Submitted:
24 February 2024
Posted:
26 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
| Powder Info | Composition Info | Milling Parameters | Sintering | Paper Info (Year) |
Ref | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| TiCxN1-x, µm |
X | WC, µm |
Velo (RPM) |
Time (h) |
Tech Used |
Pressure (MPa) | Sintering Temp |
Holding Time (min) |
|||
| >0.1 | 0.7 | 0.85 | TiCN-43,WC-6.9,Ni-32, Mo-16,VC-0.6,C-1.5 | 200 | 24h | SPS | 20 | 1350 | 3 | 2004 | [15] |
| 3-4 | 0.5 | 1-4 | TiCN-65,WC-15,Ni-20 | 250 | 20 | VS | 150 | 1510 | 60 | 2004 | [19] |
| 1 | 0.7 | 0.8 | TiCN–WC–Mo2C–(Co,Ni) | * | 80 | VS | 100 | 1360 | 60 | 2008 | [20] |
| 0.1 | 0.5 | 1.14 | TiCN-(47.5-57.5),WC-20,Co-15,Mo-(5-15), C-2.5 | * | 24h | VS | 170 | 1430 | 60 | 2006 | [21] |
| <1 | 0.7 | <1 | TiCN-59,WC-15,Co+Ni-17,Mo2C-9 | 304 | 50h | VMS | 300 | 1400 | 5 | 2009 | [22] |
| 0.8-3 | 0.5 | 5.9 | TiCN-50,WC-21.22,Ni-20,{Mo+Ta(Nb)}-8.47 | * | 24h | VS | 125 | 1510 | 60 | 2012 | [23] |
| 0.7-0.95 | 0.5 | 0.4 | TiCN-55,WC-25,Ni-20 | * | 24h | VS | 100 | 1510 | 60 | 2001 | [24] |
| 0.13 | 0.7 | 0.45 | TiCN-53.5,WC-15,Co+Ni-14.5,TaC-7,Mo2C-10 | * | 45h | VS | * | 1450 | 60 | 2008 | [25] |
| 0.5-0.8 | 0.5 | 200 nm |
TiCN-51.87,WC-16,Ni-11,Co-9,Mo2C-12,VC-0.13 | 30 | 72h | VS | 120 | 1450 | 90 | 2010 | [26] |
| 0.3 | 0.7 | 0.2 | TiCN-55,WC-25,Ni-20 | * | 24h | VS | 100 | 1510 | 60 | 2003 | [27] |
| 0.13 | 0.7 | 0.45 | TiCN-X, Ni+Co-14.5,Mo2C-10, (WC-15/TaC-10) | 68 | 48h | VS | * | * | 2006 | [28] | |
| 1 | 0.7 | 0.2 | TiCN-51.4,WC-15,Co+Ni-15,Mo2C-10,TaC-8,Ce/Co-0.6 | * | 72h | VS | 100 | 1465 | 60 | 2012 | [29] |
| * | 0.5 | * | TiCN-85,Co-15 | 400 | 30min | SPS | 80 | 1300 | 1 | 2012 | [30] |
| * | 0.5 | * | TiCN-80.75,Al2O3-14.25,Mo-2.5,Ni-2.5 | * | * | SPS | 50 | 1450 | 2 | 2003 | [31] |
| 0.7 | 0.8 | 3.52 | TiCN-65,WC-15,Ni-7.5,Co-7.5,Mo-4,C-1 | 150 | 24h | VS | 180 | 1430 | 60 | 2006 | [32] |
| 1* | 0.7 | 0.72 | TiCN-43,WC-6.9,Ni-32,Mo-16,Cr3C2-0.6,C-1.5 | 150 | 12h | VS | 300 | 1450 | 60 | 2004 | [33] |
| TiC-3.87, TiN-0.04 |
0.5 | 3.25 | TiCN-X,WC-15, Co+Ni-24, Mo-8/15, | * | 24h | VS | 170 | 1450 | 60 | 2004 | [34] |
| 0.5 | 0.7 | 0.45 | TiCN-53.5,WC+TaC-22,Ni+Co-14.5,Mo2C-10 | 68 | 48h | VS | * | * | 2005 | [35] | |
| TiC-1.5, TiN-2.9 |
0.5 | * | TiCN-70,Ni-20,Mo2C-10 | * | 24h | VS | 100 | 1550 | 120 | 2008 | [36] |
| 0.21 | 0.7 | * | TiCN-76,Ni-12,Mo2C-12 | * | 36h | SPS | 30 | 1250 | 3 | 2003 | [37] |
| Composition | Properties of sintered cermets | Ref. | |||||
|---|---|---|---|---|---|---|---|
| % Density |
Relative Density (gm/cm3) |
Grain Size (µm) |
Hardness (Gpa) |
Fracture Toughness (Mpa.m1/2) |
Trans R.S MPa |
||
| TiCN-43,WC-6.9,Ni-32,Mo-16,VC-0.6,C-1.5 | * | 6.48 | >100nm | 14.2 | * | 879.5 | [15] |
| TiCN-65,WC-15,Ni-20 | 98.8 | 6.16 | 30-100nm | 12.2 | 12 | * | [19] |
| TiCN–WC–Mo2C–(Co,Ni) | * | * | * | * | * | * | [20] |
| TiCN-57.5,WC-20,Co-15,Mo-5, C-2.5 | * | * | 1.17 | 15.98 | 13.2 | 870 | [21] |
