Submitted:
26 February 2024
Posted:
27 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Research Methods Are Described in the Study by [1]
2.2. Methods Used in This Study
3. Results
3.1. GHG Fluxes from Ecosystems of the Russian Federation
| Types of land | In the work by [1] | In this study |
|---|---|---|
| Forest lands | -775.2 | -895.6* |
| Grasslands | -370.8 | -330.7 |
| out of which: - natural steppes, total |
-107.0 |
-107.0 |
| - unmanaged grasslands outside the steppe zone | - | -62.1 |
| - fodder lands (hayfields and pastures) outside the steppe zone | 49.5 | -21.7 |
| - fallow lands, including: | - | -139.9 |
| - secondary steppes | -313.3 | -111.5 |
| Wetlands | 32.5 | 32.5 |
| out of which: - swamps |
-119.2 |
-119.2 |
| - areas under water | 151.7 | 151.7 |
| Tundra | 64.7 | 64.7 |
| Total | -1048.6 | -1129.1 |
3.2. Balance of Anthropogenic and Natural GHG Fluxes in Russia
4. Discussion
Managed and Unmanaged Lands in GHG Reporting
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korotkov, V.N.; Romanovskaya, A.A.; Karelin, D.V.; Kurganova, I.N.; Sirin, A.A.; Korzukhin, M.D.; Lopes de Gerenu, V.O.; Golubyatnikov, L.L.; Glagolev, M.V.; Popov, I.O.; Trunov, A.A.; Vertyankina, V.Y.; Polumieva, P.D.; Berdin, V.Kh.; Yulkin, G.M.; Posysaev, Yu.Yu.; Karimova, D. .B.; Skonechny, M.S. Assessment of greenhouse gas flows in ecosystems of regions of the Russian Federation. In Assessment of greenhouse gas flows in ecosystems of regions of the Russian Federation, A.A. Romanovskaya, Ed.; Yu.A. Izrael Institute of Global Climate and Ecology: Moscow, Russia, 2023; pp. 45–345. Available online: http://www.igce.ru/wp-content/uploads/2023/11/Monograph_corr_15112023_2.pdf (accessed on 19 February 2024).
- Nabuurs, GJ. , Ciais, P., Grassi, G. et al. Reporting carbon fluxes from unmanaged forest. Commun. Earth Environ. 2023, 4, 337. [Google Scholar] [CrossRef]
- National Inventory Submissions 2023. Available online: https://unfccc.int/ghg-inventories-annex-i-parties/2023 (accessed on 19 February 2024).
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; Ciais, P.; Jackson, R.B.; Pacala, S.; McGuire, A.D.; Piao, S.; Rautiainen, A.; Sitch, S.; Hayes, D.; Wayson, C.A. Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S. C.; Graven, H.; Heinze, C.; Huntingford, C.; Levis, S.; Levy, P. E.; Lomas, M.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Arneth, A.; Bonan, G.; Bopp, L.; Canadell, J. G.; Chevallier, F.; Ciais, P.; Ellis, R.; Gloor, M.; Peylin, P.; Piao, S. L.; Le Quéré, C.; Smith, B.; Zhu, Z.; Myneni, R. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 2015, 12, 653–679. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O'Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I. T.; Olsen, A.; Peters, G. P.; Peters, W.; Pongratz, J.; Schwingshackl, C.; Sitch, S.; Canadell, J. G.; Ciais, P.; Jackson, R. B.; Alin, S. R.; Alkama, R.; Arneth, A.; Arora, V. K.; Bates, N. R.; Becker, M.; Bellouin, N.; Bittig, H. C.; Bopp, L.; Chevallier, F.; Chini, L. P.; Cronin, M.; Evans, W.; Falk, S.; Feely, R. A.; Gasser, T.; Gehlen, M.; Gkritzalis, T.; Gloege, L.; Grassi, G.; Gruber, N.; Gürses, Ö.; Harris, I.; Hefner, M.; Houghton, R. A.; Hurtt, G. C.; Iida, Y.; Ilyina, T.; Jain, A. K.; Jersild, A.; Kadono, K.; Kato, E.; Kennedy, D.; Klein Goldewijk, K.; Knauer, J.; Korsbakken, J. I.; Landschützer, P.; Lefèvre, N.; Lindsay, K.; Liu, J.; Liu, Z.; Marland, G.; Mayot, N.; McGrath, M. J.; Metzl, N.; Monacci, N. M.; Munro, D. R.; Nakaoka, S.