Submitted:
27 February 2024
Posted:
27 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Selection of Delphi Experts
2.3. Achieving Consensus
2.4. Determining Reliability and Validity of the Delphi Process
3. Results
3.1. Delphi Round One Result
3.2. Delphi Round Two Result
4. Discussion
5. Conclusions
5.1. Limitations and Implications for Future Research
References
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Parikh, P.; Black, M.; Borrion, A.; Spataru, C.; Castán Broto, V.; Anandarajah, G.; et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 2018, 3, 10–15. [CrossRef]
- Del Río Castro, G.; Fernández, M.C.G.; Colsa, A.U. Unleashing the convergence amid digitalization and sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. J. Clean. Prod. 2021, 280, 122204. [CrossRef]
- Battina, D. S. The strategic impacts of Intelligent Automation for knowledge and service work: An interdisciplinary review. International Journal of Emerging Technologies and Innovative Research 2020; ISSN, 2349-5162.
- Kaloudi, N.; Li, J. The ai-based cyber threat landscape: A survey. ACM Computing Surveys (CSUR) 2020; 53(1), 1-34.
- Chew, M.Y.L.; Teo, E.A.L.; Shah, K.W.; Kumar, V.; Hussein, G.F. Evaluating the Roadmap of 5G Technology Implementation for Smart Building and Facilities Management in Singapore. Sustainability 2020, 12, 10259. [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 1–10. [CrossRef]
- Fernandez-Aller, C.; de Velasco, A.F.; Manjarres, A.; Pastor-Escuredo, D.; Pickin, S.; Criado, J.S.; Ausin, T. An Inclusive and Sustainable Artificial Intelligence Strategy for Europe Based on Human Rights. IEEE Technol. Soc. Mag. 2021, 40, 46–54. [CrossRef]
- Kumar, M.; Raut, R.D.; Mangla, S.K.; Ferraris, A.; Choubey, V.K. The adoption of artificial intelligence powered workforce management for effective revenue growth of micro, small, and medium scale enterprises (MSMEs). Prod. Plan. Control. 2022, 1–17. [CrossRef]
- Gill, A.S.; Germann, S. Conceptual and normative approaches to AI governance for a global digital ecosystem supportive of the UN Sustainable Development Goals (SDGs). AI Ethic- 2022, 2, 293–301. [CrossRef]
- Vlačić, B.; Corbo, L.; Costa e Silva, S.; Dabić, M. The evolving role of artificial intelligence in marketing: A review and research agenda. J. Bus. Res. 2021, 128, 187–203. [CrossRef]
- Pedro, F.; Subosa, M.; Rivas, A.; Valverde, P. Artificial intelligence in education: Challenges and opportunities for sustainable development 2019.
- Diaz-Sarachaga, J. M.; Jato-Espino, D.; Castro-Fresno, D. Is the Sustainable Development Goals (SDG) index an adequate framework to measure the progress of the 2030 Agenda? Sustainable Development 2018; 26(6), 663-671.
- Frank, B. Artificial intelligence-enabled environmental sustainability of products: Marketing benefits and their variation by consumer, location, and product types. J. Clean. Prod. 2021, 285, 125242. [CrossRef]
- Helbing, D.; Frey, B. S.; Gigerenzer, G.; Hafen, E.; Hagner, M.; Hofstetter, Y.; Zwitter, A. Will democracy survive big data and artificial intelligence? Towards digital enlightenment: Essays on the dark and light sides of the digital revolution 2019; 73-98.
- Mhlanga, D. Artificial Intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the Sustainable Development Goals: Lessons from emerging economies? Sustainability 2021; 13(11), 5788. [CrossRef]
- Jungwirth, D.; Haluza, D. Artificial Intelligence and Public Health: An Exploratory Study. Int. J. Environ. Res. Public Heal. 2023, 20, Article No. 4541. [CrossRef]
- Haluza, D.; Jungwirth, D. Artificial Intelligence and Ten Societal Megatrends: An Exploratory Study Using GPT‐3. Systems 2023; 11, Article No. 120. [CrossRef]
- Collett, C.; Neff, G.; Livia, G. Effects of AI on the Working Lives of Women. United Nations Educational, Scientific and Cultural Organization 2022.
- Ismail, W.; Niknejad, N.; Bahari, M.; Hendradi, R.; Zaizi, N.J.M.; Zulkifli, M.Z. Water treatment and artificial intelligence techniques: a systematic literature review research. Environ. Sci. Pollut. Res. 2021, 30, 71794–71812. [CrossRef]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations. AI & Society 2021; 1-25.
- Morelli, J. Environmental sustainability: A definition for environmental professionals. J. Environ. Sustain. 2011, 1, 2. [CrossRef]
- Bianchi, R. V.; de Man, F. Tourism, inclusive growth and decent work: A political economy critique. Journal of Sustainable Tourism 2021; 29(2-3), 353-371.
- Denoncourt, J. Companies and UN 2030 Sustainable Development Goal 9 Industry, Innovation and Infrastructure. J. Corp. Law Stud. 2020, 20, 199–235. [CrossRef]
- Goralski, M. A.; Tan, T. K. Artificial intelligence and sustainable development. The International Journal of Management Education 2020; 18(1), 100330.
- World Health Organization. Ethics and governance of artificial intelligence for health: WHO guidance 2021.
