Submitted:
08 March 2024
Posted:
08 March 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
2.1. Driver Yielding Behavior
2.2. Contributing Factors on Driver Yielding Behaviors
2.2.1. Roadway Characteristics
2.2.2. Pedestrian Characteristics
2.2.3. Traffic Characteristics
2.2.4. Environmental Factors
2.2.5. A Comprehensive Review Related to the Factors Influencing Driver Yielding Behavior
![]() |
3. Research Methodology
3.1. Scope of the Study
3.1.1. Study Areas
3.1.2. Types of Crosswalks
3.2. Data Collection
3.2.1. Driver Yielding Behavior
3.2.2. Roadway Characteristics
3.2.3. Pedestrian Characteristics
3.2.4. Traffic Characteristics
3.2.5. Variables Influencing Driver Yielding Behavior
| Variables | Coding/Category/Description | Type of variables |
Reference |
|---|---|---|---|
| Driver behavior characteristics (Y) | |||
| Not Yield (NY) | 0= Not Yield (reference category) | Dichotomous | [2,20,21,22,23] |
| Soft Yield (SY) | 1= Soft Yield | Dichotomous | [2,20,21,22,23] |
| Yield (Y) | 2= Yield | Dichotomous | [2,20,21,22,23] |
| Roadway characteristic | |||
| Number of traffic lanes (X1) | Number of traffic lanes in the road section | Continuous | [28,29,33,38,41,43] |
| Width of the traffic lanes (m.) (X2) | Width of the traffic lanes in the road section | Continuous | [30] |
| Width of the crosswalk (m.) (X3) | Width of the midblock crosswalk in the road section | Continuous | [33,34,35,45] |
| Length of the crosswalk (m.) (X4) | Size of the midblock crosswalk in the road section | Continuous | [34] |
| Presence of pedestrian refuge island (X5) | 0=No | Dichotomous | [33,38,39] |
| 1=Yes | Dichotomous | ||
| Pedestrian characteristics | |||
| Vulnerable group (X6) | 0= Non-vulnerable group (male and adult) | Dichotomous | [33,35,36,37,38,39,41,43,55] |
| 1= Vulnerable group (female, children, and elderly) | Dichotomous | ||
| Number of pedestrian crossings (person) (X7) | The number of pedestrians crossing the road during a specific time | Continuous | [33,34,35,36,41,45,46] |
| Position of pedestrian waiting area (X8) | 0= No (shoulder and traffic lane) | Dichotomous | [33,34,43,46] |
| 1= Yes (sidewalk) | Dichotomous | ||
| Pedestrian waiting time (s) (X9) | Pedestrian waiting time at the curbside or median during the road crossing process. Wait until traffic has stopped or the road is clear before crossing. | Continuous | [38,41,45] |
| Pedestrian crossing time (s) (X10) | The duration it takes pedestrians to complete their crossing is measured from when they initially step onto the road or designated crosswalk to when they safely reach the opposite side. This duration does not include pedestrian waiting time. | Continuous | [36] |
| Traffic characteristics | |||
| Type of vehicles* (X11) | 0= Motorcycle (MC) | Dichotomous | [33,36,37,38,46,48] |
| 1= Passenger car (PC) | Dichotomous | ||
| Speed of MC (km/h) (X12) | The spot speed of every vehicle passing within 25 meters from the stop line to a marked line | Continuous | [36,39,45,46,54,55] |
| Speed of PC (km/h) (X13) | Continuous | ||
| Number of vehicles approaching crosswalk (vehicle) (X14) | Number of vehicles passing through the crosswalk in all traffic lanes | Continuous | [33,34,35,36,37,43,45,46,47] |
| Headway (s) (X15) | The duration between vehicles is measured in time | Continuous | - |
| PET between MC and pedestrian (s) (X16) | The time difference between a vehicle leaving the area of encroachment and a conflicting vehicle entering the crossing area | Continuous | - |
| PET between PC and pedestrian (s) (X17) | Continuous | ||
| Roadside parking** (X18) | 0=No | Dichotomous | [43] |
| 1=Yes | Dichotomous | ||
3.3. Data Analysis
3.3.1. Descriptive Statistics of Observation Variables
3.3.2. Modelling Yielding Behavior
4. Results and Discussion
4.1. Distribution of Driver Behavior Characteristics
4.2. Descriptive Statistics of Observed Variables
4.3. Factors Influencing Driver Yielding Behavior of C1 and C2
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saha, K.; Tishi, R.; Islam, S.; Mitra, K. Pedestrian behavioral pattern and preferences in different road crossing systems of Dhaka city. Journal of Bangladesh Institute of Planners. 2013, 6, 149–160. [Google Scholar]
- Fu, T.; Miranda-Moreno, L.; Saunier, N. A novel framework to evaluate pedestrian safety at non-signalized locations. Accident Analysis & Prevention. 2018, 111, 23–33. [Google Scholar]
- Huseyin, T.; Mahmoud, E.; Goker, A. Pedestrian crossing behavior at midblock crosswalks. Journal of Safety Research. 2019, 71, 49–57. [Google Scholar]
- World Health Organization (WHO). Pedestrian safety: A road safety manual for decision-makers and practitioners; World Health Organization: Geneva, 2013; Available online: https://www.who.int/publications/i/item/pedestrian-safety-a-road-safety-manual-for-decision-makers-and-practitioners (accessed on 25 October 2023).