-I.; Niwa, Y.; O'Brien, K.; Ono, T.; Palmer, P. I.; Pan, N.; Pierrot, D.; Pocock, K.; Poulter, B.; Resplandy, L.; Robertson, E.; Rödenbeck, C.; Rodriguez, C.; Rosan, T. M.; Schwinger, J.; Séférian, R.; Shutler, J. D.; Skjelvan, I.; Steinhoff, T.; Sun, Q.; Sutton, A. J.; Sweeney, C.; Takao, S.; Tanhua, T.; Tans, P. P.; Tian, X.; Tian, H.; Tilbrook, B.; Tsujino, H.; Tubiello, F.; van der Werf, G. R.; Walker, A. P.; Wanninkhof, R.; Whitehead, C.; Willstrand Wranne, A.; Wright, R.; Yuan, W.; Yue, C.; Yue, X.; Zaehle, S.; Zeng, J.; Zheng, B. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Byrne, B.; Baker, D.F.; Basu, S.; Bertolacci, M.; Bowman, K.W.; et al. National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci. Data 2023, 15, 963–1004. [Google Scholar] [CrossRef]
- Fedorov, Yu.A.; Tambieva, N.S.; Garkusha, D.N.; Khoroshevskaya, V.O. Methane in aquatic ecosystems. Rostizdat: Rostov-on-Don, Moscow, Russia, 2005.
- Shvidenko, A.Z.; Schepaschenko, D.G. Carbon budget of Russian forests (in Russian). Sib. Lesn. Zhurnal 2014, 1, 69–92. Available online: https://www.elibrary.ru/item.asp?id=21920294 (accessed on 19 February 2024).
- Zamolodchikov, D.G.; Grabowsky, V.I.; Chestnykh, O.V. Dynamic pattern of carbon balance in the forests of federal districts of the Russian Federation. For. Sci. Issues 2019, 2, S2–1. [Google Scholar] [CrossRef]
- Karelin, D.V.; Goriachkin, S.V.; Zamolodchikov, D.G.; Dolgikh, A.V.; Zazovskaya, E.P.; Shishkov, V.A.; Pochikalov, A.V.; Sirin, A.A.; Suvorov, G.G.; Kraev, G.N. The influence of local anthropogenic factors on soil emission of biogenic greenhouse gases in cryogenic ecosystems. Zhurnal Obs. Biol. 2016, 77, 3–167. [Google Scholar]
- Sirin, А.А.; Medvedeva, M.A.; Itkin, V.Y. Rewetting of Disused Drained Peatlands and Reduction of Greenhouse Gas Emissions. Izv. Ross. Akad. Nauk. Seriâ Geogr. 2023, 87, 597–618. [Google Scholar] [CrossRef]
- Kudeyarov, V.N.; Zavarzin, G.A.; Blagodatsky, S.A.; Borisov, A.V.; Voronin, P.Yu.; Demkin, V.A.; Demkina, T.S.; Evdokimov, I.V.; Zamolodchikov, D.G.; Karelin, D.V.; Komarov, A.S.; Kurganova, I.N.; Larionova, A.A.; Lopes de Gerenyu, V.O.; Utkin, A.I.; Chertov, O.G. Carbon flows and pools in terrestrial ecosystems of Russia (in Russian); G.A. Zavarzin, Ed.; Nauka: Moscow, Russia, 2007. [Google Scholar]
- Kudeyarov, V.N. Carbon balance of terrestrial ecosystems in Russia. For the 25th anniversary of the adoption of the UN Framework Convention on Climate Change [Uglerodnyy balans nazemnykh ekosistem na territorii Rossii. K 25-letiyu prinyatiya ramochnoy Konventsii OON ob izmenenii klimata]. Vestn. Ross. Akad. Nauk 2018, 88, 179–183. [Google Scholar] [CrossRef]
- Bondur, V.G.; Mokhov, I.I.; Macosko, A.A. (Eds.) Methane and climate change: scientific problems and technological aspects. Russian Academy of Sciences: Moscow, Russia, 2022; 388 p.