- Ashford, N.A.; Hall, R.P.; Arango-Quiroga, J.; Metaxas, K.A.; Showalter, A.L. Addressing Inequality: The First Step Beyond COVID-19 and towards Sustainability. Sustainability 2020, 12, 5404. [CrossRef]
- Gupta, S.; Degbelo, A. An Empirical Analysis of AI Contributions to Sustainable Cities (SDG 11). In The Ethics of Artificial Intelligence for the Sustainable Development Goal 2023; Cham: Springer International Publishing, pp. 461-484.
- Yeh, S.-C.; Wu, A.-W.; Yu, H.-C.; Wu, H.C.; Kuo, Y.-P.; Chen, P.-X. Public Perception of Artificial Intelligence and Its Connections to the Sustainable Development Goals. Sustainability 2021, 13, 9165. [CrossRef]
- Degot, C.; Duranton, S.; Fredeau, M.; Hutchinson, R. Reduce Carbon and Costs with the Power of AI. BCG 2021; [ed], URL: https://www.bcg.com/publications/2021/ai-toreduce-carbon-emissions.
- Leal, F.W.; Wall, T.; Mucova, S. A. R.; Nagy, G. J.; Balogun, A. L.; Luetz, J. M.; Gandhi, O. Deploying artificial intelligence for climate change adaptation. Technological Forecasting and Social Change 2022; 180, 121662. [CrossRef]
- Isabelle, D.A.; Westerlund, M. A Review and Categorization of Artificial Intelligence-Based Opportunities in Wildlife, Ocean and Land Conservation. Sustainability 2022, 14, 1979. [CrossRef]
- Shivaprakash, K.N.; Swami, N.; Mysorekar, S.; Arora, R.; Gangadharan, A.; Vohra, K.; Jadeyegowda, M.; Kiesecker, J.M. Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability 2022, 14, 7154. [CrossRef]
- Singh, A.; Kanaujia, A.; Singh, V.K.; Vinuesa, R. Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories. Sustain. Dev. 2023, 32, 724–754. [CrossRef]
- Kahungi, N. (University of Nairobi Law, Nairobi, Kenya). Dawn of Artificial Intelligence in Alternative Dispute Resolution; Expanding Access to Justice through Technology ,2023.
- Tomašev, N.; Cornebise, J.; Hutter, F.; Mohamed, S.; Picciariello, A.; Connelly, B.; Belgrave, D.C.M.; Ezer, D.; van der Haert, F.C.; Mugisha, F.; et al. AI for social good: unlocking the opportunity for positive impact. Nat. Commun. 2020, 11, 2468. [CrossRef]
- Chui, M.; Chung, R.; van Heteren, A. McKinsey Global Institute’s Nobel Intelligence venture. Using AI to help Achieve Sustainable Development Goals: United Nations Development Programme. UNDP. https://www.undp.org/blog/using-ai-help-achieve-sustainable-development-goals (21 January 2019).
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]
- Ametepey, S. O.; Aigbavboa, C. O.; Thwala, W. D. Assessment of the use of Delphi technique in sustainable infrastructure development research. In Proceedings of Creative Construction Conference, Budapest University of Technology and Economics (2019).
- Habibi, A.; Sarafrazi, A.; Izadyar, S. Delphi technique theoretical framework inqualitative research. The International Journal of Engineering and Science 2014; 3(4), 8-13.
- Reefke, H.; Sundaram, D. Sustainable supply chain management: Decision models for transformation and maturity. Decis. Support Syst. 2018, 113, 56–72. [CrossRef]
- Delbecq, A. L.; Van de Ven, A. H.; Gustafson, D. H. Group techniques for program planning: A guide to nominal groups and Delphi processes. Scott, Foresman, 1975.
- Ametepey, S. O. An Integrated sustainable road infrastructure project implementation model for developing countries. Doctoral dissertation, University of Johannesburg, South Africa, 2019.
- Aghimien, D.O.; Aigbavboa, C.O.; Oke, A.E. Critical success factors for digital partnering of construction organisations – a Delphi study. Eng. Constr. Arch. Manag. 2020, 27, 3171–3188. [CrossRef]
- Ikuabe, M.; Aigbavboa, C.; Anumba, C.; Oke, A. E.; Adekunle, S. (2023). Business environment as a determinant in the uptake of cyber-physical systems for facilities management–a Delphi study. Facilities 2023, 41, 211–228. [CrossRef]
- Critcher, C.; Gladstone, B. Utilizing The Delphi Technique In Policy Discussion: A Case Study Of A Privatized Utility In Britain. Public Adm. 1998, 76, 431–449. [CrossRef]
- A Holey, E.; Feeley, J.L.; Dixon, J.; Whittaker, V.J. An exploration of the use of simple statistics to measure consensus and stability in Delphi studies. BMC Med Res. Methodol. 2007, 7, 52–52. [CrossRef]
- Chan, A.P.C.; Yung, E.H.K.; Lam, P.T.I.; Tam, C.M.; Cheung, S.O. Application of Delphi method in selection of procurement systems for construction projects. Constr. Manag. Econ. 2001, 19, 699–718. [CrossRef]
- Rayens, M.K.; Hahn, E.J. Building Consensus Using the Policy Delphi Method. Policy, Politi- Nurs. Pr. 2000, 1, 308–315. [CrossRef]
- Aigbavboa, C. O. An Integrated Beneficiary Centered Satisfaction Model for Publicly Funded Housing Schemes in South Africa, Doctoral Dissertation, University of Johannesburg, Johannesburg, 2013.