- World Health Organization (WHO). Global status report on road safety 2018; WHO: Geneva, 2018; Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 25 October 2023).
- World Health Organization (WHO). Global status report on road safety 2023; WHO: Geneva, 2023; Available online: https://www.who.int/publications/i/item/9789240086517 (accessed on 25 October 2023).
- Department of Highways. Traffic accidents on national highways; Bureau of Highway Safety, Department of Highways. Ministry of Transport: Thailand, 2018–2022; Available online: http://bhs.doh.go.th/download/accident (accessed on 30 October 2023).
- Department of Disease Control. Road accident fatalities 2011-2022; Road accident fatalities integration system (3 bases). Injury Prevention Division. Department of Disease Control, Thailand, 2022.
- Road Safety Administration Center. Thailand Road Safety Master Plan 2022-2027. Department of Disaster Prevention and Mitigation. Ministry of Interior, Thailand, 2023.
- Department of Highways. A study on guidelines for the installation of safe pedestrian crossings; Bureau of Highway Safety, Department of Highways. Ministry of Transport: Thailand, 2023; Available online: http://www.doh.go.th/project/detail/66334 (accessed on 30 October 2023).
- Federal Highway Administration (FHWA). Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations; Washington, DC, USA, 2018; Report No. FHWA-SA-17-072. [Google Scholar]
- Schneider, J.; Sanders, L. Pedestrian safety practitioners’ perspectives of driver yielding behavior across North America. Transportation Research Record. 2015, 2519, 39–50. [Google Scholar] [CrossRef]
- Siddiqui, A.; Chu, X.; Guttenplan, M. Crossing locations, light conditions, and pedestrian injury severity. Transportation research record: Journal of the transportation research board. 2006, 1982, 141–149. [Google Scholar] [CrossRef]
- Paulo, A.; Giovanni, G.; Peter, J. Factors explaining driver yielding behaviour towards pedestrians at courtesy crossings. Transportation Research Part F. 2020, 73, 453–469. [Google Scholar]
- Zegeer, V.; Stewart, R.; Huang, H.; Lagerwey, P. Safety effects of marked versus unmarked crosswalks at uncontrolled locations; Final Report and Recommended Guidelines; Federal Highway Administration: Washington, DC, USA, 2005; Report no. FHWA-HRT-04-100. [Google Scholar]
- Papantoniou, P.; Yannis, G.; Christofa, E. Which factors lead to driving errors? A structural equation model analysis through a driving simulator experiment, IATSS Res. 2019, 43, 44–50. [Google Scholar]
- Zegeer, V. Development of crash modification factors for uncontrolled pedestrian crossing treatments. NCHRP, 2017. Report no. 841.
- Pechteep, P.; Luathep, P.; Kronprasert, N.; Jaensirisak, S. Safety effectiveness of an upgraded midblock pedestrian crossing on an urban arterial road. Asia-Pacific Journal of Science and Technology (APST). 2023, 28, 1–12. [Google Scholar]
- Pechteep, P.; Luathep, P.; Kronprasert, N.; Jaensirisak, S. Effectiveness of intelligent signalized pedestrian crossing at midblock locations on urban arterial roads in Thailand. In Proceedings of the 15th International Conference of Eastern Asia Society for Transportation Studies, Kuala Lumpur, Malaysia, 4–7 September 2023. [Google Scholar]
- Turner, S.; Fitzpatrick, K.; Brewer, M.; Park, S. Motorist Yielding to Pedestrians at Unsignalized Intersections: Findings from a National Study on Improving Pedestrian Safety. Transportation Research Record. 2006, 1982, 1–12. [Google Scholar] [CrossRef]
- Goddard, T.; Kahn, B.; Adkins, A. Racial bias in driver yielding behavior at crosswalks. Transportation Research Part F: Traffic Psychology and Behaviour. 2015, 33, 1–6. [Google Scholar] [CrossRef]
- Huybers, S.; Houten, V.; Malenfant, L. Reducing Conflicts Between Motor Vehicles and Pedestrians: The Separate and Combined Effects of Pavement Markings and a Sign Prompt. Journal of Applied Behavior Analysis. 2004, 37, 445–456. [Google Scholar] [CrossRef]
- Zhuang, X.; Wu, C. Pedestrian gestures increase driver yielding at uncontrolled mid-block road crossings. Accident Analysis & Prevention. 2014, 70, 235–244. [Google Scholar]
- Yannis, G.; Nikolaou, D.; Laiou, A.; Stürmer, Y.; Buttler, I.; Jankowska-Karpa, D. Vulnerable Road users: Cross-cultural perspectives on performance and attitudes. IATSS Res. 2020, 44, 220–229. [Google Scholar] [CrossRef]
- Dinh, D.; Vũ, N.; McIlroy, R.; Plant, K.; Stanton, N. Effect of attitudes towards traffic safety and risk perceptions on pedestrian behaviours in Vietnam. IATSS Res. 2020, 44, 238–247. [Google Scholar] [CrossRef]
- European Commission. Road safety in the European Union: Trends, Statistics, and Main Challenges, November 2018. Available online: https://road-safety.transport.ec.europa.eu/system/files/2021-07/vademecum_2018.pdf (accessed on 29 October 2023).