- Romanovskaya, A.A.; Nakhutin, A.I.; Ginzburg, V.A.; Grabar, V.A.; Imshennik, E.V.; Korotkov, V.N.; Bakurova, E.U.; Vertyankina, V.Yu.; Grigurina, T.V.; Govor, I.L.; Isaeva, A.V.; Litvinchuk, G.G.; Lytov, V.M.; Polumieva, P.D.; Popov, N.V.; Sorokina, D.D.; Trunov, A.A.; Prokhorova, L.A. National Report on the Cadastre of Anthropogenic Emissions from Sources and Absorptions by Sinks of Greenhouse Gases of Russian Federation Not Regulated by Montreal Protocol for 1990-2021 (in Russian); Yu.A. Izrael Institute of Global Climate and Ecology of the Federal Service for Hydrometeorology and Environmental Monitoring: Moscow, Russia, 2023; Available online: https://unfccc.int/documents/631719 (accessed on 19 February 2024).
- Information on the availability and distribution of land. Available online: https://rosreestr.gov.ru/activity/gosudarstvennoe-upravlenie-v-sfere-ispolzovaniya-i-okhrany-zemel/gosudarstvennyy-monitoring-zemel/sostoyanie-zemel-rossii/gosudarstvennyy-natsionalnyy-doklad-o-sostoyanii-i-ispolzovanii-zemel-v-rossiyskoy-federatsii/ (accessed on 19 February 2024).
- Romanovskaya, A.A.; Nakhutin, A.I.; Gitarskii, M.L.; Ginzburg, V.A.; Vertyankina, V.Yu.; Govor, I.L.; Grabar, V.A.; Imshennik, E.V.; Karaban’, R.T.; Korotkov, V.N.; Lytov, V.M.; Polumieva, P.D.; Trunov, A.A.; Uvarova, N.E.; Prokhorova, L.A. National Report on the Cadastre of Anthropogenic Emissions from Sources and Absorptions by Sinks of Greenhouse Gases of Russian Federation Not Regulated by Montreal Protocol for 1990–2016 (in Russian); Yu.A. Izrael Institute of Global Climate and Ecology of the Federal Service for Hydrometeorology and Environmental Monitoring: Moscow, Russia, 2018; p. 470. Available online: https://unfccc.int/documents/65719 (accessed on 19 February 2024).
- Vompersky, S.E.; Sirin, A. A.; Sal'nikov, A.A.; Tsyganova, O.P.; Valyaeva, N.A. Estimation of forest cover extent over peatlands and paludified shallow-peat lands in Russia. Contemp. Probl. Ecol. 2011, 4, 734–741. [Google Scholar] [CrossRef]
- Sirin, A.A. Types of swamps M 1:30,000,000 (a map). In Ecological atlas of Russia. Feoriya LLC: Moscow, Russia, 2017, p. 120.
- Zamolodchikov, D.G.; Karelin, D.V.; Ivaschenko, A.I.; Lopes de Gerenyu, V.O. Micrometeorological assessment of biogenic fluxes of carbon dioxide in typical tundra ecosystems of eastern Chukotka. Eurasian Soil Sci. 2005, 38, 759–763. [Google Scholar]
- Karelin, D.V.; Zamolodchikov, D.G. Carbon exchange in cryogenic ecosystems (in Russian); Nauka: Moscow, Russia, 2008; p. 344. [Google Scholar]
- Karelin, D.V.; Zamolodchikov, D.G.; Zukert, N.V.; Chestnykh, O.V.; Pochikalov, A.V.; Krayev, G.N. Interannual changes in par and soil moisture during the warm season may be more important for directing of annual carbon balance in tundra than temperature fluctuations (in Russian). Zhurnal Obs. Biol. 2013, 74, 1–3. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G.; Grabovskii, V.I.; Kraev, G.N. A twenty-year retrospective on the forest carbon dynamics in Russia. Contemp. Probl. Ecol. 2011, 4, 706–715. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G.; Grabovskii, V.I.; Gitarskii, M.L.; Blinov, V.G.; Dmitriev, V.V.; Kurz, W.A.; Korovin, G.N. Carbon budget of managed forests in the Russian Federation in 1990-2050: Post-evaluation and forecasting. Russ. Meteorol. Hydrol. 2013, 38, 701–714. [Google Scholar] [CrossRef]
- Zamolodchikov, D.G.; Chestnykh, O.V.; Grabovsky, V.I.; Shulyak, P.P. The impacts of fires and clear-cuts on the carbon balance of Russian forests. Contemp. Probl. Ecol. 2013, 6, 714–726. [Google Scholar] [CrossRef]
- Kurganova, I.; Lopes de Gerenyu, V.; Kuzyakov, Y. Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan. Catena 2015, 133, 461–466. [Google Scholar] [CrossRef]
- Golubyatnikov, L.L.; Kurganova, I.N.; Lopes de Gerenyu, V.O. Estimation of Carbon Balance in Steppe Ecosystems of Russia. Izv. Atmos. Ocean. Phys. 2023, 59, 63–77. [Google Scholar] [CrossRef]
- Romanovskaya, A.A.; Karaban’, R.T. Regional features of soil carbon balance on pastures and hayfields in Russia (in Russian). [Regional'nyye osobennosti balansa ugleroda pochv na kormovykh ugod'yakh Rossii]. Izv. Ross. Akad. Nauk. Seriya Geogr. 2008, 4, 96–104. [Google Scholar]
- The Intergovernmental Panel on Climate Change (IPCC). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC, Switzerland. 2014. Available online: https://www.ipcc-nggip.iges.or.jp/public/wetlands/index.html (accessed on 19 February 2024).
