.4 | 181 | [8,9] |
| Me silicone resin | 1.2 | 0/100 | 66.5 | 185 | [5] |
| Me/Ph silicone resin | 1.2 | 25/75 | 65.8 | 292 | [5,10] |
| Me/Ph silicone resin | 1.2 | 50/50 | 51.8 | 238 | [5] |
| Me/Ph silicone resin | 1.2 | 75/25 | 45.7 | 227 | [5] |
| Me/Ph silicone resin | 1.5 | 75/25 | 48.3 | 192 | [5] |
| Ph silicone resin | 1.2 | 100/0 | 40.5 | 242 | [5] |
| MePh2SiO1/2- terminated MQ Me silicone resin | 1. 12 | 34.4 | 224.6 | [11] | |
| MQ Me/Ph silicone resin | 0.76 | 74.4 | 424.5 | [12] |
| Polysiloxane | Nanofiller | Dispersion method |
Nanoparticle | Thermal stability |
Ref |
|---|---|---|---|---|---|
| Silicone rubber | Graphene, CeO2 |
Ultrasonically, 4 h w 50 °C |
0.8-1.5 phr | T5 711 °C compared to 602 °C for rubber without fillers | [49] |
| Silicone rubber | Graphene | Sonication in tetrahydrofuran; phopholoculation in ethanol | 2,3 wt.% | Long-term heating does not change the extensibility | [50] |
| Silicone rubber | Magnesium hydroxide sulphate hydrate whisker |
Introduction of nanofiller on rollers | 7 phr | The residue after heating at 700 °C increases to 69% compared to 43% for the composite without the modifier | [51] |
| Silicone rubber | Carbon nanotubes | Comparison of 3 dispersion processes: mixing, sonication ultrasonic, wet jet milling | 0.05 wt.% | Best nanotube dispersion after wet jet milling; after 7 days of heating at 280 °C, the nanocomposites retained their mechanical properties compared to composites without nanotubes, crumbling after 1 day of heating. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