- Schneider, J.; Sanatizadeh, A.; Shaon, R.; He, Z.; Qin, X. Exploratory analysis of driver yielding at low-speed, uncontrolled crosswalks in Milwaukee, Wisconsin. Transportation Research Record. 2018, 2672, 21–32. [Google Scholar] [CrossRef]
- Garder, E. The impact of speed and other variables on pedestrian safety in Maine. Accident Analysis & Prevention. 2004, 36, 533–542. [Google Scholar]
- Huang, F.; Stewart, R.; Zegeer, V. Evaluation of lane reduction “road diet” measures on crashes and injuries. Transportation Research Record. 2002, 1784, 80–90. [Google Scholar] [CrossRef]
- Fitzpatrick, K.; Brewer, A.; Avelar, R. Driver yielding at traffic control signals, pedestrian hybrid beacons, and rectangular rapid-flashing beacons in Texas. Transportation Research Record: Journal of the Transportation Research Board. 2014, 2463, 46–54. [Google Scholar] [CrossRef]
- Zegeer, V.; Bushell, M. Pedestrian crash trends and potential countermeasures from around the world. Accident Analysis & Prevention. 2012, 44, 3–11. [Google Scholar]
- Martin, A. Factors Influencing Pedestrian Safety: A Literature Review; TRL: Wokingham, Berks, UK, 2006. [Google Scholar]
- Porter, E.; Neto, I.; Balk, I.; Jenkins, K. Investigating the effects of Rectangular Rapid Flash Beacons on pedestrian behavior and driver yielding on 25 mph streets: A quasi-experimental field study on a university campus. Transportation Research Part F. 2016, 42, 509–521. [Google Scholar] [CrossRef]
- Zheng, Y.; Chase, T.; Elefteriadou, L.; Schroeder, B.; Sisiopiku, P. Modeling vehicle-pedestrian interactions outside crosswalks. Simulation Modelling Practice and Theory. 2015, 59, 89–101. [Google Scholar] [CrossRef]
- Govindaa, L.; Abhignab, D.; Nairc, M.; Shankar, R. Comparative Study of Pedestrian Crossing Behaviour at Uncontrolled Intersection and Midblock Locations. Transportation Research Procedia. 2020, 48, 698–706. [Google Scholar] [CrossRef]
- Anciaes, P.; Guardo, D.; Jones, P. Factors explaining driver yielding behaviour towards pedestrians at courtesy crossings. Transportation Research Part F. 2020, 73, 453–469. [Google Scholar] [CrossRef]
- Torres, C.; Sobreira, L.; Castro-Neto, M.; Cunto, F.; Vecino-Ortiz, A.; Allen, K.; Hyder, A.; Bachani, A. Evaluation of pedestrian behavior on mid-block crosswalks: A case study in Fortalezad-Brazil. Frontiers in Sustainable Cities. 2020, 2, 1–8. [Google Scholar] [CrossRef]
- Kadali, R.; Vedagir, P. Role of number of traffic lanes on pedestrian gap acceptance and risk taking behaviour at uncontrolled crosswalk locations. Journal of Transport & Health. 2020, 19, 100950. [Google Scholar]
- Olszewski, P.; Szagałaa, P.; Wolanski, M.; Zielinska, A. Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland. Accident Analysis and Prevention. 2015, 84, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.; Wong, D.; Chandrasekar, P. Safety evaluation of pedestrian behavior and violations at signalized pedestrian crossings. Safety Science. 2014, 70, 143–152. [Google Scholar] [CrossRef]
- Bendak, S.; Alnaqbi, M.; Alzarooni, Y.; Aljanaahi, M.; Alsuwaidi, J. Factors affecting pedestrian behaviors at signalized crosswalks: An empirical study. Journal of Safety Research. 2021, 76, 269–275. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Theofilatos, A.; Yannis, G. Patterns of pedestrian attitudes, perceptions and behavior in Europe. Safety Science. 2013, 53, 114–122. [Google Scholar] [CrossRef]
