Submitted:
16 March 2024
Posted:
18 March 2024
You are already at the latest version
Abstract
Keywords:
1. Background on the Hawking Temperature and the New CMB Temperature Formula
2. Conclusion
References
- S. Hawking. Black hole explosions. Nature, 248, 1974. [CrossRef]
- S. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191, 1976. [CrossRef]
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. 2015. [CrossRef]
- A. Sneppen, D. Watson, D. Poznanski, O. Just, A. Bauswein, and R. Wojtak. Measuring the Hubble constant with kilonovae using the expanding photosphere method. Astronomy and Astrophysics, 678, 2023. 2023. [CrossRef]
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 63(57), 2024a. [CrossRef]
- E. G. Haug and S. Wojnow. The blackbody CMB temperature, luminosity, and their relation to black hole cosmology, compared to Bekenstein-Hawking luminosity. Hal archive, 2024.
- E. G. Haug and E. T. Tatum. The Hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Hal archive, 2023.
- R. K. Pathria. The universe as a black hole. Nature, 240:298, 1972. [CrossRef]
- P. Christillin. The Machian origin of linear inertial forces from our gravitationally radiating black hole universe. The European Physical Journal Plus, 129:175, 2014. [CrossRef]
- T. X. Zhang and C. Frederick. Acceleration of black hole universe. Astrophysics and Space Science, 349:567, 2014. [CrossRef]
- N. Popławski. The universe in a black hole in Einstein–Cartan gravity. The Astrophysical Journal, 832:96, 2016. [CrossRef]
- T. X. Zhang. The principles and laws of black hole universe. Journal of Modern Physics, 9:1838, 2018. [CrossRef]
- D. A. Easson and R. H. Brandenberger. Universe generation from black hole interiors. Journal of High Energy Physics, 2001, 2001. [CrossRef]
- E. Gaztanaga. The black hole universe, part i. Symmetry, 2022:1849, 2022. [CrossRef]
- Z. Roupas. Detectable universes inside regular black holes. The European Physical Journal C, 82:255, 2022. [CrossRef]
- E. Siegel. Are we living in a baby universe that looks like a black hole to outsiders? Hard Science, Big Think, January 27, 2022.
- C. H. Lineweaver and V. M. Patel. All objects and some questions. American Journal of Physics, 91(819), 2023.
- E. G. Haug. Different mass definitions and their pluses and minuses related to gravity. Foundations, 3:199–219., 2023. [CrossRef]
- A. Einstein. Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin, 1916.
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. URL https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up. /.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- K. Cahill. The gravitational constant. Lettere al Nuovo Cimento, 39:181, 1984a. [CrossRef]
- K. Cahill. Tetrads, broken symmetries, and the gravitational constant. Zeitschrift Für Physik C Particles and Fields, 23:353, 1984b. [CrossRef]
- E. R. Cohen. Fundamental Physical Constants, in the book Gravitational Measurements, Fundamental Metrology and Constants. Edited by Sabbata, and Melniko, V. N., Netherland, Amsterdam, Kluwer Academic Publishers, p 59, 1987.
- M. E. McCulloch. Quantised inertia from relativity and the uncertainty principle. Europhysics Letters (EPL), 115(6):69001, 2016. [CrossRef]
- E. G. Haug. Can the Planck length be found independent of big g ? Applied Physics Research, 9(6):58, 2017. [CrossRef]
- E. G. Haug. Finding the Planck length multiplied by the speed of light without any knowledge of g, c, or h, using a newton force spring. Journal Physics Communication, 4:075001, 2020. [CrossRef]
- E. G. Haug. Planck units measured totally independently of big g. Open Journal of Microphysics, 12:55, 2022a. [CrossRef]
- E. G. Haug. Extracting the Planck units as well as the Compton frequency from 580 type ia supernovae redshifts consistent with quantized general relativity theory. Research gate March 9 version, 2024b. 9 March. [CrossRef]
- A. H. Compton. A quantum theory of the scattering of x-rays by light elements. Physical Review, 21(5):483, 1923. [CrossRef]
- E. G. Haug. Progress in the composite view of the newton gravitational constant and its link to the Planck scale. Universe, 8(454), 2022b. [CrossRef]
- L.S. Levitt. The proton Compton wavelength as the `quantum’ of length. Experientia, 14:233, 1958. [CrossRef]
- O. L. Trinhammer and H. G. Bohr. On proton charge radius definition. EPL, 128:21001, 2019. [CrossRef]
- K. Schwarzschild. über das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, page 424, 1916.
- S. Lan, P. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and Müller. A clock directly linking time to a particle’s mass. Science, 339:554, 2013. [CrossRef]
- D. Dolce and A. Perali. On the Compton clock and the undulatory nature of particle mass in graphene systems. The European Physical Journal Plus, 130(41):41, 2015. [CrossRef]
- H. Reissner. Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie. Annalen der Physics, 355:106, 1916. [CrossRef]
- G. Nordström. On the energy of the gravitation field in Einstein’s theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 20:1238, 1918. 1918.
- E. G. Haug and G. Spavieri. Mass-charge metric in curved spacetime. International Journal of Theoretical Physics, 62:248, 2023. [CrossRef]
| Prediction | Formula: |
|---|---|
| Gravity acceleration | |
| Orbital velocity | |
| Orbital time | |
| Gravitational red shift | |
| Time dilation | |
| Gravitational deflection | |
| Schwarzschild radius |
| Prediction | Formula: |
|---|---|
| Gravity acceleration | |
| Orbital velocity | |
| Orbital time | |
| Gravitational red shift | |
| Time dilation | |
| Gravitational deflection | |
| Schwarzschild radius |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