- McNeish, D. Thanks coefficient alpha, we’ll take it from here. Psychological methods 2018; 23(3), 412.
- Yousuf, M. I. The delphi technique. Essays in Education 2007; 20(1), 8.
- Barley, S. R. Work and technological change. Oxford University Press, USA, 2020.
- Mhlanga, D. Human-Centered Artificial Intelligence: The Superlative Approach to Achieve Sustainable Development Goals in the Fourth Industrial Revolution. Sustainability 2022, 14, 7804. [CrossRef]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.d.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future of agriculture. Comput. Ind. 2020, 117, 103187. [CrossRef]
- Wakunuma, K.; Jiya, T.; Aliyu, S. Socio-ethical implications of using AI in accelerating SDG3 in Least Developed Countries. J. Responsible Technol. 2020, 4, 100006. [CrossRef]
- Kasneci, E.; Sessler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Gasser, U.; Groh, G.; Günnemann, S.; Hüllermeier, E.; et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [CrossRef]
- Mhlanga, D. Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning (11 February 2023).
- Zhang, K.; Aslan, A.B. AI technologies for education: Recent research & future directions. Comput. Educ. Artif. Intell. 2021, 2, 100025. [CrossRef]
- Tschakert, P.; Machado, M. Gender Justice and Rights in Climate Change Adaptation: Opportunities and Pitfalls. Ethic- Soc. Welf. 2012, 6, 275–289. [CrossRef]
- Nova, K. AI-Enabled Water Management Systems: An Analysis of System Components and Interdependencies for Water Conservation. Eigenpub Review of Science and Technology 2023; 7(1), 105-124.
- Veldpaus, L.; Pereira Roders, A. R.; Colenbrander, B. J. Urban heritage: putting the past into the future. The Historic Environment: Policy & Practice 2013; 4(1), 3-18.
- Ali, S.S.; Choi, B.J. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030. [CrossRef]
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy, Grids Networks 2019, 18, 100226. [CrossRef]
- Moore, P. V. OSH and the future of work: benefits and risks of artificial intelligence tools in workplaces. In Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion: 10th International Conference, DHM 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019, Proceedings, Part I 21 (pp. 292-315). Springer International Publishing.
- Carayannis, E. G.; Morawska-Jancelewicz, J. The futures of Europe: Society 5.0 and Industry 5.0 as driving forces of future universities. Journal of the Knowledge Economy 2022; 13(4), 3445-3471.
- Dingler, A.; Enkel, E. Socialization and innovation: Insights from collaboration across industry boundaries. Technol. Forecast. Soc. Chang. 2016, 109, 50–60. [CrossRef]
- Božić, V. Artifical Intelligence as the Reason and the Solution of Digital Divide. Language Education and Technology 2023; 3(2).
- Gupta, S.; Zeballos, J.C.; Castro, G.d.R.; Tomičić, A.; Morales, S.A.; Mahfouz, M.; Osemwegie, I.; Sessi, V.P.C.; Schmitz, M.; Mahmoud, N.; et al. Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development. Sustainability 2023, 15, 6844. [CrossRef]
- Popkova, E.G.; De Bernardi, P.; Tyurina, Y.G.; Sergi, B.S. A theory of digital technology advancement to address the grand challenges of sustainable development. Technol. Soc. 2021, 68, 101831. [CrossRef]
- Balogun, A.-L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres. Sustain. Cities Soc. 2020, 53, 101888. [CrossRef]
- Caetano, T.; Winkler, H.; Depledge, J. Towards zero carbon and zero poverty: integrating national climate change mitigation and sustainable development goals. Clim. Policy 2020, 20, 773–778. [CrossRef]
- Folke, C.; Polasky, S.; Rockström, J.; Galaz, V.; Westley, F.; Lamont, M.; Scheffer, M.; Österblom, H.; Carpenter, S.R.; Chapin, F.S.; et al. Our future in the Anthropocene biosphere. AMBIO 2021, 50, 834–869. [CrossRef]
- Mehmood, H.; Liao, D.; Mahadeo, K. A review of artificial intelligence applications to achieve water-related sustainable development goals. In 2020 IEEE/ITU International Conference on Artificial Intelligence for Good (AI4G), 2020; pp. 135-141. IEEE.
- Ahmad, K.; Maabreh, M.; Ghaly, M.; Khan, K.; Qadir, J.; Al-Fuqaha, A. Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges. Comput. Sci. Rev. 2022, 43, 100452. [CrossRef]
- Purves, D.; Davis, J. Public Trust, Institutional Legitimacy, and the Use of Algorithms in Criminal Justice. Public Aff. Q. 2022, 36, 136–162. [CrossRef]
- Sætra, H.S. AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System. Sustainability 2021, 13, 1738. [CrossRef]
- Schlogl, L.; Sumner, A. The rise of the robot reserve army: Automation and the future of economic development, work, and wages in developing countries. Center for Global Development Working Paper 2018; 487.
- World Economic Forum & PwC. Unlocking technology for global goals, 2018.