- Tezcan, O.; Elmorssy, M.; Aksoy, G. Pedestrian crossing behavior at midblock crosswalks. Journal of Safety Research. 2019, 71, 49–57. [Google Scholar] [CrossRef]
- Dileep, R.; Koshy, I.; Sam, S. Study on driver yielding to pedestrians at unsignalized crosswalks. International Journal of Scientific & Engineering Research. 2016, 7, 306–311. [Google Scholar]
- Sucha, M.; Dostal, D.; Risser, R. Pedestrian-driver communication and decision strategies at marked crossings. Accident Analysis & Prevention. 2017, 102, 41–50. [Google Scholar]
- Figliozzi, A.; Tipagornwong, C. Pedestrian Crosswalk Law: A study of traffic and trajectory factors that affect non-compliance and stopping distance. Accident Analysis and Prevention. 2016, 96, 169–179. [Google Scholar] [CrossRef]
- Tankasem, P.; Satiennam, T.; Satiennam, W.; Jaensirisak, S.; Rujopakarn, W. Effects of automated speed control on speeding intention and behavior on mixed-traffic urban arterial roads. IATSS Res. 2022, 46, 492–498. [Google Scholar] [CrossRef]
- Nikolaou, D.; Ntontis, A.; Michelaraki, E.; Ziakopoulos, A.; Yannis, G. Pedestrian safety attitudes and self-declared behaviour in Greece. IATSS Res. 2023, 47, 14–24. [Google Scholar] [CrossRef]
- Kröyer, H. Is 30 km/h a ‘safe’ speed? Injury severity of pedestrians struck by a vehicle and the relation to travel speed and age. IATSS Res. 2015, 39, 42–50. [Google Scholar] [CrossRef]
- Tanishita, M.; Sekiguchi, Y.; Sunaga, D. Impact analysis of road infrastructure and traffic control on the severity of pedestrian-vehicle crashes at intersections and non-intersections using bias-reduced logistic regression. IATSS Res. 2023, 47, 233–239. [Google Scholar] [CrossRef]
- Dinh, D.; Kubota, H. Drivers’ perceptions regarding speeding and driving on urban residential streets with a 30 km/h speed limit. IATSS Res. 2013, 37, 30–38. [Google Scholar] [CrossRef]
- Singh, M.; Pathivada, B.; Rao, K.; Perumal, V. Driver behaviour modelling of vehicles at signalized intersection with heterogeneous traffic. IATSS Res. 2022, 46, 236–246. [Google Scholar] [CrossRef]
- Yoh, K.; Okamoto, T.; Inoi, H.; Doi, K. Comparative study on foreign drivers’ characteristics using traffic violation and accident statistics in Japan. IATSS Res. 2017, 41, 94–105. [Google Scholar] [CrossRef]
- Bella, F.; Ferrante, C. Drivers’ Yielding Behavior in Different Pedestrian Crossing Configurations: A Field Survey. Journal of Advanced Transportation. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Avinasha, C.; Goreb, N.; Shriniwasc, A.; Gaurangd, J.; Manoranjan, P. Choice crossing behaviour model for Safety Margin of pedestrian at mid-blocks in India. Transportation Research Procedia. 2020, 48, 2329–2342. [Google Scholar] [CrossRef]
- Washington, P.; Karlaftis, G.; Mannering, F.L. Statistical and Econometric Methods for Transportation Data Analysis; CRC Press Company: Boca Raton, FL, USA, 2003. [Google Scholar]
- Washington, S. Iteratively specified tree-based regression models: Theoretical development and example applied to trip generation. Journal of Transportation Engineering. 2000, 126, 482–491. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression; Wiley Series in Probability and Statistics; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Economics; Academic Press: New York, NY, USA, 1974; pp. 105–142. ISBN 0-12-776150-0. [Google Scholar]
