Submitted:
27 February 2024
Posted:
28 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and methods:
3. Statistical analysis:
4. Results
| Parameter | Dialysed patients | Healthy controls | P value |
| FGF-23 (A+SD) pg/ml | 75.98 (76.97) | 290.31 (173.91) | <0.001 |
| Human BMP2 pg/ml | 591.18 (341.69) | 242.11 (22.82) | 0.0061 |
| IL-1Beta | 65.14 (82.53) | 46.03 (2.84) | 0.468 |
| Age (years) | 61.02 (11.81) | 59.12 (7.86) | 0.587 |
5. Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jankowski J, Floege J, Fliser D, et al. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021 Mar 16;143(11):1157-1172. [CrossRef]
- Matsushita K, van der Velde M, Astor BC, et al for the CKD Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010; 375: 2073–81. [CrossRef]
- Van der Velde M, Matsushita K, Coresh J, et al, for the Chronic Kidney Disease Prognosis Consortium. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79: 1341–52. [CrossRef]
- United States Renal Data System. 2022 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2022.
- Park M, Hsu CY, Go AS, et al. "Urine kidney injury biomarkers and risks of cardiovascular disease events and all-cause death: the CRIC study." Clinical Journal of the American Society of Nephrology 12.5 (2017): 761-771. [CrossRef]
- Yan, Zhonghong, Guanran Wang, and Xingyang Shi. "Advances in the progression and prognosis biomarkers of chronic kidney disease." Frontiers in Pharmacology 12 (2021): 785375. [CrossRef]
- Bolignano D, Coppolino G, Lacquaniti A, Buemi M. From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrology. Eur J Clin Invest. 2010 Mar;40(3):273-6. [CrossRef]
- Xu D., Mu R., & Wei X. (2019). The Roles of IL-1 Family Cytokines in the Pathogenesis of Systemic Sclerosis. Frontiers in Immunology, 10. [CrossRef]
- Descamps-Latscha B, Herbelin A, Nguyen AT, et al.: Balance between IL-1 beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J Immunol 154: 882–892, 1995. [CrossRef]
- Dinarello CA, Koch KM, Shaldon S: Interleukin-1 and its relevance in patients treated with hemodialysis. Kidney Int Suppl 24: S21–S26, 1988.
- Kimmel PL, Phillips TM, Simmens SJ, et al: Immunologic function and survival in hemodialysis patients. Kidney Int 54: 236–244, 1998. [CrossRef]
- Hung AM, Ellis CD, Shintani A, Booker C, Ikizler TA. IL-1β receptor antagonist reduces inflammation in hemodialysis patients. J Am Soc Nephrol. 2011 Mar;22(3):437-42. [CrossRef]
- Hilde L. Orrem, Christian Shetelig, Thor Ueland, et al: Soluble IL-1 receptor 2 is associated with left ventricular remodelling in patients with ST-elevation myocardial infarction, International Journal of Cardiology, Volume 268, 2018, Pages 187-192, ISSN 0167-5273. [CrossRef]
- Van Tassell BW, Arena RA, Toldo S, et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure.PLoS One. 2012; 7:e33438. [CrossRef]
- Toldo S, Mezzaroma E, O’Brien L, et al. Interleukin-18 mediates interleukin-1-induced cardiac dysfunction.Am J Physiol Heart Circ Physiol. 2014; 306:H1025–H1031. [CrossRef]
- Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 2008;172:288–298. [CrossRef]
- Van Tassell B. W., Trankle C. R., Canada J. M., et al. (2018). IL-1 Blockade in Patients With Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 11(8). [CrossRef]
- Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A. 2006;103:5060–5065. [CrossRef]
- de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11:811–817. [CrossRef]
- Lin YH, Lin LY, Wu YW, et al. The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta. 2009;409:96–99. [CrossRef]
- Obokata M, Sunaga H, Ishida H, et al. Independent and incremental prognostic value of novel cardiac biomarkers in chronic hemodialysis patients. Am Heart J. 2016 Sep;179:29-41. [CrossRef]
- Liu S, Wu Q, Zhang S, et al. Serum Galectin-3 levels and all-cause and cardiovascular mortality in maintenance hemodialysis patients: a prospective cohort study. BMC Nephrol. 2022 Jan 3;23(1):5. [CrossRef]