- Aheleroff, S.; Huang, H.; Xu, X.; Zhong, R.Y. Toward sustainability and resilience with Industry 4.0 and Industry 5.0. Front. Manuf. Technol. 2022, 2, 951643. [CrossRef]

| Demographic designation | Number of experts | Percentage |
|---|---|---|
| Academic qualifications | ||
| Bachelor’s degree | 2 | 16.67% |
| Master’s degree | 6 | 50.00% |
| Doctor of philosophy | 4 | 33.33% |
| Total | 12 | 100% |
| Area of specialization | ||
| Environmental sustainability and conservation, biodiversity, and climate action | 3 | 25.00% |
| Urban planning and infrastructure | 4 | 33.33% |
| Agriculture, health, and food security | 2 | 16.67% |
| AI developers/ scientists/ enthusiasts | 2 | 16.67% |
| AI Data Science and Analytics | 1 | 8.33% |
| Total | 12 | 100% |
| Years of experience | ||
| 1-5 years | 2 | 16.67% |
| 6-10 years | 7 | 58.33% |
| 11-15 years | 2 | 16.67% |
| Over 15 years | 1 | 8.33% |
| Total | 12 | 100% |
| Employment agency | ||
| Academia | 6 | 50.00% |
| Government Agency | 2 | 16.67% |
| NGO/ International Bodies/ CSO | 2 | 16.67% |
| Consultancy | 1 | 8.33% |
| Private Organization | 1 | 8.33% |
| Total | 12 | 100% |
| Status of Consensus | Interquartile Deviation (IQD) |
|---|---|
| Weak consensus | ≥2.1≤ 3 |
| Good consensus | ≥1.1≤ 2 |
| Strong consensus | ≥ 0.0 ≤ 1 |
| Goal/Targets(T) | Median | Mean | SD | IQD | ||||
|---|---|---|---|---|---|---|---|---|
| Goal 1 | 8.00 | 8.00 | 0.70 | 1.000 | ||||
| T1 | 8.04 | 8.00 | 0.65 | 1.000 | ||||
| T2 | 6.67 | 6.67 | 0.49 | 0.500 | ||||
| T3 | 5.42 | 5.42 | 0.48 | 0.750 | ||||
| T4 | 6.67 | 6.67 | 0.49 | 0.500 | ||||
| T5 | 8.67 | 8.67 | 0.58 | 1.000 | ||||
| T6 | 4.42 | 4.42 | 0.48 | 0.500 | ||||
| T7 | 2.92 | 2.92 | 0.49 | 0.500 | ||||
| Goal 2 | 7.17 | 7.00 | 0.85 | 1.200 | ||||
| T1 | 8.00 | 8.21 | 0.63 | 1.000 | ||||
| T2 | 7.00 | 6.67 | 0.49 | 0.375 | ||||
| T3 | 5.50 | 5.42 | 0.48 | 0.375 | ||||
| T4 | 7.00 | 7.08 | 0.47 | 0.500 | ||||
| T5 | 8.50 | 8.58 | 0.58 | 1.000 | ||||
| T6 | 4.50 | 4.42 | 0.48 | 0.250 | ||||
| T7 | 3.00 | 2.92 | 0.49 | 0.125 | ||||
| T8 | 7.50 | 7.67 | 0.48 | 0.375 | ||||
| Goal 3 | 8.00 | 8.00 | 0.70 | 1.000 | ||||
| T1 | 8.50 | 8.46 | 0.50 | 0.750 | ||||
| T2 | 7.00 | 6.71 | 0.47 | 1.000 | ||||
| T3 | 5.00 | 5.04 | 0.52 | 0.500 | ||||
| T4 | 7.00 | 6.96 | 0.48 | 0.500 | ||||
| T5 | 7.75 | 7.79 | 0.49 | 1.250 | ||||
| T6 | 4.00 | 3.96 | 0.52 | 1.000 | ||||
| T7 | 3.00 | 2.96 | 0.48 | 1.000 | ||||
| T8 | 7.00 | 6.79 | 0.24 | 0.500 | ||||
| T9 | 7.75 | 7.67 | 0.48 | 1.000 | ||||
| T10 | 7.00 | 6.67 | 0.49 | 1.500 | ||||
| T11 | 5.75 | 5.67 | 0.49 | 1.000 | ||||
| T12 | 4.75 | 4.67 | 0.49 | 1.500 | ||||
| T13 | 7.75 | 7.67 | 0.48 | 0.500 | ||||
| Goal 4 | 6.67 | 7.00 | 0.57 | 0.750 | ||||
| T1 | 8.50 | 8.46 | 0.50 | 0.375 | ||||
| T2 | 7.00 | 6.71 | 0.47 | 0.625 | ||||
| T3 | 5.00 | 5.04 | 0.52 | 0.750 | ||||
| T4 | 7.00 | 6.96 | 0.48 | 0.375 | ||||
| T5 | 7.75 | 7.79 | 0.49 | 0.500 | ||||
| T6 | 4.00 | 3.96 | 0.52 | 1.250 | ||||
| T7 | 3.00 | 2.96 | 0.48 | 0.750 | ||||
| T8 | 7.00 | 6.79 | 0.24 | 0.500 | ||||
| T9 | 7.75 | 7.67 | 0.48 | 0.500 | ||||
| T10 | 7.00 | 6.67 | 0.49 | 0.500 | ||||
| Goal 5 | 7.08 | 7.00 | 0.64 | 1.000 | ||||
| T1 | 8.00 | 7.92 | 0.35 | 0.375 | ||||
| T2 | 5.75 | 5.75 | 0.42 | 0.375 | ||||