- The Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4 Agriculture, Forestry and Other Land Use. Chapter 7: Wetlands. 2019. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 19 February 2024).
- Specialized arrays for climate research. Available online: http://aisori.meteo.ru/climater (accessed on 23 February 2024).
- Filipchuk, A.N.; Malysheva, N.V.; Zolina, T.A.; Fedorov, S.V.; Berdov, A.M.; Kositsyn, V.N.; Yugov, A.N.; Kinigopulo, P.S. Analytical review of the quantitative and qualitative characteristics of forests in the Russian Federation: results of the first cycle of the State Forest Inventory (in Russian). Lesokhozyaystvennaya informatsiya 2022, 1, 5–34. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Stytsenko, F.V. An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas. Lesovedenie 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Lukina, N.V. New methodology for space-based carbon monitoring in Russian forests. Zemlya I Vselennaya 2023, 5, 44–58. [Google Scholar] [CrossRef]
- Information and analytical system "Carbon-E". Available online: http://carbon.geosmis.ru/ (accessed on 19 February 2024).
- Shvidenko, A.Z.; Schepaschenko, D.G.; Nilsson, S.; Buluy, Y.I. Tables and Models of Growth and Productivity of Forests of Major Forest Forming Species of Northern Eurasia. Standard and Reference Materials, 2nd ed.; Federal Agency of Forest Management: Moscow, Russia, 2008. [Google Scholar]
- Shvidenko, A.; Mukhortova, L.; Kapitsa, E.; Kiaxner, F.; See, L.; Pyzhev, A.; Gordeev, R.; Fedorov, S.; Korotkov, V.; Bartalev, S.; et al. A Modelling System for Dead Wood Assessment in the Forests of Northern Eurasia. Forests 2023, 14, 45. [Google Scholar] [CrossRef]
- Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Blyshchyk, V.; Dmitriev, E.; Martynenko, O.; See, L.; Kraxner, F. Improved Estimates of Biomass Expansion Factors for Russian Forests. Forests 2018, 9, 312–1. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 23 February 2024).
- Anuchin, N.P. Sortimentnyye i tovarnyye tablitsy, 7-th ed. Lesnaya promyshlennost': Moscow, Russia, 1981. 536 p.
- Rosstat – official statistics. Available online: https://rosstat.gov.ru/folder/10705 (accessed on 23 February 2024).
- Distribution of the agricultural land fund of the RSFSR by soil groups, Ministry of Agriculture of the RSFSR, Russian Agricultural Chemistry, Main Directorate of Land Use and Land Management, All-Russian Scientific Research Institute and Design and Technological Institute of Agricultural Chemicalization: Moscow, Russia, 1980; 107.
- Romanovskaya, A.A. Fundamentals of monitoring anthropogenic emissions and sinks of greenhouse gases (CO2, N2O, СН4) in livestock farming, agricultural land use and land use change in. Russia. Dissertation, for the degree of Doctor of Biological Sciences. Moscow, Russia, 2008. Available online: https://www.dissercat.com/content/osnovy-monitoringa-antropogennykh-emissii-i-stokov-parnikovykh-gazov-co2-n2o-ch4-v-zhivotnov (accessed on 19 February 2024).