- McFadden, D.; Train, K. Mixed MNL models for discrete response. Journal of Applied Econometrics. 2000, 15, 447–470. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |


| Study site | Number of traffic lanes |
Width of the traffic lanes (m/lane) | Width of the crossing area (m) |
Presence of pedestrian refuge island (m) |
Average traffic volume (Vehicles per hour) |
Pedestrians volume (Persons per hour) |
||
|---|---|---|---|---|---|---|---|---|
| C1 | C2 | C1 | C2 | |||||
| Hwy No. 306 Km.4+970 | 4 (2 lanes per direction) |
3.5 | 4.0 | No | 4,638 | 3,985 | 197 | 218 |
| Hwy No. 3242 Km.11+625 | 4 (2 lanes per direction) |
3.0 | 5.5 | Yes (1.3 m) | 6,124 | 4,802 | 210 | 225 |
| Hwy No. 3242 Km.18+110 | 6 (3 lanes per direction) |
3.5 | 3.0 | Yes (1.8 m) | 4,228 | 5,874 | 145 | 156 |
| Hwy No. 407 Km.24+700 | 4 (2 lanes per direction) |
3.5 | 6.0 | Yes (3.3 m) | 4,552 | 3,863 | 190 | 184 |
| Driving behavior | Description |
|---|---|
| Not Yield (NY) | The driver kept the speed unchanged without yielding to pedestrians crossing at the crosswalk area. |
| Soft Yield (SY) | The driver can yield to the pedestrian by a soft slowing down before reaching the crosswalk area, where the driver slows down to a minimum speed higher than 40 km/h to allow the pedestrian to pass. |
| Yield (Y) | The driver yielded to the pedestrian by coming to a complete stop before the white stop lines across the road. The driver slows to a minimum speed lower than 40 km/h to allow pedestrians to pass. |
| Sites | Vehicle types | 85th percentile speeds (km/h) | |||||
|---|---|---|---|---|---|---|---|
| Typical zebra crossing (C1) | Intelligent signalized crosswalk (C2) | ||||||
| NY | SY | Y | NY | SY | Y | ||
| S1 | MC | 70 | 65 | 58 | 66 | 55 | 41 |
| PC | 89 | 81 | 70 | 74 | 67 | 53 | |
| S2 | MC | 72 | 67 | 60 | 64 | 58 | 45 |
| PC | 85 | 77 | 68 | 71 | 64 | 60 | |
| S3 | MC | 75 | 70 | 64 | 60 | 50 | 44 |
| PC | 95 | 87 | 79 | 72 | 69 | 55 | |
| S4 | MC | 71 | 66 | 61 | 68 | 53 | 47 |
| PC | 90 | 84 | 71 | 70 | 64 | 59 | |
| S5 (S1-S4) |
MC | 70-75 | 65-70 | 58-64 | 60-68 | 50-58 | 41-47 |
| PC | 85-95 | 77-87 | 68-79 | 70-74 | 64-69 | 53-60 | |
| Variables | Models | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | S4 | S5 | ||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
| Vulnerable group (X6) | ||||||||||
| Non-vulnerable group | 40.8% | 45.2% | 34.8% | 39.7% | 48.3% | 40.2% | 37.1% | 36.2% | 40.3% | 40.3% |
| Vulnerable group | 59.1% | 54.8% | 65.2% | 60.3% | 51.6% | 59.8% | 62.8% | 63.8% | 59.7% | 59.7% |
| Position of pedestrian waiting area (X8) | ||||||||||
| No | 33.5% | 29.6% | 30.8% | 23.5% | 24.1% | 22.9% | 41.8% | 21.4% | 32.5% | 24.3% |
| Yes | 66.5% | 70.4% | 69.2% | 76.5% | 75.9% | 77.1% | 58.2% | 78.6% | 67.4% | 75.7% |
| Type of vehicles (X11) | ||||||||||
| MC | 33.3% | 36.3% | 36.8% | 33.1% | 30.8% | 37.8% | 39.1% | 35.2% | 34.7% | 35.6% |
| PC | 66.7% | 63.7% | 63.2% | 66.9% | 69.2% | 62.2% | 61.9% | 64.8% | 65.2% | 64.4% |
| Roadside parking (X18) | ||||||||||
| No | 47.6% | 70.1% | 36.7% | 68.3% | 35.7% | 71.4% | 35.5% | 69.6% | 38.8% | 69.8% |
| Yes | 52.4% | 29.9% | 63.3% | 31.7% | 64.3% | 28.6% | 64.5% | 30.4% | 61.1% | 30.2% |