| T3 | 4.50 | 4.42 | 0.48 | 0.500 | ||||
| T4 | 6.00 | 6.08 | 0.57 | 0.500 | ||||
| T5 | 7.00 | 6.92 | 0.48 | 0.500 | ||||
| T6 | 3.00 | 3.08 | 0.48 | 0.500 | ||||
| T7 | 2.00 | 2.08 | 0.42 | 0.500 | ||||
| T8 | 5.75 | 5.75 | 0.25 | 0.500 | ||||
| T9 | 6.75 | 6.67 | 0.48 | 0.500 | ||||
| Goal 6 | 6.00 | 6.00 | 0.75 | 1.000 | ||||
| T1 | 8.00 | 7.92 | 0.35 | 0.500 | ||||
| T2 | 5.75 | 5.75 | 0.42 | 0.500 | ||||
| T3 | 4.50 | 4.42 | 0.48 | 0.500 | ||||
| T4 | 6.00 | 6.08 | 0.57 | 0.500 | ||||
| T5 | 7.00 | 6.92 | 0.48 | 0.500 | ||||
| T6 | 3.00 | 3.08 | 0.48 | 0.500 | ||||
| T7 | 2.00 | 2.08 | 0.42 | 0.500 | ||||
| T8 | 5.75 | 5.75 | 0.25 | 0.500 | ||||
| Goal 7 | 7.83 | 8.00 | 0.78 | 1.250 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 1.000 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 0.500 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| Goal 8 | 7.42 | 7.00 | 0.57 | 1.000 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 1.000 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 0.500 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| T6 | 4.00 | 4.00 | 0.35 | 1.000 | ||||
| T7 | 4.45 | 4.42 | 0.42 | 0.500 | ||||
| T8 | 6.00 | 6.00 | 0.35 | 1.000 | ||||
| T9 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T10 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| T11 | 8.50 | 8.42 | 0.42 | 1.000 | ||||
| T12 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| Goal 9 | 8.17 | 8.00 | 0.79 | 1.000 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 0.500 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 0.500 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 0.500 | ||||
| T6 | 4.00 | 4.00 | 0.35 | 0.500 | ||||
| T7 | 4.50 | 4.50 | 0.42 | 0.500 | ||||
| T8 | 6.00 | 6.00 | 0.35 | 0.500 | ||||
| Goal 10 | 6.75 | 7.00 | 0.58 | 0.750 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 1.000 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| T6 | 4.00 | 4.00 | 0.35 | 1.000 | ||||
| T7 | 4.50 | 4.42 | 0.42 | 1.000 | ||||
| T8 | 6.00 | 6.00 | 0.35 | 1.000 | ||||
| T9 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T10 | 7.50 | 7.50 | 0.42 | 0.500 | ||||
| Goal 11 | 7.42 | 7.50 | 0.63 | 1.000 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 1.000 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| T6 | 4.00 | 4.00 | 0.35 | 1.000 | ||||
| T7 | 4.50 | 4.42 | 0.42 | 1.000 | ||||
| T8 | 6.00 | 6.00 | 0.35 | 1.000 | ||||
| T9 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T10 | 7.50 | 7.50 | 0.42 | 0.500 | ||||
| Goal 12 | 7.42 | 7.50 | 0.64 | 1.000 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 1.000 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.50 | 0.42 | 1.000 | ||||
| T6 | 4.00 | 4.00 | 0.35 | 1.000 | ||||
| T7 | 4.50 | 4.42 | 0.42 | 1.000 | ||||
| T8 | 6.00 | 6.00 | 0.35 | 1.000 | ||||
| T9 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T10 | 7.50 | 7.50 | 0.42 | 0.500 | ||||
| T11 | 8.50 | 8.42 | 0.42 | 1.000 | ||||
| Goal 13 | 6.42 | 6.50 | 0.50 | 0.750 | ||||
| T1 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T2 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T3 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.42 | 1.000 | ||||
| T5 | 7.50 | 7.67 | 0.35 | 1.000 | ||||
| Goal 14 | 6.75 | 6.50 | 0.56 | 0.750 | ||||
