Submitted:
26 February 2024
Posted:
26 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Forest type classification based on phenoclusters
2.3. Forest type classification based on the forest canopy-cover composition by tree species
2.4. Statistical analyses
3. Results
3.1. Forest type classification based on phenoclusters
3.2. Forest type classification based on the forest canopy-cover composition by tree species
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez Pastur, G.; Schlichter, T.; Matteucci, S.D.; Gowda, J.; Huertas Herrera, A.; Toro Manríquez, M.; Lencinas, M.V.; Cellini, J.M.; Peri, P.L. Synergies and trade-offs of national conservation policy and agro-forestry management over forest loss in Argentina during the last decade. In Latin America in times of global environmental change; Lorenzo, C., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Koff, H.; Challenger, A.; Portillo, I. Guidelines for operationalizing policy coherence for development (PCD) as a methodology for the design and implementation of sustainable development strategies. Sustainability 2020, 2(10), e4055. [Google Scholar] [CrossRef]
- Xu, H.; Cao, Y.; Yu, D.; Cao, M.; He, Y.; Gill, M.; Pereira, H. Ensuring effective implementation of the post-2020 global biodiversity targets. Nat. Ecol. Evol. 2021, 5, 411–418. [Google Scholar] [CrossRef]
- Angelstam, P.; Albulescu, C.; Andrianambinina, O.; Aszalós, R.; Borovichev, E.; Cano Cardona, W.; Dobrynin, D.; Fedoriak, M.; Firm, D.; Hunter, M.; de Jong, W.; Lindenmayer, D.; Manton, M.; Monge, J.; Mezei, P.; Michailova, G.; Muñoz Brenes, C.; Martínez Pastur, G.; Petrova, O.; Petrov, V.; Pokorny, B.; Rafanoharana, S.; Rosas, Y.M.; Seymour, B.; Waeber, P.; Wilmé, L.; Yamelynets, T.; Zlatanov, T. Frontiers of protected areas versus forest exploitation: Assessing habitat network functionality in 16 case study regions globally. AMBIO 2021, 50, 2286–2310. [Google Scholar] [CrossRef]
- Allan, J.R.; Possingham, H.; Atkinson, S.; Waldron, A.; di Marco, M.; Butchart, S.; Adams, V.; Kissling, W.; Worsdell, T.; Sandbrook, C.; Gibbon, G.; Kumar, K.; Mehta, P.; Maron, M.; Williams, B.; Jones, K.; Wintle, B.; Reside, A.; Watson, J. The minimum land area requiring conservation attention to safeguard biodiversity. Science 2022, 376(6597), 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Peri, P.L.; Martínez Pastur, G.; Schlichter, T. Uso sustentable del bosque: Aportes desde la silvicultura Argentina; Ministerio de Ambiente y Desarrollo Sostenible de la Nación Argentina: Buenos Aires, Argentina, 2021. [Google Scholar]
- Martinuzzi, S.; Radeloff, V.C.; Martínez Pastur, G.; Rosas, Y.M.; Lizarraga, L.; Politi, N.; Rivera, L.; Huertas Herrera, A.; Silveira, E.M.O.; Olah, A.; Pidgeon, A.M. Informing forest conservation planning with detailed human footprint data for Argentina. Global Ecol. Conserv. 2021, 31, e01787. [Google Scholar] [CrossRef]
- Zhu, L.; Hughes, A.; Zhao, X.; Zhou, L.; Ma, K.; Shen, X.; Li, S.; Liu, M.; Xu, W.; Watson, J. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 2021, 7(35), eabe4261. [Google Scholar] [CrossRef]
- Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Bishop, M.; Polidoro, B.; Ramirez-Llodra, E.; Tozer, M.; Nel, J.; Mac Nally, R.; Gregr, E.; Watermeyer, K.; Essl, F.; Faber-Langendoen, D.; Franklin, J.; Lehmann, C.; Etter, A.; Roux, D.; Stark, J.; Rowland, J.; Brummitt, N.; Fernandez-Arcaya, U.; Suthers, I.; Wiser, S.; Donohue, I.; Jackson, L.; Pennington, R.; Iliffe, T.; Gerovasileiou, V.; Giller, P.; Robson, B.; Pettorelli, N.; Andrade, A.; Lindgaard, A.; Tahvanainen, T.; Terauds, A.; Chadwick, M.; Murray, N.; Moat, J.; Pliscoff, P.; Zager, I.; Kingsford, R. A function-based typology for Earth’s ecosystems. Nature 2022, 610, 513–518. [Google Scholar] [CrossRef]
- Crausbay, S.D.; Sofaer, H.; Cravens, A.; Chaffin, B.; Clifford, K.; Gross, J.; Knapp, C.; Lawrence, D.; Magness, D.; Miller-Rushing, A.; Schuurman, G.; Stevens-Rumann, C. A science agenda to inform natural resource management decisions in an era of ecological transformation. BioScience 2022, 72(1), 71–90. [Google Scholar] [CrossRef]
- Jansson, G.; Angelstam, P. Threshold levels of habitat composition for the presence of the long-tailed tit (Aegithalos caudatus) in a boreal landscape. Land. Ecol. 1999, 14, 283–90. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Accurate mapping of forest types using dense seasonal Landsat time-series. ISPRS J. Photogram Rem. Sen. 2014, 96, 1–11. [Google Scholar] [CrossRef]