| TiCN-52.5,WC-20,Co-15,Mo-10,C-2.5 | * | * | 1.15 | 17.39 | 11.9 | 990 | [21] |
| TiCN-47.5,WC-20,Co-15,Mo-15,C-2.5 | * | * | 0.79 | 17.87 | 11 | 1030 | [21] |
| TiCN-59,WC-15,Co+Ni-17,Mo2C-9 | 99.5 | * | >1 | 17.36 | * | * | [22] |
| TiCN-50,WC-21.22,Ni-20, {Mo+Ta(Nb)}-8.47 | * | * | 1-4 | ~11 | ~10 | * | [23] |
| TiCN-55,WC-25,Ni-20 | * | 6.5 | 0.7-0.9 | 14.2 | 8.8 | * | [24] |
| TiCN-53.5,WC-15,Co+Ni-14.5,TaC-7,Mo2C-10 | * | 6.39 | >1 | 17.54 | * | 965 | [25] |
| TiCN-51.87,WC-16,Ni-11,Co-9,Mo2C-12, VC-0.13 | 99.5 | 6.74 | 0.5-1 | 14.7 | 10.1 | 2210 | [26] |
| TiCN-55,WC-25,Ni-20 | * | * | 1.2 | 14 | 7.3 | * | [27] |
| TiCN-60.5,WC-15,Ni+Co-14.5,Mo2C-10 | * | * | 0.5 | 18.63 | * | 1500 | [28] |
| TiCN-75.5,Ni+Co-14.5,Mo2C-10 | * | * | 0.5 | 18.7 | * | 1320 | [28] |
| TiCN-50.5,WC-15,Ni+Co-14.5,Mo2C-10, TaC-10 | * | * | 0.5 | 18.65 | * | 1600 | [28] |
| TiCN-51.4,WC-15,Co+Ni-15,Mo2C-10, TaC-8, Ce/Co-0.6 | * | * | 1-2 | 17.06 | 9.21 | 1639 | [29] |
| TiCN-85,Co-15 | 99 | * | >1 | 17.1 | 5.51 | 904 | [30] |
| TiCN-80.75,Al2O3-14.25,Mo-2.5,Ni-2.5 | * | 5.115 | 0.5> | 14.45 | * | * | [31] |
| TiCN-65,WC-15,Ni-7.5,Co-7.5,Mo-4,C-1 | * | 6.258 | >1 | 18.63 | 14.5 | 1623.5 | [32] |
| TiCN-43,WC-6.9,Ni-32,Mo-16,Cr3C2-0.6,C-1.5 | 98> | * | >1 | 12.3 | * | 2884 | [33] |
| TiCN-53,WC-15,Mo-8,Co+Ni-24 | * | * | 1 | 12.5 | 17 | 1425 | [34] |
| TiCN-46,WC-15,Mo-15,Co+Ni-24 | * | * | 1 | 12.74 | 18.2 | 1600 | [34] |
| TiCN-53.5,WC+TaC-22,Ni+Co-14.5,Mo2C-10 | * | 6.7 | 0.3 | 19.5 | 10.6 | 1740 | [35] |
| TiCN-70,Ni-20,Mo2C-10 | >98 | 5.56 | 3.2 | * | 14.2 | * | [36] |
| TiCN-76,Ni-12,Mo2C-12 | * | * | 0.42 | 16.78 | * | 295 | [37] |
| S.No. | Patent Ref. | Filing date | Publication date | Applicant | Title | Ref No. |
| 1 | US2033513 | Jun 12, 1935 | Mar 10, 1936 | Firth Sterling Steel Co | Hard cemented carbide material | [44] |
| 2 | US4145213 | May 17, 1976 | Mar 20, 1979 | Sandvik Aktiebolg | Wear resistant alloy | [45] |
| 3 | US4942097 | 14 Oct 1987 | 17 Jul 1990 | Kennametal Inc. | Cermet cutting tool (TiCN,WC,TiC,Mo2C,Co,Ni) |
[46] |
| 4 | US4948425 | Apr 6, 1989 | Aug 14, 1990 | Agency Of Industrial Science And Technology | Titanium carbo-nitride and chromium carbide-based ceramics containing metals (TiC.5N.5, Cr3C2, Mo2C, B4C,Co,Ni,Si) |
[47] |
| 5 | US5186739 | Feb 21, 1990 | Feb 16, 1993 | Sumitomo Electric Industries, Ltd. | Cermet alloy containing nitrogen | [48] |
| 6 | US5370719 | Nov 16, 1993 | Dec 6, 1994 | Mitsubishi Materials Corporation | Wear resistant titanium carbonitride-based cermet cutting insert (TiCN,WC,Cr3C2, Mo2C,ZrC,TaC,NbCN,VC,Ni,Co) |
[49] |
| 7 | US5395421 | 30 Sep 1993 | 7 Mar 1995 | Sandvik Ab | Titanium-based carbonitride alloy with controlled structure (TiC,TiN, WC,Mo2C,TaC,VC, Co,Ni) |
[50] |