| T1 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T2 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T3 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T5 | 7.50 | 7.67 | 0.42 | 1.000 | ||||
| T6 | 8.50 | 8.67 | 0.42 | 1.500 | ||||
| T7 | 7.50 | 7.67 | 0.42 | 1.000 | ||||
| T8 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T9 | 7.50 | 7.67 | 0.42 | 1.000 | ||||
| T10 | 7.50 | 7.67 | 0.42 | 1.000 | ||||
| Goal 15 | 7.83 | 8.00 | 0.62 | 1.000 | ||||
| T1 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T2 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T3 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T5 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T6 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T7 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T8 | 8.50 | 8.67 | 0.42 | 1.000 | ||||
| T9 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T10 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T11 | 7.00 | 7.00 | 0.35 | 1.000 | ||||
| T12 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| Goal 16 | 8.00 | 8.00 | 0.58 | 1.000 | ||||
| T1 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T2 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T3 | 8.50 | 8.67 | 0.42 | 0.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T5 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T6 | 8.50 | 8.67 | 0.42 | 0.000 | ||||
| T7 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T8 | 8.50 | 8.67 | 0.42 | 0.500 | ||||
| T9 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T10 | 7.50 | 7.67 | 0.42 | 0.500 | ||||
| T11 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T12 | 8.00 | 8.00 | 0.35 | 0.000 | ||||
| Goal 17 | 7.75 | 8.00 | 0.50 | 1.000 | ||||
| T1 | 8.00 | 8.00 | 0.35 | 1.000 | ||||
| T2 | 6.50 | 6.42 | 0.42 | 0.500 | ||||
| T3 | 5.50 | 5.42 | 0.42 | 1.000 | ||||
| T4 | 7.00 | 7.00 | 0.35 | 0.500 | ||||
| T5 | 7.57 | 7.50 | 0.42 | 1.000 | ||||
| T6 | 7.00 | 7.08 | 0.42 | 0.500 | ||||
| T7 | 7.50 | 7.42 | 0.42 | 0.500 | ||||
| T8 | 8.50 | 8.42 | 0.42 | 1.000 | ||||
| T9 | 6.50 | 6.50 | 0.35 | 1.000 | ||||
| T10 | 7.50 | 7.42 | 0.42 | 0.500 | ||||
| T11 | 6.50 | 6.67 | 0.42 | 0.250 | ||||
| T12 | 7.50 | 7.67 | 0.42 | 0.250 | ||||
| T13 | 8.50 | 8.67 | 0.42 | 0.250 | ||||
| T14 | 7.00 | 7.00 | 0.35 | 0.250 | ||||
| T15 | 7.50 | 7.67 | 0.42 | 0.250 | ||||
| T16 | 8.50 | 8.67 | 0.42 | 0.250 | ||||
| T17 | 7.50 | 7.67 | 0.42 | 0.250 | ||||
| T18 | 8.50 | 8.67 | 0.42 | 0.250 | ||||
| T19 | 7.50 | 7.67 | 0.42 | 0.250 | ||||
| Cronbach alpha: Goal: 0.89 Target: 0.96 | ||||||||
| Total Goal contribution | Mean | Median | SD | IQD | ||||
| All Goal contributions | 7.28 | 7.25 | 0.50 | 0.600 | ||||
| Cronbach alpha: | 0.898 | |||||||
| Goal/Targets (T) | Median | Mean | SD | IQD |
|---|---|---|---|---|
| Goal 1 | 7.05 | 7.00 | 0.32 | 0.600 |
| T1 | 6.98 | 6.90 | 0.29 | 0.550 |
| T2 | 7.02 | 7.02 | 0.28 | 0.530 |
| T3 | 6.99 | 6.95 | 0.31 | 0.570 |
| T4 | 7.05 | 7.04 | 0.27 | 0.520 |
| T5 | 6.98 | 6.95 | 0.29 | 0.550 |
| T6 | 7.00 | 6.99 | 0.28 | 0.540 |
| T7 | 7.01 | 7.00 | 0.29 | 0.560 |
| Goal 2 | 7.05 | 7.00 | 0.20 | 0.400 |
| T1 | 7.05 | 7.04 | 0.22 | 0.410 |
| T2 | 7.05 | 7.02 | 0.20 | 0.380 |
| T3 | 7.05 | 7.02 | 0.20 | 0.375 |
| T4 | 7.05 | 7.03 | 0.21 | 0.390 |
