Submitted:
27 May 2024
Posted:
27 May 2024
Read the latest preprint version here
Abstract
Keywords:
MSC: 90C29; 90C50; 90C90
1. Introduction
2. A Method for Determining the Efficient Set of an IMOLP Problem
2.1. A General Case
2.2. A Special Case
3. Examples
4. Conclusions
References
- M. Allahdadi and A. Batamiz, Generation of some methods for solving interval multi-objective linear programming models. OPSEARCH 2021, 58, 1077-1115.
- P. Armand, Finding all maximal efficient faces in multiobjective linear programming. Math. Program. 1993, 61, 357–375. [Google Scholar] [CrossRef]
- P. Armand and C. Malivert, Determination of the efficient set in multiobjective linear programming. J.Optim. Theory and Appl. 1991, 70, 467-489.
- Batamiz and, M. Allahdadi, Finding efficient solutions in the interval multi-objective linear programming models, Yugosl. J. Oper. Res. 2021, 31, 95–119. [Google Scholar]
- H. P. Benson, Hybrid approach for solving multi-objective linear programs in outcome space. J. Optim. Theory Appl. 1998, 98, 17–35. [Google Scholar] [CrossRef]
- G.R. Bitran, Linear multiobjective problems with interval coefficients, Management Science 1980, 26, 694 –706.
- S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions – A gereralized approach, European J. Oper. Res. 1996, 94, 594 – 598.
- J.P. Dauer and R.J. Gallagher, A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs. European J. Oper. Res. 1996, 88, 368-381.
- J.P. Dauer and Y.H. Liu, Solving multiple objective linear programs in objective space. European J. Oper. Res.1990, 46, 350-357.
- J.G. Ecker, N.S. Hegner and I.A. Kouada, Generating all maximal efficient faces for multiple objective linear Programs. J. Optim. Theory and Appl. 1980, 30, 353-381.
- M. Fiedler, J. Nedoma, J. Ramík, J. Rohn and K. Zimmermann, Linear optimization problems with inexact data. Springer, New York, 2006.
- A.A. Foroughi and Y. Jafari, A modified method for constructing efficient solutions structure of molp. Appl. Math. Model. 2009, 3, 2403–2410.
- E. Garajova and M. Hladik, On the optimal solution set in interval linear programming. Comput. Optim. Appl. 2019, 72, 269–292.
- S.H.R. Hajiagha, H.A. Mahdiraji and S.S. Hashemi, Multi-objective linear programming with interval coefficients: A fuzzy set based approach. Kybernetes 2013, 42, 482-496.
- E. Hansen, On linear algebraic equations with interval coefficients, in Topics in Internal Analysis (E. Hansen, Ed.), Oxford U.P., Oxford, 1969.
- M. Hladik, Interval linear programming: A survey. Nova Science Publishers, New York, 2012.
- M. Inuiguchi and Y. Kume, A discrimination method of possibly efficient extreme points for interval multiobjective linear programming. Transactions of the Society of Instrument Control Engineers 1989, 25, 823– 825.
- M. Inuiguchi and Y. Kume, Goal programming problems with interval coefficients and target intervals. European J. Oper. Res. 1991, 52, 345–360.
- HIsermann, The enumeration of the set of all efficient solutions for a linear multiple objective programOper. Res. Q.197728711- 725.
- H. Ishibuchi and H.Tanaka, Multiobjective programming in optimization of the interval objective function. European J. Oper. Res. 1990, 48, 219–225.
- S. Krichen, H. Masri and A. Guitouni, Adjacency based method for generating maximal efficient faces in molp. Appl. Math. Model. 2012, 36, 6301–6311.
- H. Li, J. Luo and Q. Wang, Solvability and feasibility of interval linear equations and inequalities, Linear Algebra and its Appl. 2014, 463, 78-94.
- W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numerische Mathematik 1964, 6, 405–409.
- C. Oliveira and C.H. Antunes, Multiple objective linear programming models with interval coefficients– an illustrative overview. European J. Oper. Res. 2007, 181, 1434–1463.
- L. Pourkarimi, M.A. Yaghoobi and M. Mashinchi, Determining maximal efficient faces in multiobjective linear programming problem. J. Math. Anal. Appl. 2009, 354, 234-248.
- S. Rivaza and Z. Saeidib, Solving Multiobjective Linear Programming Problems with Interval Parameters, Fuzzy Information and Engineering 2021, 13, 497-504.
- S. Rivaz and M.A. Yaghoobi, Weighted sum of maximum regrets in an interval MOLP problem. Int Trans Oper Res. 2018, 25, 1659–1676.
- J. Rohn, Solvability of systems of linear interval equations, SIAM J. Matrix Anal. Appl. 2003, 25, 237–245.
- J. Rohn, Systems of linear interval equations, Linear Algebra Appl. 1989, 126, 39–78.
- J. Rohn, Solvability of systems of interval linear equations and inequalities, in: M. Fiedler, J. Ne-doma, J. Ramík, J. Rohn, K. Zimmermann (Eds.), Linear Optimization Problems with Inexact Data, 35–77 (Chapter 2). Springer, New York, 2006.
- B. Rudloff, F. Ulus and R.J. Vanderbei, A parametric simplex algorithm to solve linear vector optimization problems, Math. Programming, vol. 163, pp. 213-242, 2017.
- S. Sayin, An algorithm based on facial decomposition for finding the efficient set in multiple objective linear Programming. Oper. Res. Lett. 1996, 19, 87-94.
- G. Tohidi and H. Hassasi, An adjacency based local top-down search method for finding maximal efficient faces in multiple objective linear programming. Naval Res. Logist. 2018, 65, 203-217.
- T. V. Tu, Optimization over the efficient set of a parametric multiple objective linear programming Problem. European J. Oper. Res. 2000, 122, 570–583. [Google Scholar] [CrossRef]
- T. V. Tu, A common formula to compute the efficient sets of a class of multiple objective linear programming problems. Optimization 2015, 64, 2065–2092. [Google Scholar] [CrossRef]
- T. V. Tu, The maximal descriptor index set for a face of a convex polyhedral set and some applications. J. Math. Anal. Appl. 2015, 429, 395–414. [Google Scholar] [CrossRef]
- T. V. Tu, A new method for determining all maximal efficient faces in multiple objective linear programming. Acta Math. Vietnam. 2017, 42, 1–25. [Google Scholar] [CrossRef]
- T.V. Tu, A combined top-down and bottom-up search method for determining all maximal efficient faces in multiple objective linear programming. 2023. [CrossRef]
- H. Yan, Q. Wei and J. Wang Constructing efficient solutions structure of multiobjective linear programming. J. Math. Anal. Appl. 2005, 307, 504–523. [Google Scholar] [CrossRef]
- P. L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl. 1975, 49, 430–468. [Google Scholar] [CrossRef]
- B. Urli and R. Nadeau, An interactive method to multiobjective linear programming problems with interval coefficients, INFOR 1992, 30, 127 – 137.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