- López, V.L.; Herrera, A.H.; Rosas, Y.M.; Cellini, J.K. Optimal environmental drivers of high-mountains forest: Polylepis tarapacana cover evaluation in their southernmost distribution range of the Andes. Trees For. People 2022, 9, e100321. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Radeloff, V.C.; Martínez Pastur, G.; Martinuzzi, S.; Politi, N.; Lizarraga, L.; Rivera, L.; Gavier Pizarro, G.; Yin, H.; Rosas, Y.M.; Calamari, N.C.; Navarro, M.F.; Sica, Y.; Olah, A.; Bono, J.; Pidgeon, A.M. Forest phenoclusters for Argentina based on vegetation phenology and climate. Ecol. Appl. 2022, 32(3), e2526. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Frey, J.; Munteanu, C.; Still, N.; Koch, B. Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data. Rem. Sen. Environ. 2023, 292, e113576. [Google Scholar] [CrossRef]
- Wadoux, A.; Minasny, B.; McBratney, A. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Sci. Rev. 2020, 210, e103359. [Google Scholar] [CrossRef]
- Harris, N.L.; Gibbs, D.; Baccini, A.; Birdsey, R.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.; Herold, M.; Houghton, R.; Potapov, P.; Requena Suarez, D.; Roman-Cuesta, R.; Saatchi, S.; Slay, C.; Turubanova, S.; Tyukavina, A. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Hernández-Stefanoni, J.L.; Reyes-Palomeque, G.; Subedi, M. Novel approaches in tropical forests mapping and monitoring-time for operationalization. Rem. Sen. 2022, 14(20), e5068. [Google Scholar] [CrossRef]
- Eva, H.D.; Belward, A.; de Miranda, E.; di Bella, C.; Gond, V.; Huber, O.; Jones, S.; Sgrenzaroli, M.; Fritz, S. A land cover map of South America. Glob. Change Biol. 2004, 10(5), 731–744. [Google Scholar] [CrossRef]
- Stanimirova, R.; Graesser, J.; Olofsson, P.; Friedl, M.A. Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay. Rem. Sen. Environ. 2022, 282, e113277. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Radeloff, V.C.; Martinuzzi, S.; Martínez Pastur, G.; Bono, J.; Politi, N.; Lizarraga, L.; Rivera, L.; Ciuffoli, L.; Rosas, Y.M.; Olah, A.M.; Gavier-Pizarro, G.; Pidgeon, A.M. Nationwide native forest structure maps for Argentina based on forest inventory data, SAR Sentinel-1 and vegetation metrics from Sentinel-2 imagery. Rem. Sen. Environ. 2023, 285, e113391. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Olah, A.M.; Rivera, L.; Politi, N.; Silveira, E.M.O.; Martínez Pastur, G.; Rosas, Y.M.; Lizarraga, L.; Nazaro, P.; Bardavid, S.; Radeloff, V.C.; Pidgeon, A.M. Closing the research-implementation gap: Integrating species and human footprint data into Argentina’s forest planning. Biol. Conserv. 2023, 286, e110257. [Google Scholar] [CrossRef]
- Peri, P.L.; Gaitán, J.; Mastrangelo, M.; Nosetto, M.; Villagra, P.; Balducci, E.; Pinazo, M.; Eclesia, R.; von Wallis, A.; Villarino, S.; Allagia, F.; González Polo, M.; Manrique, S.; Meglioli, P.; Rodríguez Souilla, J.; Tenti, L.; Mónaco, M.; Chaves, J.E.; Medina, A.; Gasparri, I.; Álvarez Arnesi, E.; Barral, M.P.; von Müller, A.; Pahr, N.; Uribe Echevarria, J.; Fernández, P.; Morsucci, M.; López, D.; Cellini, J.M.; Alvarez, L.; Barberis, I.; Colomb, H.; La Manna, L.; Barbaro, S.; Blundo, C.; Sirimarco, X.; Cavallero, L.; Zalazar, G.; Martínez Pastur, G. Soil organic carbon stocks in native forest of Argentina: A useful surrogate for mitigation and conservation planning under climate variability. Ecol. Proc. 2024, 13, e1. [Google Scholar] [CrossRef]
- Silveira, E.M.O.; Radeloff, V.C.; Martinuzzi, S.; Martínez Pastur, G.; Rivera, L.; Politi, N.; Lizarraga, L.; Farwell, L.S.; Elsen, P.R.; Pidgeon, A.M. Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern. Rem. Sen. Environ. 2021, 258, e112368. [Google Scholar] [CrossRef]
- MAyDS. Primer Inventario Nacional de Bosques Nativos, Informe Nacional; Ministerio de Ambiente y Desarrollo Sostenible: Buenos Aires, Argentina, 2005. [Google Scholar]
- SGAyDS. Segundo Inventario Nacional de Bosques Nativos: Manual de campo; Secretaría de Gobierno de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina, 2019. [Google Scholar]
- Matteucci, S.D.; Martinez Pastur, G.; Lencinas, M.V.; Rovere, A.; Amoroso, M.M.; Barberis, I.; Vesprini, J.L.; Galetto, L.; Torres, C.; Villagra, P.E.; Malizia, L.; Blundo, C.; Politi, N.; Peri, P.L. Breve descripción de las regiones forestales de la Argentina. In Uso sustentable del bosque: Aportes desde la silvicultura Argentina; Peri, P.L., Martínez Pastur, G., Schlichter, T., Eds.; Ministerio de Ambiente y Desarrollo Sostenible de la Nación Argentina: Buenos Aires, Argentina, 2021. [Google Scholar]
- Burkart, R.; Bárbaro, N.O.; Sánchez, R.O.; Gómez, D.A. Eco-regiones de la Argentina; Secretaría de Recursos Naturales y Desarrollo Sustentable, Administración de Parque Nacionales, Gobierno de la República Argentina: Buenos Aires, Argentina, 1999. [Google Scholar]