| Variables | Average (SD) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | S4 | S5 | ||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
| Number of pedestrian crossings (persons) (X7) | 2.8 (0.8) | 3.1 (0.6) | 3.5 (0.7) | 3.7 (0.5) | 2.5 (0.6) | 2.1 (0.8) | 3.6 (0.9) | 3.2 (0.3) | 3.6 (0.7) | 3.3 (0.8) |
| Pedestrian waiting time (s) (X9) | 30.4 (12.1) | 22.1 (10.2) | 25.2 (9.6) | 19.5 (11.6) | 38.5 (10.3) | 30.5 (13.1) | 40.6 (8.9) | 35.2 (13.1) | 29.7 (10.2) | 25.2 (11.7) |
| Pedestrian crossing time (s) (X10) | 45.5 (13.2) | 40.6 (10.7) | 51.8 (12.6) | 53.4 (14.6) | 44.6 (15.2) | 40.1 (12.3) | 48.4 (11.2) | 43.9 (14.4) | 49.6 (13.1) | 44.8 (12.9) |
| Speed of MC (km/h) (X12) | 65.9 (10.2) | 58.1 (15.6) | 63.4 (10.9) | 55.2 (14.7) | 69.5 (10.1) | 60.5 (12.5) | 64.2 (11.4) | 59.7 (10.8) | 65.7 (10.6) | 57.4 (11.9) |
| Speed of PC (km/h) (X13) | 79.8 (12.3) | 65.4 (14.6) | 75.5 (11.4) | 66.8 (12.8) | 85.6 (14.5) | 69.1 (15.6) | 83.7 (11.5) | 68.5 (13.2) | 79.4 (12.4) | 67.5 (13.1) |
| Number of vehicles approaching crosswalk (vehicles) (X14) | 3.5 (0.7) | 2.7 (0.5) | 2.9 (0.6) | 3.4 (0.3) | 2.5 (1.0) | 2.8 (0.7) | 4.5 (1.1) | 3.6 (0.9) | 3.4 (0.8) | 3.1 (0.5) |
| Headway (s) (X15) | 9.7 (8.4) | 10.5 (4.6) | 8.8 (5.8) | 13.5 (4.2) | 4.9 (5.1) | 6.9 (3.9) | 6.0 (3.4) | 8.5 (4.1) | 7.4 (5.6) | 9.2 (4.4) |
| PET between MC and pedestrian (s) (X16) | 2.4 (0.8) | 3.5 (0.2) | 2.1 (0.9) | 3.3 (0.5) | 3.1 (1.5) | 3.0 (1.0) | 2.6 (1.6) | 3.6 (1.1) | 2.6 (1.2) | 3.5 (0.4) |
| PET between PC and pedestrian (s) (X17) | 1.5 (0.6) | 2.9 (0.3) | 1.4 (0.7) | 3.1 (0.5) | 1.2 (0.8) | 3.2 (0.6) | 1.8 (1.0) | 2.9 (0.8) | 1.4 (0.8) | 3.2 (0.6) |
| Variables | Y vs NY | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MNL models | ||||||||||
| S1 | S2 | S3 | S4 | S5 | ||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
| p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | |
| X1 | 0.005* | 0.001* | ||||||||
| X2 | 0.003* | 0.005* | ||||||||
| X3 | 0.005* | 0.002* | ||||||||
| X4 | 0.005* | 0.008* | ||||||||
| X5 | 0.147 | 0.138 | ||||||||
| X6 | 0.005* | 0.009* | 0.004* | 0.003* | 0.010* | 0.005* | 0.006* | 0.005* | 0.002* | 0.006* |
| X7 | 0.001* | 0.000* | 0.004* | 0.000* | 0.097 | 0.104 | 0.066 | 0.114 | 0.002* | 0.001* |
| X8 | 0.079 | 0.087 | 0.125 | 0.214 | 0.185 | 0.118 | 0.068 | 0.105 | 0.124 | 0.091 |
| X9 | 0.145 | 0.548 | 0.227 | 0.077 | 0.114 | 0.214 | 0.098 | 0.254 | 0.274 | 0.314 |
| X10 | 0.004* | 0.102 | 0.113 | 0.078 | 0.205 | 0.119 | 0.089 | 0.095 | 0.007* | 0.098 |
| X11 | 0.074 | 0.087 | 0.102 | 0.127 | 0.098 | 0.091 | 0.075 | 0.102 | 0.110 | 0.096 |
| X12 | 0.001* | 0.006* | 0.002* | 0.005* | 0.005* | 0.003* | 0.006* | 0.003* | 0.001* | 0.002* |
| X13 | 0.000* | 0.000* | 0.001* | 0.003* | 0.003* | 0.001* | 0.001* | 0.001* | 0.000* | 0.005* |
| X14 | 0.004* | 0.001* | 0.079 | 0.088 | 0.103 | 0.115 | 0.003* | 0.007* | 0.004* | 0.001* |
| X15 | 0.009* | 0.003* | 0.006* | 0.001* | 0.001* | 0.000* | 0.007* | 0.009* | 0.002* | 0.001* |
| X16 | 0.010* | 0.000* | 0.007* | 0.001* | 0.005* | 0.000* | 0.006* | 0.001* | 0.001* | 0.003* |
| X17 | 0.000* | 0.001* | 0.001* | 0.001* | 0.005* | 0.001* | 0.002* | 0.001* | 0.001* | 0.000* |
| X18 | 0.001* | 0.010* | 0.001* | 0.008* | 0.003* | 0.009* | 0.001* | 0.002* | 0.009* | 0.007* |
| N | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 1,600 | 1,600 |