- The Unified State Register of Soil Resources of Russia has been developed in accordance with the "Concept for the development of state monitoring of agricultural lands and lands used for agriculture as part of lands of other categories, and the formation of state information resources on these lands for the period up to 2020", approved by Decree of the Government of the Russian Federation dated 30.07.2010 No. 1292-R. Available online: https://egrpr.esoil.ru/index.htm (accessed on 19 February 2024).
- Titlyanova, A.A.; Kyrgys, Ch.S.; Sambuu, A.D. The influence of pasture load and weather conditions on the productivity of dry steppes of Tuva. Pochvy I Okruz. Sreda 2020, 3, 2–113. [Google Scholar]
- Schepaschenko, D.; Moltchanova, E.; Fedorov, S.; Karminov, V.; Ontikov, P.; Santoro, M.; See, L.; Kositsyn, V.; Shvidenko, A.; Romanovskaya, A.; Korotkov, V.; Lesiv, M.; Bartalev, S.; Fritz, S.; Shchepashchenko, M.; Kraxner, F. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep. 2021, 11, 12825. [Google Scholar] [CrossRef] [PubMed]
- Romanov, A.A.; Tamarovskaya, A.N.; Gloor, E.; Brienen, R.; Gusev, B.A.; Leonenko, E.V.; Vasiliev, A.S.; Krikunov, E.E. Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021. Sci. Total Environ. 2022, 846, 157322. [Google Scholar] [CrossRef]
- Grassi, G.; Schwingshackl, C.; Gasser, T.; Houghton, R. A.; Sitch, S.; Canadell, J. G.; Cescatti, A.; Ciais, P.; Federici, S.; Friedlingstein, P.; Kurz, W.A.; Sanz Sanchez, M.J.; Abad Viñas, R.; Alkama, R.; Bultan, S.; Ceccherini, G.; Falk, S.; Kato, E.; Kennedy, D.; Knauer, J.; Korosuo, A.; Melo, J.; McGrath, M.J.; Nabel, J.E.M.S.; Poulter, B.; Romanovskaya, A.A.; Rossi, S.; Tian, H.; Walker, A.P.; Yuan, W.; Yue, X.; and Pongratz, J. Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth Syst. Sci. Data 2023, 15, 1093–1114. [Google Scholar] [CrossRef]
- Filipchuk, A.N.; Malysheva, N.V.; Zolina, T.A.; Yugov, A.N. The boreal forest of Russia: opportunities for the effects of climate change mitigation (in Russian). Lesokhozyaystvennaya Informatsiya 2020, 1, 92–113. Available online: http://lhi.vniilm.ru/PDF/2020/1/LHI_2020_01-10-Filipchuk.pdf (accessed on 19 February 2024).
- Zhang, Z.; Poulter, B.; Feldman, A.F.; Ying, Q.; Ciais, P.; Peng, S. Li, X. Recent intensification of wetland methane feedback. Nat. Clim. Change 2023, 13, 430–433. [Google Scholar] [CrossRef]
- Bartalev, S.A. (Space Research Institute of the Russian Academy of Sciences, Moscow, Russia). Personal communication, 2024.
- Voigt, C.; Marushchak, M.E.; Abbott, B.W.; Biasi, C.; Elberling, B.; Siciliano, S. D.; et al. Nitrous oxide emissions from permafrost-affected soils. Nat. Rev. Earth Environ. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2019; pp. 447–587. [Google Scholar] [CrossRef]
- Liu, Z.; Kimball, J.S.; Ballantyne, A.P. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nat. Commun. 2022, 13, 5626. [Google Scholar] [CrossRef] [PubMed]
- Ciais, P.; Canadell, J.G.; Luyssaer, S.; еt, al. Can we reconcile atmospheric estimates of Northern terrestrial carbon sink with land-based accounting? Curr. Opin. Environ. Sustain. 2010, 2, 225–230. [Google Scholar] [CrossRef]
- Dolman, A.J.; Shvidenko, A.; Schepaschenko, D.; Ciais, P.; Tchebakova, N.; Chen, T.; van der Molen, M.K.; Belelli, M.L.; Maximov, T.C.; Maksyutov, S.; Schulze, E.-D. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion method. Biogeosciences 2012, 9, 5323–5340. [Google Scholar] [CrossRef]
- Deng, Z.; Ciais, P.; Tzompa-Sosa, Z.A.; Saunois, M.; Chevallier, F.; Tan, C.; Sun, T.; Ke, P.; Cui, Y.; Liu, Z. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 2022, 14, 1639–1675. [Google Scholar] [CrossRef]