- Morello, J.; Matteucci, S.; Rodríguez, A.; Silva, M. Ecorregiones y complejos ecosistémicos argentinos; Orientación Gráfica Editora: Buenos Aires, Argentina, 2012. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C.O.; Townshend, J. High-resolution global maps of 21st-Century forest cover change. Science 2013, 80(342), 850–853. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Edibaldo Silva, C.; Armston, J.; Dubayah, R.; Blair, B.; Hofton, M. Mapping global forest canopy height through integration of GEDI and LANDSAT data. Rem. Sen. Environ. 2021, 253, e112165. [Google Scholar] [CrossRef]
- Wilson, K.A.; McBride, M.F.; Bode, M.; Possingham, H.P. Prioritizing global conservation efforts. Nature 2006, 440, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Hmielowski, T.L.; Carter, S.K.; Spaul, H.; Helmers, D.P.; Radeloff, V.C.; Zedler, P.H. Prioritizing land management efforts at a landscape scale: A case study using prescribed fire in Wisconsin. Ecol. Appl. 2015, 26, 1018–1029. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; Harris, N.; Song, X.P.; Baggett, A.; Kommareddy, I.; Kommareddy, A. The global 2000-2020 land cover and land use change dataset derived from the Landsat archive: First results. Front. Rem. Sen. 2022, 13(3), e856903. [Google Scholar] [CrossRef]
- Cabrera, A.L. Fitogeografía de la República Argentina. Bol. Soc. Arg. Bot. 1971, 14, 1–2. [Google Scholar]
- Cabrera, A.L. Regiones fitogeográficas argentinas. In Enciclopedia argentina de agricultura y jardinería; Kugler, W.F., Ed.; ACME: Buenos Aires, Argentina, 1976; Volume 2, pp. 1–85. [Google Scholar]
- Cabrera, A.L. Regiones fitogeográficas argentinas; ACME: Buenos Aires, Argentina, 1994. [Google Scholar]
- Cabrera, A.L.; Willink, A. Biogeografía de América Latina, Monografía 13, Serie de Biología; Secretaría General de la Organización de los Estados Americanos: Washington, USA, 1973. [Google Scholar]
- Oyarzabal, M.; Clavijo, J.; Oakley, L.; Biganzoli, F.; Tognetti, P.; Barberis, I.; Maturo, H.M.; Aragón, R.; Campanello, P.; Prado, D.; Oesterheld, M.; León, R.J. Unidades de vegetación de la Argentina. Ecol. Aust. 2018, 28(1), 40–63. [Google Scholar] [CrossRef]
- Derguy, M.R.; Frangi, J.L.; Martinuzzi, S. Las regiones forestales de la Argentina en el contexto de zonas de vida de Holdridge. In Uso sustentable del bosque: Aportes desde la silvicultura Argentina; Peri, P.L., Martínez Pastur, G., Schlichter, T., Eds.; Ministerio de Ambiente y Desarrollo Sostenible de la Nación Argentina: Buenos Aires, Argentina, 2021. [Google Scholar]
- Martínez Pastur, G.; Amoroso, M.M.; Baldi, G.; Barrera, M.D.; Brown, A.D.; Chauchard, L.; Galetto, L.; Garibaldi, L.A.; Gasparri, I.; Kees, S.; Matteucci, S.D.; Politi, N.; Roig, F.A.; Peri, P.L. ¿Qué es un bosque nativo en Argentina?: Marco conceptual para una correcta definición de acuerdo a las políticas institucionales nacionales y al conocimiento científico disponible. Ecol. Aust. 2023, 33, 152–169. [Google Scholar] [CrossRef]
- Fomin, V.; Mikhailovich, A. Russian approaches to the forest type classification. IOP Conf. Series: Earth and Environ. Sci. 2021, 906, e012023. [Google Scholar] [CrossRef]
- Prodan, M.; Peters, R.; Cox, F.; Real, P. Mensura forestal; GTZ-IICA: San José, Costa Rica, 1997. [Google Scholar]
- The Montreal Process. Criteria and indicators for the conservation and sustainable management of temperate and boreal forests; The Montreal Process: Montreal, Canada, 1998. [Google Scholar]
- Cajander, A.K. Forest types and their significance. Acta For. Fennica 1949, 56(5), 1–71. [Google Scholar] [CrossRef]
- Blasi, C.; Carranza, M.L.; Frondoni, R.; Rosati, L. Ecosystem classification and mapping: A proposal for Italian landscapes. Appl. Veg. Sci. 2000, 3(2), 233–242. [Google Scholar] [CrossRef]
- Larsen, J.B.; Nielsen, A.B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice. For. Ecol. Manage. 2006, 238, 107–117. [Google Scholar] [CrossRef]
- Barbati, A.; Corona, P.; Marchetti, M. A forest typology for monitoring sustainable forest management: The case of European forest types. Plant Biosyst. 2007, 141, 93–103. [Google Scholar] [CrossRef]
- Huertas Herrera, A.; Toro Manríquez, M.D.R.; Salinas, J.; Rivas Guíñez, F.; Lencinas, M.V.; Martínez Pastur, G. Relationships among livestock, structure, and regeneration in Chilean Austral Macrozone temperate forests. Trees For. People 2023, 13, e100426. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; Seal, D.; Shaffer, S.; Shimada, J.; Umland, J.; Werner, M.; Oskin, M.; Burbank, D.; Alsdorf, D. The shuttle radar topography mission. Rev. Geoph. 2007, 45(2), RG2004. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climat. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Battersby, S.E.; Strebe, D.D.; Finn, M.P. Shapes on a plane: Evaluating the impact of projection distortion on spatial binning. Cart. Geograp. Inf. Sci. 2017, 44, 410–421. [Google Scholar] [CrossRef]