| T5 | 7.05 | 7.02 | 0.22 | 0.400 |
| T6 | 7.05 | 7.03 | 0.23 | 0.420 |
| T7 | 7.02 | 7.00 | 0.21 | 0.380 |
| T8 | 7.05 | 7.03 | 0.21 | 0.390 |
| Goal 3 | 7.04 | 7.00 | 0.21 | 0.350 |
| T1 | 6.96 | 6.95 | 0.28 | 0.520 |
| T2 | 6.97 | 6.95 | 0.26 | 0.500 |
| T3 | 6.98 | 6.90 | 0.28 | 0.530 |
| T4 | 6.97 | 6.90 | 0.29 | 0.550 |
| T5 | 6.96 | 6.90 | 0.27 | 0.520 |
| T6 | 6.94 | 6.90 | 0.26 | 0.500 |
| T7 | 6.95 | 6.85 | 0.28 | 0.540 |
| T8 | 7.00 | 6.79 | 0.24 | 0.500 |
| T9 | 6.96 | 6.90 | 0.26 | 0.520 |
| T10 | 7.02 | 7.00 | 0.29 | 0.520 |
| T11 | 7.01 | 7.00 | 0.27 | 0.510 |
| T12 | 7.05 | 7.00 | 0.28 | 0.530 |
| T13 | 6.98 | 6.98 | 0.26 | 0.510 |
| Goal 4 | 7.05 | 7.00 | 0.20 | 0.400 |
| T1 | 7.01 | 7.00 | 0.29 | 0.530 |
| T2 | 7.02 | 7.00 | 0.28 | 0.520 |
| T3 | 7.00 | 6.99 | 0.29 | 0.530 |
| T4 | 7.00 | 6.95 | 0.28 | 0.540 |
| T5 | 7.00 | 6.99 | 0.27 | 0.530 |
| T6 | 6.98 | 6.95 | 0.26 | 0.510 |
| T7 | 6.97 | 6.90 | 0.28 | 0.540 |
| T8 | 7.01 | 7.00 | 0.29 | 0.550 |
| T9 | 7.00 | 6.99 | 0.27 | 0.510 |
| T10 | 6.98 | 6.95 | 0.26 | 0.520 |
| Goal 5 | 7.00 | 6.98 | 0.15 | 0.150 |
| T1 | 7.01 | 7.00 | 0.19 | 0.350 |
| T2 | 7.00 | 7.00 | 0.14 | 0.305 |
| T3 | 7.00 | 7.00 | 0.12 | 0.290 |
| T4 | 7.00 | 7.00 | 0.13 | 0.300 |
| T5 | 7.01 | 7.00 | 0.12 | 0.290 |
| T6 | 7.00 | 7.00 | 0.43 | 0.300 |
| T7 | 7.00 | 7.00 | 0.12 | 0.290 |
| T8 | 7.00 | 7.00 | 0.12 | 0.290 |
| T9 | 7.00 | 7.00 | 0.12 | 0.300 |
| Goal 6 | 8.65 | 8.65 | 0.15 | 0.200 |
| T1 | 8.61 | 8.60 | 0.16 | 0.250 |
| T2 | 8.70 | 8.69 | 0.12 | 0.150 |
| T3 | 8.63 | 8.60 | 0.13 | 0.200 |
| T4 | 8.71 | 8.70 | 0.13 | 0.200 |
| T5 | 8.71 | 8.70 | 0.12 | 0.150 |
| T6 | 8.76 | 8.70 | 0.10 | 0.150 |
| T7 | 8.75 | 8.74 | 0.12 | 0.150 |
| T8 | 8.75 | 8.75 | 0.11 | 0.200 |
| Goal 7 | 8.92 | 8.90 | 0.16 | 0.200 |
| T1 | 8.86 | 8.80 | 0.20 | 0.200 |
| T2 | 8.90 | 8.89 | 0.15 | 0.200 |
| T3 | 8.90 | 8.90 | 0.14 | 0.175 |
| T4 | 8.91 | 8.90 | 0.18 | 0.250 |
| T5 | 8.90 | 8.90 | 0.17 | 0.200 |
| Goal 8 | 8.93 | 8.90 | 0.15 | 0.200 |
| T1 | 8.75 | 8.75 | 0.12 | 0.150 |
| T2 | 8.75 | 8.75 | 0.11 | 0.150 |
| T3 | 8.77 | 8.75 | 0.10 | 0.150 |
| T4 | 8.80 | 8.76 | 0.10 | 0.150 |
| T5 | 8.76 | 8.75 | 0.10 | 0.150 |
| T6 | 8.96 | 8.95 | 0.17 | 0.225 |
| T7 | 8.93 | 8.90 | 0.16 | 0.200 |
| T8 | 8.96 | 8.95 | 0.16 | 0.225 |
| T9 | 8.92 | 8.90 | 0.14 | 0.200 |
| T10 | 8.92 | 8.90 | 0.13 | 0.175 |
| T11 | 8.93 | 8.90 | 0.12 | 0.175 |
| T12 | 8.92 | 8.90 | 0.11 | 0.150 |
| Goal 9 | 8.95 | 8.93 | 0.18 | 0.225 |
| T1 | 8.80 | 8.78 | 0.20 | 0.250 |
| T2 | 8.80 | 8.77 | 0.18 | 0.200 |
| T3 | 8.80 | 8.79 | 0.17 | 0.200 |
| T4 | 8.80 | 8.76 | 0.19 | 0.225 |
| T5 | 8.75 | 8.75 | 0.18 | 0.225 |
| T6 | 8.75 | 8.70 | 0.15 | 0.200 |
| T7 | 8.76 | 8.75 | 0.15 | 0.225 |
| T8 | 8.80 | 8.76 | 0.14 | 0.200 |
| Goal 10 | 7.06 | 7.05 | 0.10 | 0.150 |
| T1 | 7.00 | 6.98 | 0.21 | 0.275 |
| T2 | 6.95 | 6.95 | 0.9 | 0.225 |
| T3 | 6.95 | 6.95 | 0.17 | 0.225 |
| T4 | 6.96 | 6.95 | 0.18 | 0.200 |
| T5 | 6.93 | 6.90 | 0.16 | 0.225 |
| T6 | 6.92 | 6.90 | 0.16 | 0.225 |
| T7 | 6.91 | 6.90 | 0.14 | 0.200 |
| T8 | 6.92 | 6.90 | 0.15 | 0.200 |
| T9 | 6.92 | 6.90 | 0.13 | 0.175 |
| T10 | 6.91 | 6.90 | 0.12 | 0.175 |
| Goal 11 | 8.97 | 8.95 | 0.15 | 0.225 |
| T1 | 8.60 | 8.60 | 0.23 | 0.300 |
| T2 | 8.60 | 8.60 | 0.22 | 0.250 |