- Denisov, S.N.; Eliseev, A.V.; Mokhov, I.I. Contribution of Natural and Anthropogenic Emissions of CO2 and CH4 to the Atmosphere from the Territory of Russia to Global Climate Changes in the Twenty-first Century. Dokl. Earth Sc. 2019, 488, 1066–1071. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; Ciais, P.; Arora, V.K.; Bastviken, D.; Bergamaschi, P.; Blake, D.R.; Brailsford, G.; Bruhwiler, L.; Carlson, K.M.; Carrol, M.; … Zhuang, Q. Supplemental data of the Global Carbon Project Methane Budget 2019 (Version 2.0) [Data set]. Glob. Carbon Proj. [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Lee, H.; Romero, J., Eds.; IPCC: Geneva, Switzerland, pp. 1-34. [CrossRef]
- Tian, H.; Yang, J.; Lu, C.; Xu, R.; Canadell, J.G.; Jackson, R.B.; Arneth, A.; Chang, J.; Chen, G.; Ciais, P.; Gerber, S.; Ito, A.; Huang, Y.; Joos, F.; Lienert, S.; Messina, P.; Olin, S.; Pan, S.; Peng, C.; Saikawa, E.; Thompson, R.L.; Vuichard, N.; Winiwarter, W.; Zaehle, S.; Zhang, B.; Zhang, K.; Zhu, Q. The Global N2O Model Intercomparison Project. Bull. Am. Meteorol. Soc. 2018, 99, 6–1231. [Google Scholar] [CrossRef]
- Tian, H.; Xu, R.; Canadell, J. G.; Thompson, R. L.; Winiwarter, W.; Suntharalingam, P.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (IPCC). Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies: Kanagawa Prefecture, Japan, 2003; Available online: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_contents.html (accessed on 19 February 2024).
- The Intergovernmental Panel on Climate Change (IPCC). Report of the IPCC expert meeting on IPCC Guidance on estimating emissions and removals from land uses such as agriculture and forestry, 13-15 May 2008; Helsinki, Finland. 13 pp. Available online: https://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/0805_HelsinkiMeeting_report.pdf (accessed on 23 February 2024).
- Grassi, G.; Stehfest, E.; Rogelj, J.; Vuuren, D.; Cescatti, A.; House, J.; Nabuurs, G.-J.; Rossi, S.; et al. Critical adjustment of land mitigation pathways for assessing countries’ climate progress. Nat. Clim. Change 2021, 11, 425–434. [Google Scholar] [CrossRef]




| Types of land | Inventory [18] | In the study by [1] | In this study |
|---|---|---|---|
| Forest lands | 897.0 | 897.0 | 897.0 |
| out of which: - managed forests |
688.2 |
- |
- |
| - unmanaged forests | 208.8 | - | - |
| Croplands1 | 92.6 | 92.6 | 92.6 |
| Grasslands | 122.0 | 125.1 | 122.0 |
| out of which: - managed grasslands |
100.3 | - | - |
| including deposits | 29.5 (*including secondary steppes) |
- | 14.0 |
| including secondary steppes | * | 32.4 | 16.3 |
| including hayfields and pastures (fodder lands) | 70.8 | 70.8 |
70.8 (including natural steppes 16.8) 21.0 (including natural steppes 5.2) Including total natural steppes 22.0 |
| - unmanaged grasslands | 21.7 | - | |
| including natural steppes | - | 22.0 | |
| Wetlands | 226.8 | 322.8 | 322.8 |
| out of which: - swamps |
157.5 |
253.5 |
253.5 |
| - areas under water | 69.3 | 69.3 | 69.3 |
| Settlements | 14.2 | 14.2 | 14.2 |
| Other lands | 359.9 | 260.8 | 263.9 |
| out of which: - tundra |
- |
258.5 |
258.5 |
| - other lands | - | 2.4 | 5.4 |
| Total lands | 1,712.5 | 1,712.5 | 1,712.5 |
| GHGs | Natural fluxes | Anthropogenic fluxes according to [16] | GHG balance in the Russian Federation |
|---|---|---|---|
| СО2 | -2,685.9 | 1,633.9 | -1,052.0 |
| СН4 | 1,299.5 | 293.1 | 1,592.6 |
| N2O | 257.3 | 81.4 | 338.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