- Rosas, Y.M.; Peri, P.L.; Benítez, J.; Lencinas, M.V.; Politi, N.; Martínez Pastur, G. Potential biodiversity map of bird species (Passeriformes): Analyses of ecological niche, environmental characterization and identification of priority conservation areas in southern Patagonia. J. Nat. Conserv. 2023, 73, e126413. [Google Scholar] [CrossRef]
- Dirección Nacional de Bosques. Datos del segundo inventario nacional de bosques nativos de la República Argentina; Ministerio de Ambiente y Desarrollo Sostenible de la Nación: Buenos Aires, Argentina, 2021. [Google Scholar]
- Zuloaga, F.O.; Belgrano, M.J.; Zanotti, C.A. Actualización del catálogo de las plantas vasculares del cono sur. Darwiniana 2019, 7, 208–278. [Google Scholar] [CrossRef]
- Jones, S.L. Territory size in mixed-grass prairie songbirds. Can. Field Nat. 2011, 125, 5–12. [Google Scholar] [CrossRef]
- Xu, Ch.; Zhang, X.; Hernandez-Clemente, R.; Lu, W.; Manzanedo, R.D. Global forest types based on climatic and vegetation data. Sustainability 2022, 14(2), e634. [Google Scholar] [CrossRef]
- Schimper, A.F.W. Plant geography upon a physiological basis. Bot. Gazette 1904, 37(5), 392–393. [Google Scholar]
- Costanza, J.K.; Faber-Langendoen, D.; Coulston, J.W.; Wear, D.N. Classifying forest inventory data into species-based forest community types at broad extents: Exploring tradeoffs among supervised and unsupervised approaches. For. Ecosyst. 2018, 5, e8. [Google Scholar] [CrossRef]
- Ersoy Mirici, M.; Satir, O.; Berberoglu, S. Monitoring the Mediterranean type forests and land-use/cover changes using appropriate landscape metrics and hybrid classification approach in Eastern Mediterranean of Turkey. Environ. Earth Sci. 2020, 79, e492. [Google Scholar] [CrossRef]
- Box, E.O. Predicting physiognomic vegetation types with climate variables. Vegetatio 1981, 45, 127–139. [Google Scholar] [CrossRef]
- Holdridge, L.R. Determination of world plant formations from simple climatic data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef]
- DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Janetos, A.C.; Loveland, T.R. A new global 1-km dataset of percentage tree cover derived from remote sensing. Glob. Change Biol. 2000, 6, 247–254. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Yan, X.; Chen, Z. A global classification of vegetation based on NDVI, rainfall and temperature. Int. J. Clim. 2017, 37, 2318–2324. [Google Scholar] [CrossRef]
- Ju, Y.; Bohrer, G. Classification of wetland vegetation based on NDVI time series from the HLS dataset. Rem. Sen. 2022, 14(9), e2107. [Google Scholar] [CrossRef]
- Beck, P.S.; Juday, G.P.; Alix, C.; Barber, V.A.; Winslow, S.E.; Sousa, E.E.; Heiser, P.; Herriges, J.D.; Goetz, S. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Let. 2011, 14, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Sayre, R.; Trabucco, A.; Zomer, R. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 2013, 22, 630–638. [Google Scholar] [CrossRef]
- Fomin, V.; Mikhailovich, A.; Zalesov, S.; Popov, A.; Terekhov, G. Development of ideas within the framework of the genetic approach to the classification of forest types. Balt. For. 2021, 27(1), e466. [Google Scholar] [CrossRef]
- Ivanova, N.; Fomin, V.; Kusbach, A. Experience of forest ecological classification in assessment of vegetation dynamics. Sustainability 2022, 14(6), e3384. [Google Scholar] [CrossRef]
- Fang, F.; McNeil, B.E.; Warner, T.A.; Maxwell, A.E.; Dahle, G.A.; Eutsler, E.; Li, J. Discriminating tree species at different taxonomic levels using multi-temporal WorldView-3 imagery in Washington D.C., USA. Rem. Sen. Environ. 2020, 246, e111811. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Rem. Sen. Environ. 2020, 247, e111938. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. mapping and assessment of vegetation types in the tropical rainforests of the western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Rem. Sen. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Peri, P.L.; Lasagno, R.; Martínez Pastur, G.; Atkinson, R.; Thomas, E.; Ladd, B. Soil carbon is a useful surrogate for conservation planning in developing nations. Sci. Rep. 2019, 9, e–3905. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Comolli, R.; Liga, C.; Mazzucchelli, F.; Proietto, A.; Rota, N.; Colombo, G.; Bassano, B.; Viterbi, R.; Padoa-Schioppa, E. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Ser. 2020, 44, e101135. [Google Scholar] [CrossRef]
- Edmonds, R.L.; Chappell, H.N. Relationships between soil organic matter and forest productivity in western Oregon and Washington. Can. J. For. Res. 1994, 24, 1101–1106. [Google Scholar] [CrossRef]
- Grigal, D.F.; Vance, E.D. Influence of soil organic matter on forest productivity. N. Z. J. For. Sci. 0004, 30(1), 169–205. Available online: https://www.scionresearch.com/_data/assets/pdf_file/0004/59404/NZJFS301-and-22000_169_205GRIGAL.pdf.