- Hogas S, Schiller A, Voroneanu L, et al. Predictive Value for Galectin 3 and Cardiotrophin 1 in Hemodialysis Patients. Angiology. 2016;67(9):854-859. [CrossRef]
- Kakkar R., Lee R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008;7:827–840. [CrossRef]
- Plawecki M, Morena M, Kuster N, et al. SST2 as a new biomarker of chronic kidney disease-induced cardiac remodeling: impact on risk prediction. Mediators Inflamm. 2018;2018: 3952526. [CrossRef]
- Ojji DB, Opie LH, Lecour S, et al. Relationship between left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. J Clin Hypertens. 2013;15(12):899–904. [CrossRef]
- Celic V, Majstorovic A, Pencic-Popovic B, et al. Soluble ST2 levels and left ventricular structure and function in patients with metabolic syndrome. Ann Lab Med. 2016;36(6):542–9. [CrossRef]
- Wang S, Wei F, Chen H, et al. The Prognostic Value of Soluble ST2 in Maintenance Hemodialysis Patients: A Meta-Analysis. Blood Purif. 2020;49(1-2):114-120. [CrossRef]
- Park Y, Kim JW, Kim DS. The bone morphogenesis protein-2 (BMP-2) is associated with progression to metastatic disease in gastric cancer. Cancer Res Treat. 2008;40:127–132. [CrossRef]
- Simões Sato AY, Bub GL, Campos AH. BMP-2 and −4 produced by vascular smooth muscle cells from atherosclerotic lesions induce monocyte chemotaxis through direct BMPRII activation. Atherosclerosis. 2014;235:45–55. [CrossRef]
- Zhang M., Sara J.D., Wang Fl. et al. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients. Cardiovasc Diabetol 14, 64 (2015). [CrossRef]
- Stöhr R., Schuh A., Heine G. H., & Brandenburg V.. FGF23 in Cardiovascular Disease: Innocent Bystander or Active Mediator? Frontiers in Endocrinology, 2018 9. [CrossRef]
- ERA Registry: ERA Registry Annual Report 2020. Amsterdam UMC, location AMC, Department of Medical Informatics, Amsterdam, the Netherlands, 2022.
- https://www.registrulrenal.ro/resurse_statistica/Raport_RRR_2020_covid.
- Kraus M. A., Kalra P. A., Hunter J., Menoyo J., & Stankus N. The prevalence of vascular calcification in patients with end-stage renal disease on hemodialysis: a cross-sectional observational study. Therapeutic Advances in Chronic Disease, 2015, 6(3), 84–96. [CrossRef]
- Di Lullo L, Gorini A, Russo D, Santoboni A, Ronco C. Left Ventricular Hypertrophy in Chronic Kidney Disease Patients: From Pathophysiology to Treatment. Cardiorenal Med. 2015 Oct;5(4):254-66. [CrossRef]
- Jinbo Yu, Xiaohong Chen, Yang Li, et al. (2021) Pro-inflammatory cytokines as potential predictors for intradialytic hypotension, Renal Failure, 43:1, 198-205. [CrossRef]
- Lisowska K.A.; Storoniak H.; Soroczynska-Cybula M, et al. ´Serum Levels of α-Klotho, Inflammation-Related Cytokines, and Mortality in Hemodialysis Patients. J. Clin. Med. 2022, 11, 6518. [CrossRef]
- Carrasco-Ruiz MF, Ruiz-Rivera A, Soriano-Ursúa MA, et al. Global longitudinal strain is superior to ejection fraction for detecting myocardial dysfunction in end-stage renal disease with hyperparathyroidism. World J Cardiol. 2022 Apr 26;14(4):239-249. [CrossRef]
- Ørn S, Ueland T, Manhenke C, et al. Increased interleukin-1β levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J Intern Med. 2012 Sep;272(3):267-76. [CrossRef]
- Degoulet P, Legrain M, Reach I, et al. "Mortality risk factors in patients treated by chronic hemodialysis: Report of the Diaphane collaborative study." Nephron 31.2 (1982): 103-110.
- Kalantar-Zadeh K, Cano NJ, Budde K, et al. "Racial and survival paradoxes in chronic kidney disease." Nature clinical practice Nephrology 3.9 (2007): 493-506. [CrossRef]
- Tetsuo S, Yoshiharu T, Shigeru N, Yoshiki N, Reverse epidemiology in hemodialysis patients. Lessons from Japanese registries, Néphrologie & Thérapeutique, Volume 4, Issue 4, 2008, Pages 223-227, ISSN 1769-7255. [CrossRef]