| Variables | SY vs NY | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MNL models | ||||||||||
| S1 | S2 | S3 | S4 | S5 | ||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |
| p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | p-value | |
| X1 | 0.005* | 0.001* | ||||||||
| X2 | 0.006* | 0.010* | ||||||||
| X3 | 0.010* | 0.008* | ||||||||
| X4 | 0.009* | 0.004* | ||||||||
| X5 | 0.116 | 0.168 | ||||||||
| X6 | 0.003* | 0.005* | 0.010* | 0.010* | 0.003* | 0.003* | 0.008* | 0.001* | 0.004* | 0.001* |
| X7 | 0.000* | 0.001* | 0.000* | 0.001* | 0.085 | 0.097 | 0.110 | 0.091 | 0.001* | 0.005* |
| X8 | 0.214 | 0.106 | 0.154 | 0.089 | 0.116 | 0.163 | 0.211 | 0.162 | 0.109 | 0.151 |
| X9 | 0.224 | 0.314 | 0.105 | 0.325 | 0.098 | 0.241 | 0.196 | 0.228 | 0.152 | 0.332 |
| X10 | 0.008* | 0.125 | 0.006* | 0.154 | 0.224 | 0.174 | 0.096 | 0.104 | 0.005* | 0.116 |
| X11 | 0.078 | 0.107 | 0.096 | 0.124 | 0.108 | 0.213 | 0.075 | 0.103 | 0.082 | 0.077 |
| X12 | 0.000* | 0.000* | 0.000* | 0.001* | 0.001* | 0.000* | 0.003* | 0.000* | 0.001* | 0.005* |
| X13 | 0.000* | 0.008* | 0.001* | 0.003* | 0.000* | 0.001* | 0.001* | 0.001* | 0.006* | 0.004* |
| X14 | 0.006* | 0.009* | 0.085 | 0.064 | 0.094 | 0.101 | 0.001* | 0.005* | 0.004* | 0.001* |
| X15 | 0.001* | 0.002* | 0.007* | 0.001* | 0.002* | 0.005* | 0.001* | 0.007* | 0.001* | 0.005* |
| X16 | 0.004* | 0.001* | 0.002* | 0.001* | 0.001* | 0.001* | 0.002* | 0.000* | 0.005* | 0.002* |
| X17 | 0.000* | 0.000* | 0.001* | 0.005* | 0.000* | 0.001* | 0.000* | 0.000* | 0.003* | 0.002* |
| X18 | 0.008* | 0.009* | 0.004* | 0.001* | 0.005* | 0.007* | 0.002* | 0.001* | 0.008* | 0.004* |
| N | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 1,600 | 1,600 |
| Variables | Y vs NY | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MNL models | ||||||||||||||||||||
| S1 | S2 | S3 | S4 | S5 | ||||||||||||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |||||||||||
| β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | |
| X1 | 0.15 | 0.521 | 0.35 | 0.440 | ||||||||||||||||
| X2 | 0.10 | 0.663 | 0.41 | 0.397 | ||||||||||||||||
| X3 | 0.07 | 0.478 | 0.29 | 0.568 | ||||||||||||||||
| X4 | 0.03 | 0.503 | 0.18 | 0.517 | ||||||||||||||||
| X6 | ||||||||||||||||||||
| Non-vulnerable group | 0.11 | 0.623 | 0.21 | 0.524 | 0.17 | 0.741 | 0.20 | 0.663 | 0.24 | 0.714 | 0.11 | 0.695 | 0.21 | 0.589 | 0.19 | 0.522 | 0.28 | 0.521 | 0.18 | 0.658 |
| Vulnerable Group | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||||||
| X7 | 0.21 | 0.783 | 0.27 | 0.335 | 0.20 | 0.882 | 0.22 | 0.714 | 0.35 | 0.552 | 0.27 | 0.639 | ||||||||
| X10 | 0.18 | 0.528 | 0.28 | 1.225 | 0.11 | 0.684 | ||||||||||||||
| X12 | 0.11 | 0.583 | 0.10 | 0.669 | 0.14 | 0.668 | 0.08 | 0.654 | 0.22 | 0.665 | 0.11 | 0.698 | 0.28 | 0.417 | 0.21 | 0.663 | 0.35 | 0.559 | 0.12 | 0.714 |
| X13 | 0.13 | 0.669 | 0.19 | 0.741 | 0.22 | 0.771 | 0.10 | 0.779 | 0.35 | 0.711 | 0.19 | 0.881 | 0.11 | 0.632 | 0.39 | 0.574 | 0.29 | 0.662 | 0.35 | 0.711 |
| X14 | 0.20 | 0.797 | 0.25 | 0.574 | 0.19 | 0.558 | 0.21 | 0.668 | 0.33 | 0.459 | 0.41 | 0.692 | ||||||||
| X15 | 0.10 | 0.658 | 0.11 | 0.723 | 0.09 | 0.865 | 0.13 | 0.882 | 0.11 | 0.693 | 0.38 | 0.417 | 0.13 | 0.691 | 0.10 | 0.701 | 0.28 | 0.336 | 0.31 | 0.852 |
| X16 | 0.33 | 0.517 | 0.33 | 0.662 | 0.36 | 0.721 | 0.47 | 0.761 | 0.22 | 0.521 | 0.32 | 0.585 | 0.19 | 0.774 | 0.29 | 0.609 | 0.39 | 0.669 | 0.41 | 0.771 |