- Hoagland, S.J.; Beier, P.; Lee, D. Using MODIS NDVI phenoclasses and phenoclusters to characterize wildlife habitat: Mexican spotted owl as a case study. For. Ecol. Manage. 2018, 412, 80–93. [Google Scholar] [CrossRef]
- Bajocco, S.; Ferrara, C.; Alivernini, A.; Bascietto, M.; Ricotta, C. Remotely-sensed phenology of Italian forests: Going beyond the species. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 314–321. [Google Scholar] [CrossRef]
- Barrera, M.D.; Frangi, J.L.; Richter, L.; Perdomo, M.; Pinedo, L. Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. J. Veg. Sci. 2000, 11(2), 179–188. [Google Scholar] [CrossRef]
- Matskovsky, V.; Roig, F.A.; Fuentes, M.; Korneva, I.; Araneo, D.; Linderholm, H.; Aravena, J.C. Summer temperature changes in Tierra del Fuego since AD 1765: Atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world. Clim. Dyn. 2023, 60, 1635–1649. [Google Scholar] [CrossRef]
- Mathiasen, P.; Premoli, A.C. Out in the cold: Genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Mol. Ecol. 2010, 19(2), 371–385. [Google Scholar] [CrossRef] [PubMed]
- Soliani, C.; Marchelli, P.; Mondino, V.; Pastorino, M.; Mattera, G.; Gallo, L.; Aparicio, A.; Torres, A.D.; Tejera, L.; Schinelli Casares, T. Nothofagus pumilio and N. antarctica: The most widely distributed and cold-tolerant southern beeches in Patagonia. In Low intensity breeding of native forest trees in Argentina; Pastorino, M.J., Marchelli, P., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogram. Rem. Sen. 2020, 170, 205–215. [Google Scholar] [CrossRef]
- Ruefenacht, B.; Finco, M.V.; Nelson, M.D.; Czaplewski, R.; Helmer, E.H.; Blackard, J.A.; Holden, G.R.; Lister, A.J.; Salajanu, D.; Weyermann, D.; Winterberger, K. Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis data. Phot. Eng. Rem. Sen. 2008, 11, 1379–1388. [Google Scholar] [CrossRef]
- Mahatara, D.; Acharya, A.K.; Dhakal, B.P.; Sharma, D.K.; Ulak, S.; Paudel, P. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fenn. 2021, 55(4), e10441. [Google Scholar] [CrossRef]
- Liu, D.; Lei, X.; Gao, W.; Guo, H.; Xie, Y.; Fu, L.; Lei, Y.; Li, Y.; Zhang, Z.; Tang, S. Mapping the potential distribution suitability of 16 tree species under climate change in northeastern China using Maxent modelling. J. For. Res. 2022, 33, 1739–1750. [Google Scholar] [CrossRef]
- Trasobares, A.; Mola-Yudego, B.; Aquilué, N.; González-Olabarria, J.R.; Garcia-Gonzalo, J.; García-Valdés, R.; De Cáceres, M. Nationwide climate-sensitive models for stand dynamics and forest scenario simulation. For. Ecol. Manage. 2022, 505, e119909. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, H.; Liu, S.; Zhou, G.; Fang, J.; Yu, G.; Tang, X.; Wang, W.; Yan, J.; Wang, G.; Ma, K.; Li, S.; Du, S.; Han, S.; Ma, Y.; Zhang, D.; Liu, J.; Liu, S.; Chu, G.; Zhang, Q.; Li, Y. Mapping forest type and age in China’s plantations. Sci. Total Environ. 2020, 744, e140790. [Google Scholar] [CrossRef] [PubMed]
- Hościło, A.; Lewandowska, A. Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data. Rem. Sen. 2019, 11(8), e929. [Google Scholar] [CrossRef]
- Paredes, D.; Cellini, J.M.; Lencinas, M.V.; Martínez Pastur, G. Influencia del paisaje en las cortas de protección en bosques de Nothofagus pumilio en Tierra del Fuego, Argentina: Cambios en la estructura forestal y respuesta de la regeneración. Bosque 2020, 41(1), 55–64. [Google Scholar] [CrossRef]