| 8 | US5766742 | 31 Oct 1996 | 16 Jun 1998 | Mitsubishi Materials Corporation | Cutting blade made of titanium carbonitride-base cermet, and cutting blade made of coated cermet (TiCN,TiN,TaC,NbC,WC,VC,ZrC, Cr3C2,Mo2C,Co,Ni,graphit powder C) |
[51] |
| 9 | US6004371 | 19 Jan 1996 | 21 Dec 1999 | Sandvik Ab | Titanium-based carbonitride alloy with controllable wear resistance and toughness (TiC,TiN, WC,Mo2C,TaC,VC,Co,Ni) |
[52] |
| 10 | US 6129891 A | 23 Aug 1999 | 10 Oct 2000 | Sandvik Ab | Titanium-based carbonitride alloy with controllable wear resistance and toughness (TiC,TiN, WC,Mo2C,TaC,VC,Co,Ni) |
[53] |
| 11 | EP1043414A1 | 5 Apr 2000 | 11 Oct 2000 | Mitsubishi Materials Corporation | Cermet cutting insert | [54] |
| 12 | US7332122 | 7 Oct 2003 | 19 Feb 2008 | Sandvik Intellectual Property Ab | Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for milling cutting tool applications | [55] |
| 13 | US7588621 | 23 Aug 2007 | 15 Sep 2009 | Sandvik Intellectual Property Aktiebolag | Ti(C,N)-(Ti,Nb,W)(C,N)-co alloy for milling cutting tool applications | [56] |
| 14 | US7645316 | 30 Oct 2006 | 12 Jan 2010 | Sandvik Intellectual Property Aktiebolag | Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for finishing and semifinishing turning cutting tool applications | [57] |
| 15 | US8007561 | 13 Jun 2006 | 30 Aug 2011 | Ngk Spark Plug Co., Ltd. | Cermet insert and cutting tool | [58] |
| 16 | US 8202344 B2 | 21 May 2007 | 19 Jun 2012 |
Kennametal Inc. | Cemented carbide with ultra-low thermal conductivity (TiC,WC,Cr3C2,TaNbC,Mo2C,Ni,Co) |
[59] |
2. Materials and Methods
3. Results and Discussion
| Cermet (wt%): 75TiCN-10WC-15(Ni-Co) | ||||||
|---|---|---|---|---|---|---|
| Sintering Technique | Sintering Temp. (°C) | Holding Time (min) | Pressure (MPa) | Relative Density % | HV10 (GPa) | KIc (MPa m1/2) |
| Conventional | 1400 | 60 | 150-uniaxial 300-isostatic |
~98 | 15.0± 0.15 | 7.7± 0.45 |
| SPS | 1200 | 3 | 60 | >98 | 15.8± 0.23 | 8.0± 0.30 |
| 1250 | 3 | 60 | >98.5 | 16.3 ± 0.34 | 8.5± 0.21 | |
4. Conclusions
Funding
Conflicts of Interest
References
- Peng, Y.; Miao, H.; Peng, Z. Development of Ti(CN)-based cermets: Mechanical properties and wear mechanism. International Journal of Refractory Metals and Hard Materials 2013, 39, 78–89. [Google Scholar] [CrossRef]
- Joardar, J.; Kim, S.W. Tribological Evaluation of Ultrafine Ti(CN) cermets. Materials and Manufacturing Processes 2002, 17, 567–576. [Google Scholar] [CrossRef]
- Soboyejo, W. Special Issue—Materials and Manufacturing Processes on Multifunctional Micro- and Nano-Structures. Materials and Manufacturing Processes 2007, 22, 139–139. [Google Scholar] [CrossRef]
- Kwona, W.T.; Park, J.S.; Kim, S.W.; Kang., S. Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools. International Journal of Machine Tools and Manufacture 2004, 44, 341–346. [Google Scholar] [CrossRef]
- Ettmayer, P.; Kolaska, H.; Lengauer, W.; Dreyer, K. Ti(C,N) Cermets - Metallurgy and Properties. International Journal of Refractory Metals and Hard Materials 1995, 13, 343–351. [Google Scholar] [CrossRef]