| X17 | 0.47 | 0.624 | 0.55 | 0.574 | 0.41 | 0.569 | 0.46 | 0.632 | 0.26 | 0.417 | 0.41 | 0.649 | 0.19 | 0.639 | 0.19 | 0.524 | 0.27 | 0.559 | 0.33 | 0.621 |
| X18 | ||||||||||||||||||||
| No | 0.47 | 2.114 | 1.00 | 0.671 | 0.33 | 0.417 | 1.12 | 0.528 | 0.27 | 0.721 | 0.38 | 0.663 | 0.26 | 0.554 | 1.07 | 0.654 | 0.38 | 0.580 | 0.25 | 0.662 |
| Yes | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||||||
| Intercept | -2.15 1109.52 0.12 400 |
-2.11 1089.25 0.13 400 |
-2.36 1100.22 0.11 400 |
-2.41 1107.21 0.14 400 |
-2.10 1147.99 0.12 400 |
-2.54 1033.63 0.16 400 |
-2.21 1183.25 0.11 400 |
-2.04 1112.35 0.13 400 |
-2.63 1025.34 0.15 1600 |
-2.55 1251.14 0.19 1600 |
||||||||||
| -2LL | ||||||||||||||||||||
| ρ2 | ||||||||||||||||||||
| N | ||||||||||||||||||||
| Variables | SY vs NY | |||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MNL models | ||||||||||||||||||||
| S1 | S2 | S3 | S4 | S5 | ||||||||||||||||
| C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | C1 | C2 | |||||||||||
| β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | β | OR | |
| X1 | 0.11 | 0.635 | 0.21 | 0.639 | ||||||||||||||||
| X2 | 0.19 | 0.479 | 0.28 | 0.775 | ||||||||||||||||
| X3 | 0.14 | 0.338 | 0.17 | 0.521 | ||||||||||||||||
| X4 | 0.21 | 0.425 | 0.24 | 0.700 | ||||||||||||||||
| X6 | ||||||||||||||||||||
| Non-vulnerable group | 0.06 | 0.521 | 0.11 | 0.665 | 0.09 | 0.441 | 0.04 | 0.601 | 0.08 | 0.641 | 0.03 | 0.520 | 0.11 | 0.440 | 0.10 | 0.602 | 0.14 | 0.596 | 0.21 | 0.689 |
| Vulnerable Group | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||||||
| X7 | 0.17 | 0.621 | 0.21 | 0.471 | 0.18 | 0.429 | 0.10 | 0.525 | 0.22 | 0.582 | 0.32 | 0.607 | ||||||||
| X10 | 0.12 | 0.665 | 0.23 | 1.825 | 0.18 | 0.471 | ||||||||||||||
| X12 | 0.25 | 0.714 | 0.19 | 0.660 | 0.27 | 0.685 | 0.18 | 0.521 | 0.15 | 0.885 | 0.19 | 0.625 | 0.14 | 0.785 | 0.16 | 0.632 | 0.29 | 0.609 | 0.39 | 0.662 |
| X13 | 0.21 | 0.521 | 0.14 | 0.705 | 0.15 | 0.547 | 0.12 | 0.638 | 0.28 | 0.632 | 0.15 | 0.417 | 0.10 | 0.714 | 0.19 | 0.774 | 0.25 | 0.585 | 0.47 | 0.704 |
| X14 | 0.10 | 0.632 | 0.09 | 0.664 | 0.09 | 0.669 | 0.11 | 0.603 | 0.29 | 0.647 | 0.38 | 0.659 | ||||||||
| X15 | 0.11 | 0.521 | 0.11 | 0.552 | 0.13 | 0.477 | 0.13 | 0.471 | 0.09 | 0.679 | 0.10 | 0.702 | 0.14 | 0.801 | 0.12 | 0.596 | 0.27 | 0.458 | 0.19 | 0.609 |
| X16 | 0.17 | 0.632 | 0.17 | 0.447 | 0.14 | 0.509 | 0.18 | 0.762 | 0.14 | 0.552 | 0.21 | 0.663 | 0.10 | 0.731 | 0.19 | 0.479 | 0.21 | 0.741 | 0.29 | 0.762 |
| X17 | 0.15 | 0.478 | 0.21 | 0.630 | 0.13 | 0.741 | 0.19 | 0.446 | 0.11 | 0.601 | 0.22 | 0.509 | 0.12 | 0.558 | 0.15 | 0.336 | 0.14 | 0.459 | 0.17 | 0.699 |
| X18 | ||||||||||||||||||||
| No | 0.11 | 0.702 | 0.14 | 0.882 | 0.15 | 0.680 | 0.10 | 0.632 | 0.10 | 0.547 | 0.18 | 0.458 | 0.13 | 0.663 | 0.12 | 0.479 | 0.25 | 0.478 | 0.37 | 0.585 |
| Yes | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | ||||||||||
| Intercept | -2.15 1109.52 0.12 400 |
-2.11 1089.25 0.13 400 |
-2.36 1100.22 0.11 400 |
-2.41 1107.21 0.14 400 |
-2.10 1147.99 0.12 400 |
-2.54 1033.63 0.16 400 |
-2.21 1183.25 0.11 400 |
-2.04 1112.35 0.13 400 |
-2.63 1025.34 0.15 1600 |
-2.55 1251.14 0.19 1600 |
||||||||||
| -2LL | ||||||||||||||||||||
| ρ2 | ||||||||||||||||||||
| N | ||||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