- Zak, M.; Cabido, M. Spatial patterns of the Chaco vegetation of central Argentina: Integration of remote sensing and phytosociology. Appl. Veg. Sci. 2002, 5(2), 213–226. [Google Scholar] [CrossRef]
- Corona, P.; Chirici, G.; Marchetti, M. Forest ecosystem inventory and monitoring as a framework for terrestrial natural renewable resource survey programmes. Plant Biosyst. 2002, 136, 69–82. [Google Scholar] [CrossRef]
- Soriano, M.; Zuidema, P.; Barber, C.; Mohren, F.; Ascarrunz, N.; Licona, J.C.; Peña-Claros, M. Commercial logging of timber species enhances Amazon (Brazil) nut populations: Insights from Bolivian managed forests. Forests 2021, 12(8), e1059. [Google Scholar] [CrossRef]
- Matangaran, J.R.; Anissa, I.N.; Adlan, Q.; Mujahid, M. Changes in floristic diversity and stand damage of tropical forests caused by logging operations in North Kalimantan, Indonesia. Biodiv. J. Biol. Div. 2022, 23(12), 6358–6365. [Google Scholar] [CrossRef]




| REGION | PHE | RICH | SOC | BA | CC | DH | TOBV | ELE | AMT | ISO | AP |
|---|---|---|---|---|---|---|---|---|---|---|---|
| TDF | 1 | 80.2bc | 154.4b | 41.9ab | 66.4a | 18.6b | 299.7ab | 421.2d | 3.5a | 51.6c | 655.6e |
| 2 | 61.4a | 163.3b | 37.8a | 74.1c | 20.9c | 207.5a | 217.0bc | 4.3bc | 51.2c | 506.5c | |
| 3 | 88.1c | 163.6b | 56.7d | 69.3ab | 20.7c | 373.9b | 203.9b | 4.6c | 49.9b | 448.1b | |
| 4 | 90.1c | 140.5a | 44.9b | 67.7a | 15.7a | 238.1a | 107.2a | 5.1d | 48.6a | 385.6a | |
| 5 | 70.1b | 160.3b | 52.9cd | 66.4a | 18.7b | 331.5b | 382.9d | 3.7a | 51.0c | 533.6d | |
| 6 | 57.5a | 161.9b | 42.6ab | 73.3bc | 21.6c | 258.7a | 289.7d | 4.1ab | 51.1c | 521.7cd | |
| F (p) |
77.54 (<0.001) |
51.45 (<0.001) |
22.66 (<0.001) |
9.64 (<0.001) |
34.56 (<0.001) |
26.02 (<0.001) |
36.20 (<0.001) |
41.66 (<0.001) |
132.00 (<0.001) |
345.81 (<0.001) |
|
| PAT | 7 | 62.4b | 137.9c | 34.3a | 70.0c | 18.7bc | 250.4a | 1062.5a | 7.0c | 52.4c | 1046.7d |
| 8 | 66.6b | 154.8e | 36.8a | 71.7c | 19.1c | 254.9a | 1013.4a | 6.8c | 51.0b | 1167.5e | |
| 9 | 66.3b | 150.1d | 43.6b | 72.4c | 20.6d | 333.2b | 1123.2a | 6.1b | 51.4b | 1273.9f | |
| 11 | 48.3a | 127.0b | 34.2a | 65.5b | 17.0b | 243.2a | 1385.1b | 5.8ab | 52.4c | 785.0b | |
| 12 | 49.1a | 126.7b | 34.6a | 65.8b | 17.7b | 235.7a | 1355.2b | 6.1b | 52.5c | 899.0c | |
| 13 | 49.5a | 119.1a | 36.6a | 62.3a | 15.2a | 240.0a | 1078.9a | 5.5a | 49.3a | 588.9a | |
| F (p) |
31.41 (<0.001) |
183.20 (<0.001) |
11.08 (<0.001) |
67.19 (<0.001) |
64.57 (<0.001) |
17.23 (<0.001) |
35.62 (<0.001) |
24.53 (<0.001) |
61.28 (<0.001) |
932.19 (<0.001) |
|
| ESP | 17 | 19.5b | 39.0b | 10.3a | 46.4b | 7.7b | 45.9b | 315.0d | 15.9b | 48.6c | 576.3b |
| 18 | 3.2a | 33.9a | 10.2a | 37.6a | 6.9a | 35.8a | 155.2c | 15.1a | 47.5a | 445.3a | |
| 19 | 39.0cd | 81.6d | 17.2d | 66.4e | 12.4e | 118.1e | 47.7a | 18.7c | 47.9ab | 1226.0d | |
| 20 | 36.2c | 73.1c | 13.5c | 60.7d | 9.8d | 91.6d | 80.4b | 18.8c | 48.0b | 1068.8c | |
| 21 | 39.2d | 77.3d | 12.4b | 55.9c | 8.4c | 82.5c | 58.5a | 18.9d | 47.5a | 1064.1c | |
| F (p) |
733.59 (<0.001) |
5368.24 (<0.001) |
182.12 (<0.001) |
1118.24 (<0.001) |
468.36 (<0.001) |
1323.15 (<0.001) |
824.95 (<0.001) |
4599.80 (<0.001) |
196.28 (<0.001) |
6567.81 (<0.001) |
|
| MON | 22 | -- | 36.5a | 5.9a | 27.9a | 6.2ab | 28.0ab | 185.1a | 15.5 | 48.4a | 292.9b |