| T3 | 8.70 | 8.70 | 0.18 | 0.200 |
| T4 | 8.60 | 8.60 | 0.19 | 0.225 |
| T5 | 8.70 | 8.70 | 0.16 | 0.200 |
| T6 | 8.70 | 8.70 | 0.16 | 0.200 |
| T7 | 8.70 | 8.70 | 0.14 | 0.175 |
| T8 | 8.70 | 8.70 | 0.13 | 0.175 |
| T9 | 8.65 | 8.65 | 0.14 | 0.200 |
| T10 | 8.70 | 8.68 | 0.15 | 0.225 |
| Goal 12 | 7.10 | 7.07 | 0.09 | 0.150 |
| T1 | 6.96 | 6.95 | 0.14 | 0.200 |
| T2 | 6.92 | 6.90 | 0.13 | 0.225 |
| T3 | 6.93 | 6.90 | 0.13 | 0.175 |
| T4 | 6.92 | 6.90 | 0.11 | 0.175 |
| T5 | 6.93 | 6.90 | 0.12 | 0.200 |
| T6 | 6.93 | 6.90 | 0.10 | 0.175 |
| T7 | 6.92 | 6.90 | 0.10 | 0.175 |
| T8 | 6.92 | 6.90 | 0.11 | 0.200 |
| T9 | 6.91 | 6.90 | 0.10 | 0.175 |
| T10 | 6.92 | 6.90 | 0.10 | 0.175 |
| T11 | 6.91 | 6.90 | 0.08 | 0.175 |
| Goal 13 | 8.82 | 8.82 | 0.01 | 0.010 |
| T1 | 8.83 | 8.80 | 0.18 | 0.225 |
| T2 | 8.82 | 8.80 | 0.15 | 0.200 |
| T3 | 8.82 | 8.80 | 0.16 | 0.200 |
| T4 | 8.81 | 8.80 | 0.14 | 0.225 |
| T5 | 8.82 | 8.80 | 0.13 | 0.200 |
| Goal 14 | 8.88 | 8.87 | 0.10 | 0.200 |
| T1 | 8.73 | 8.70 | 0.20 | 0.250 |
| T2 | 8.69 | 8.60 | 0.20 | 0.225 |
| T3 | 8.72 | 8.70 | 0.17 | 0.200 |
| T4 | 8.73 | 8.70 | 0.16 | 0.200 |
| T5 | 8.80 | 8.79 | 0.15 | 0.225 |
| T6 | 8.80 | 8.75 | 0.15 | 0.225 |
| T7 | 8.71 | 8.70 | 0.18 | 0.225 |
| T8 | 8.73 | 8.70 | 0.16 | 0.200 |
| T9 | 8.72 | 8.70 | 0.14 | 0.225 |
| T10 | 8.75 | 8.70 | 0.14 | 0.225 |
| Goal 15 | 8.93 | 8.90 | 0.16 | 0.200 |
| T1 | 8.65 | 8.65 | 0.15 | 0.200 |
| T2 | 8.60 | 8.58 | 0.12 | 0.175 |
| T3 | 8.61 | 8.60 | 0.13 | 0.200 |
| T4 | 8.60 | 8.60 | 0.11 | 0.150 |
| T5 | 8.62 | 8.60 | 0.13 | 0.175 |
| T6 | 8.71 | 8.70 | 0.12 | 0,150 |
| T7 | 8.72 | 8.70 | 0.11 | 0.175 |
| T8 | 8.71 | 8.70 | 0.11 | 0.150 |
| T9 | 8.75 | 8.75 | 0.10 | 0.150 |
| T10 | 8.72 | 8.70 | 0.09 | 0.125 |
| T11 | 8.75 | 8.73 | 0.10 | 0.150 |
| T12 | 8.71 | 8.70 | 0.10 | 0.150 |
| Goal 16 | 5.45 | 5.45 | 0.10 | 0.150 |
| T1 | 5.42 | 5.40 | 0.09 | 0.150 |
| T2 | 5.42 | 5.40 | 0.09 | 0.150 |
| T3 | 5.41 | 5.40 | 0.08 | 0.150 |
| T4 | 5.43 | 5.40 | 0.10 | 0.150 |
| T5 | 5.45 | 5.44 | 0.10 | 0.200 |
| T6 | 5.43 | 5.40 | 0.10 | 0.150 |
| T7 | 5.43 | 5.40 | 0.09 | 0.200 |
| T8 | 5.45 | 5.45 | 0.10 | 0.150 |
| T9 | 5.45 | 5.44 | 0.10 | 0.150 |
| T10 | 5.45 | 5.45 | 0.10 | 0.150 |
| T11 | 5.45 | 5.45 | 0.09 | 0.150 |
| T12 | 5.45 | 5.45 | 0.10 | 0.150 |
| Goal 17 | 5.53 | 5.50 | 0.07 | 0.200 |
| T1 | 5.50 | 5.50 | 0.08 | 0.200 |
| T2 | 5.40 | 5.40 | 0.10 | 0.200 |
| T3 | 5.55 | 5.53 | 0.09 | 0.200 |
| T4 | 5.50 | 5.50 | 0.10 | 0.300 |
| T5 | 5.55 | 5.55 | 0.08 | 0.200 |
| T6 | 5.50 | 5.50 | 0.08 | 0.200 |
| T7 | 5.23 | 5.55 | 0.08 | 0.200 |
| T8 | 5.50 | 5.50 | 0.07 | 0.200 |
| T9 | 5.53 | 5.50 | 0.07 | 0.200 |
| T10 | 5.53 | 5.50 | 0.07 | 0.200 |
| T11 | 5.50 | 5.50 | 0.06 | 0.200 |
| T12 | 5.53 | 5.50 | 0.06 | 0.200 |
| T13 | 5.53 | 5.50 | 0.06 | 0.200 |
| T14 | 5.50 | 5.50 | 0.07 | 0.200 |
| T15 | 5.50 | 5.50 | 0.07 | 0.200 |
| T16 | 5.50 | 5.50 | 0.07 | 0.200 |
| T17 | 5.50 | 5.50 | 0.06 | 0.200 |
| T18 | 5.50 | 5.50 | 0.07 | 0.200 |
| T19 | 5.50 | 5.49 | 0.30 | 0.100 |
| Cronbach alpha: Goal: 0.91 Target: 0.97 | ||||
| Total Goal contribution | Mean | Median | SD | IQD |
| All Goal contributions | 7.88 | 7.95 | 0.22 | 0.750 |
| Cronbach alpha: | 0.94 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