- Bouzas-Mosquera A, Broullón FJ, Álvarez-García N, et al. Left atrial size and risk for all-cause mortality and ischemic stroke. CMAJ. 2011 Jul 12;183(10):E657-64. [CrossRef]
- Gao F, Huo J, She J, et al. Different associations between left atrial size and 2.5-year clinical outcomes in patients with anterior versus non-anterior wall ST-elevation myocardial infarction. Journal of International Medical Research. 2020;48(4). [CrossRef]
- Luo G, Qian Y, Sheng X, et al. Elevated Serum Levels of Soluble ST2 Are Associated With Plaque Vulnerability in Patients With Non-ST-Elevation Acute Coronary Syndrome. Front Cardiovasc Med. 2021 Jul 22;8:688522. [CrossRef]
- Ono Y, Yoshino O, Hiraoka T, et al. IL-33 exacerbates endometriotic lesions via polarizing peritoneal macrophages to M2 subtype. Reprod Sci. (2020) 27:869–76. [CrossRef]
- Dalfino, G., Simone, S., Porreca, S. et al. Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease. Atherosclerosis 2010, 211(2), Pages 418-423. [CrossRef]
| Parameter | Value N=77 patients |
| Age (A+SD) years | 61.02 (11.81) |
| Dialysis vintage (M+IQR) years | 4.95 (2.4-7.8) |
| Sex (male) | 45 (56.2%) |
| Dry weight (A+SD) kg | 82.61 (19.52) |
| BMI (A+SD) kg2/m2 | 28.93 (6.46) |
| Albumin (M+IQR) g/dl | 4.1 (3.9-4.3) |
| Serum bicarbonate (A+SD) mmol/l | 22 (2.27) |
| Predialysis creatinine (A+SD) mg/dl | 8.54 (2.05) |
| Predialysis urea (A+SD) mg/dl | 122.63 (25.9) |
| Haemoglobin (M+IQR) g/dl | 10.85 (10.3-11.6) |
| C reactive protein (M+IQR) mg/dl | 0.43 (0.26-1.2) |
| Serum sodium (M+IQR) mmol/l | 139 (137.7-140.4) |
| Serum potassium (A+SD) mmol/l | 5.37 (0.64) |
| Serum calcium (A+SD) mg/dl | 8.66 (0.51) |
| Serum phosphorus (M+IQR) mg/dl | 5.39 (4.67-6.3) |
| Calcium phosphorus product (A+SD) mg2/dl2 | 47.86 (13.06) |
| Parathyroid hormone (M+IQR) ng/ml | 428 (197-713.5) |
| Thrombocytes (M+IQR) N/mm3 | 219500 (174000-254000) |
| eKT/V (A+SD) | 1.6 (0.2) |
| Mean ultrafiltration volume (A+SD) ml | 2343 (587) |
| Deaths N (%) | 17 (22.1%) |
| Parameter | Value |
| Left atrium diameter (A+SD) mm | 41.87 (4.7) |
| Right ventricle diameter (M+IQR) mm | 27 (26-28) |
| Aortic atheromathosis N (%) | 60 (76.9%) |
| Endomyocardial calcifications N (%) | 55 (70.5%) |
| Kinetics dysfunction N (%) | 33 (42.3%) |
| Aortic valve calcifications N (%) | 53 (67.9%) |
| Aortic valve fibrosis N (%) | 63 (80.8%) |
| Mitral valve calcification N (%) | 61 (78.2%) |
| Mitral valve fibrosis N (%) | 61 (78.2%) |
| Let ventricle tele diastolic diameter (M+IQR) mm | 53 (49-58) |
| Left ventricle tele systolic diameter (A+SD) mm | 38.78 (6.51) |
| Waves E/A rapport (M+IQR) | 0.7 (0.4-1) |
| Ejection fraction (M+IQR) % | 51 (43-54) |
| Global longitudinal strain (M+IQR) % (absolute value) | 14 (12-17) |
| Interventricular septum (M+IQR) mm | 13 (12-14) |
| Left ventricle mass (M+IQR) g | 254.5 (203-304) |
| Parameter | Value |
| FGF-23 (M+ IQR) pg/ml | 47.93 (21.89-104.29) |
| Galectin 3 (M+ IQR) ng/ml | 3.9 (2.62-9.62) |
| Human ST2 (M+ IQR) ng/ml | 68.35 (34.5-121.1) |
| Human BMP2 (M+ IQR) pg/ml | 712.7 (451-725.9) |
| IL-1B (M+IQR) pg/ml | 44.74 (42.92-48.49) |
| Parameter | EF | GLS (absolute value) | LA | LVTSD |
| IL-1B pg/ml | Coef=0.022, p<0.0001 | Coef=0.011, p=0.003 | Coef=-0.024, p=0.031 | Coef=-0.021, p<0.0001 |
| Galectin 3 ng/ml | - | - | - | - |
| Human ST2 ng/ml | - | - | - | - |
| Human BMP2 pg/ml | - | - | - | - |
| FGF-23 pg/ml | - | - | - | - |
| R square adjusted | 0.689 | 0.109 | 0.054 | 0.73 |
| Parameter | Aortic valve fibrosis | Mitral valve calcifications |
| IL-1B pg/ml | - | 0.98 (0.97-1.00), p=0.071 |
| Galectin 3 ng/ml | 0.92 (0.85-0.99), p=0.042 | 0.88 (0.79-0.98), p=0.025 |
| Human ST2 ng/ml | 0.99 (0.98-1.00), p=0.084 | 0.98 (0.97-0.99), p=0.01 |
| Human BMP2 pg/ml | - | - |
| FGF-23 pg/ml | - | 1.01 (0.99-1.02), p=0.085 |
| Nagelkerke R square | 0.154 | 0.37 |
| AUC (95%CI) | 0.655 (0.531-0.765) | 0.809 (0.697-0.894) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