| 23 | -- | 39.4b | 6.3a | 28.5a | 6.0a | 25.6a | 448.5b | 15.4 | 48.3a | 289.9b | |
| 24 | -- | 36.6a | 7.6bc | 30.4b | 6.3b | 35.8c | 1461.7c | 15.6 | 50.4b | 194.6a | |
| 25 | -- | 36.8a | 8.3c | 32.7b | 6.5b | 31.9bc | 202.1a | 15.6 | 48.1a | 361.4c | |
| F (p) |
-- | 7.99 (<0.001) |
18.49 (<0.001) |
6.70 (<0.001) |
8.58 (<0.001) |
38.13 (<0.001) |
196.66 (<0.001) |
0.98 (0.400) |
40.17 (<0.001) |
207.66 (<0.001) |
|
| PCH | 38 | 30.6f | 58.6f | 13.8i | 60.5c | 10.7f | 81.9jk | 858.3f | 17.5b | 50.1cd | 596.2b |
| 39 | 30.1f | 69.0k | 11.6ef | 66.6e | 9.5bc | 66.1fgh | 71.4a | 19.9d | 49.8c | 987.2j | |
| 40 | 35.3g | 58.0f | 13.6hi | 64.3d | 11.2gh | 85.5k | 638.7e | 19.4c | 51.7gh | 642.4de | |
| 41 | 18.3b | 41.5b | 10.7d | 45.4a | 7.6a | 55.5d | 925.3g | 16.8a | 49.3b | 527.7a | |
| 42 | 56.2j | 61.6h | 12.6g | 73.2i | 10.1d | 66.1gh | 131.7b | 22.4k | 54.3j | 847.7i | |
| 43 | 29.9f | 60.9gh | 11.4e | 66.9ef | 10.1d | 57.5de | 155.0b | 21.4fg | 51.3fg | 801.7h | |
| 44 | 42.4h | 59.8fg | 12.0f | 70.0h | 10.7ef | 64.8fg | 215.1c | 22.1i | 52.5i | 766.2g | |
| 45 | 23.9d | 48.7d | 10.0c | 60.7c | 9.5b | 47.1c | 305.9d | 20.6e | 50.2cd | 621.5cd | |
| 46 | 34.9fg | 69.6k | 11.7ef | 65.9de | 10.0cd | 59.5de | 280.5bcd | 22.3jk | 51.5fgh | 791.7gh | |
| 47 | 20.8c | 53.8e | 9.8c | 59.6c | 9.4b | 45.8c | 232.9cd | 20.5e | 50.3d | 662.9e | |
| 48 | 26.5e | 47.0c | 9.2b | 59.7c | 9.5b | 42.4b | 253.4d | 21.4fg | 50.7e | 609.7bc | |
| 49 | 5.6a | 36.7a | 7.3a | 48.1b | 7.9a | 26.9a | 223.0cd | 20.4e | 48.0a | 530.4a | |
| 50 | 39.1g | 62.5hi | 12.6g | 68.5fg | 10.3d | 68.1h | 334.7d | 21.8hi | 51.9h | 708.3f | |
| 51 | 49.1i | 64.3ij | 13.6i | 68.2g | 11.3h | 81.0j | 78.4a | 21.7gh | 51.5g | 1126.7k | |
| 52 | 39.3gh | 53.8e | 14.7j | 76.1j | 11.7h | 86.1jk | 256.3bcd | 22.3hij | 53.1i | 652.3cde | |
| 53 | 38.1g | 64.6j | 13.3h | 66.7e | 10.9fg | 76.9i | 77.1a | 21.5fgh | 51.4fg | 1160.3l | |
| 54 | 29.8ef | 66.4jk | 11.8ef | 63.0d | 10.3de | 61.0ef | 112.9ab | 20.4e | 50.9ef | 1017.8j | |
| F (p) |
460.20 (<0.001) |
784.09 (<0.001) |
588.23 (<0.001) |
725.22 (<0.001) |
369.69 (<0.001) |
739.89 (<0.001) |
1044.68 (<0.001) |
963.78 (<0.001) |
331.25 (<0.001) |
2617.41 (<0.001) |
|
| YUN | 32 | 65.9e | 84.9e | 17.9c | 78.9d | 18.1c | 140.8c | 1187.5c | 17.6c | 53.3b | 729.3c |
| 33 | 54.2c | 69.9ab | 15.7a | 75.8bc | 15.8a | 119.3a | 765.2b | 19.5d | 52.0a | 742.5c | |
| 34 | 73.5e | 74.2bc | 18.1c | 78.1d | 18.0c | 137.8c | 616.8a | 20.8e | 51.5a | 861.7d | |
| 35 | 60.4d | 75.6c | 17.6bc | 77.8d | 17.1b | 136.1c | 620.4a | 21.1e | 51.5a | 987.9e | |
| 36 | 6.6a | 81.3d | 19.4d | 71.5a | 15.3a | 156.0d | 2564.8e | 12.5a | 55.8c | 285.9a | |
| 37 | 28.1b | 67.6a | 17.3b | 75.3b | 15.9a | 129.6b | 1438.8d | 16.8b | 53.1b | 528.9b | |
| F (p) |
242.15 (<0.001) |
90.63 (<0.001) |
73.63 (<0.001) |
49.23 (<0.001) |
59.12 (<0.001) |
58.91 (<0.001) |
477.84 (<0.001) |
524.01 (<0.001) |
45.07 (<0.001) |
1919.23 (<0.001) |
|
| AF | 26 | 77.9c | 95.9c | 19.5c | 77.4d | 21.1c | 134.1c | 511.9e | 18.6a | 57.7d | 1856.4e |
| 27 | 64.2b | 98.1d | 18.7b | 75.1bc | 20.3b | 122.4b | 199.5b | 20.3c | 54.9b | 1596.2a | |
| 29 | 77.1c | 96.6cd | 19.3c | 76.0c | 21.0c | 135.4c | 331.2d | 19.7b | 56.0c | 1724.4c | |
| 30 | 68.7b | 93.0b | 18.7b | 74.7b | 20.4b | 122.9b | 254.2c | 20.1c | 55.2b | 1737.9d | |
| 31 | 33.4a | 82.7a | 17.6a | 73.1a | 18.2a | 112.2a | 156.9a | 20.7d | 52.9a | 1649.1b | |
| F (p) |
142.20 (<0.001) |
78.96 (<0.001) |
87.54 (<0.001) |
32.12 (<0.001) |
63.44 (<0.001) |
117.01 (<0.001) |
275.91 (<0.001) |
268.19 (<0.001) |
206.00 (<0.001) |
893.30 (<0.001) |
| REGION | PHE | Plots | FT-1 | FT-2 | FT-3 | MONO | BI | MULTI |
|---|---|---|---|---|---|---|---|---|
| Country | 3741 | 50 | 115 | 1990 | 25.9% | 32.2% | 41.9% | |
| TDF | Total | 56 | 3 | 3 | 3 | 100.0% | 0.0% | 0.0% |
| 1 | 1 | 1 | 1 | 1 | 100.0% | 0.0% | 0.0% | |
| 2 | 7 | 2 | 2 | 2 | 100.0% | 0.0% | 0.0% | |
| 3 | 23 | 2 | 2 | 2 | 100.0% | 0.0% | 0.0% | |
| 4 | 12 | 3 | 3 | 3 | 100.0% | 0.0% | 0.0% | |
| 5 | 8 | 3 | 3 | 3 | 100.0% | 0.0% | 0.0% | |
| 6 | 5 | 2 | 2 | 2 | 100.0% | 0.0% | 0.0% | |
| PAT | Total | 172 | 5 | 5 | 25 | 86.0% | 13.4% | 0.6% |
| 7 | 20 | 4 | 4 | 12 | 45.0% | 50.0% | 5.0% | |
| 8 | 28 | 5 | 5 | 11 | 82.1% | 17.9% | 0.0% | |
| 9 | 21 | 5 | 5 | 6 | 90.5% | 9.5% | 0.0% | |
| 11 | 21 | 2 | 2 | 4 | 95.2% | 4.8% | 0.0% | |
| 12 | 38 | 4 | 4 | 8 | 86.8% | 13.2% | 0.0% | |
| 13 | 44 | 3 | 3 | 3 | 100.0% | 0.0% | 0.0% | |
| ESP | Total | 251 | 6 | 11 | 112 | 49.0% | 36.7% | 14.3% |
| 17 | 99 | 2 | 4 | 21 | 82.8% | 17.2% | 0.0% | |
| 18 | 11 | 1 | 3 | 6 | 72.7% | 27.3% | 0.0% | |
| 20 | 57 | 6 | 8 | 47 | 21.0% | 47.4% | 31.6% | |
| 21 | 84 | 6 | 7 | 52 | 25.0% | 53.6% | 21.4% | |
| MON | Total | 87 | 4 | 10 | 32 | 72.4% | 26.4% | 1.2% |
| 22 | 1 | 1 | 1 | 1 | 100.0% | 0.0% | 0.0% | |
| 23 | 58 | 4 | 9 | 24 | 69.0% | 31.0% | 0.0% | |
| 24 | 23 | 4 | 7 | 12 | 73.9% | 21.7% | 4.4% | |
| 25 | 5 | 1 | 2 | 2 | 100.0% | 0.0% | 0.0% | |
| PCH | Total | 2725 | 30 | 73 | 1462 | 18.7% | 35.3% | 46.0% |
| 38 | 85 | 14 | 26 | 66 | 27.1% | 43.5% | 29.4% | |
| 39 | 75 | 15 | 23 | 59 | 17.3% | 32.0% | 50.7% | |
| 40 | 37 | 11 | 16 | 36 | 18.9% | 24.3% | 56.8% | |
| 41 | 159 | 8 | 22 | 73 | 47.8% | 42.1% | 10.1% | |
| 42 | 149 | 14 | 21 | 129 | 14.1% | 23.5% | 62.4% | |
| 43 | 116 | 13 | 21 | 98 | 11.3% | 35.3% | 53.4% | |
| 44 | 373 | 23 | 34 | 281 | 9.9% | 30.0% | 60.1% | |
| 45 | 187 | 12 | 23 | 126 | 14.4% | 48.2% | 37.4% | |
| 46 | 42 | 10 | 13 | 37 | 7.1% | 31.0% | 61.9% | |
| 47 | 259 | 14 | 27 | 171 | 18.6% | 37.8% | 43.6% | |
| 48 | 455 | 16 | 27 | 248 | 16.0% | 42.6% | 41.4% | |
| 49 | 139 | 8 | 11 | 56 | 33.1% | 54.0% | 12.9% | |
| 50 | 109 | 14 | 24 | 101 | 11.0% | 32.1% | 56.9% | |
| 51 | 282 | 25 | 46 | 236 | 15.6% | 20.9% | 63.5% | |
| 52 | 40 | 12 | 16 | 36 | 25.0% | 35.0% | 40.0% | |
| 53 | 146 | 19 | 32 | 129 | 19.2% | 27.4% | 53.4% | |
| 54 | 72 | 13 | 21 | 47 | 40.3% | 25.0% | 34.7% | |
| YUN | Total | 289 | 25 | 41 | 242 | 20.4% | 29.8% | 49.8% |
| 32 | 80 | 15 | 18 | 74 | 15.0% | 26.2% | 58.8% | |
| 33 | 49 | 15 | 17 | 45 | 18.3% | 32.7% | 49.0% | |
| 34 | 19 | 12 | 14 | 19 | 5.3% | 26.3% | 68.4% | |
| 35 | 62 | 15 | 21 | 60 | 8.1% | 27.4% | 64.5% | |
| 36 | 14 | 4 | 4 | 5 | 85.7% | 0.0% | 14.3% | |
| 37 | 65 | 18 | 22 | 57 | 30.8% | 41.5% | 27.7% | |
| AF | Total | 161 | 19 | 28 | 160 | 4.4% | 13.0% | 82.6% |
| 26 | 31 | 12 | 14 | 31 | 0.0% | 12.9% | 87.1% | |
| 27 | 21 | 9 | 10 | 21 | 9.5% | 9.5% | 81.0% | |
| 29 | 43 | 13 | 17 | 43 | 0.0% | 16.3% | 83.7% | |
| 30 | 49 | 17 | 20 | 49 | 6.2% | 12.2% | 81.6% | |
| 31 | 17 | 11 | 11 | 17 | 11.8% | 11.8% | 76.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