- Shamanian, M.; Salehi, M.; Saatchi, A.; North, T.H. Influence of Ni Interlayers on the Mechanical Properties of Ti6Al4V/(WC-Co) Friction Welds. Materials and Manufacturing Processes 2006, 18, 581–598. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kang, S. Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process. Journal of the American Ceramic Society 2003, 83, 1489–1494. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Kang, S. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30 Ni system. International Journal of Refractory Metals and Hard Materials 2001, 19, 539–545. [Google Scholar] [CrossRef]
- Zhang, S. Titanium carbonitride-based cermets: processes and properties. Materials Science and Engineering A 1993, 163, 141–148. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, G.Q. Sintering of Ti(C,N)Based Cermets: The Role of Compaction. Materials and Manufacturing Processes 1995, 10, 773–783. [Google Scholar] [CrossRef]
- Yoo, S.H.; Sethuram, K.M.; Sudarshan, T.S. Apparatus for Bonding a Particle Materials to Near Theoretical Density. U.S. Patent 5,989,487, 23 November 1999. [Google Scholar]
- Yoo, S.H.; Sethuram, K.M.; Sudarshan, T.S. Method of Bonding a Particle Materials to Near Theoretical Density. U.S. Patent 6,001,304, 14 December 1999. [Google Scholar]
- Alvarez, M.; Sánchez, J.M. Spark plasma sintering of Ti(C,N) cermets with intermetallic binder phases. International Journal of Refractory Metals & Hard Materials 2007, 25, 107–118. [Google Scholar] [CrossRef]
- Ping, F.; Wei-hao, X.; Yong, Z.; Li-Xin, Y.; Yang-hua, X. Spark Plasma Sintering Properties of Ultrafine Ti (C, N)-based Cermet. Journal of Wuhan University of Technology Mater. Sci. Ed 2004, 19, 69–72. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; You, M.; Tana, H.; Xiong, W. Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering. Materials Chemistry and Physics 2005, 92, 64–70. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Manigandan, K.; Petraroli, M.; Trejo, R.M.; Sudarshan, T.S. Influence of size of nanoparticles and plasma pressure compaction on microstructural development and hardness of bulk tungsten samples. Advanced Powder Technology 2013, 24, 190–199. [Google Scholar] [CrossRef]
- Yoo, S.; Kalyanaraman, R.; Subhash, G.; Sudarshan, T.S.; Dowding, R.J. High Strain Rate Response of PAS (Plasma Activated Sintering) Consolidated Tungsten Powders; Materials Modification, Inc.; Available online: http://www.matmod.com/Publications/p2c_1.pdf (accessed October 2002).
- Shetty, D.K.; Wright, I.G.; Mincer P., N.; Clauer, A.H. Indentation fracture of WC-Co cermets. Journal of Material Science, 1985, 20, 1873–82. [Google Scholar] [CrossRef]
- Park, S. ; Kang. S. Toughened ultra-fine (Ti,W)(CN)–Ni cermets. Scripta Materialia 2005, 52, 129–133. [Google Scholar]
- Jun, W.; Ying, L.; Yan, F.; Jinwen, Y.; Mingjing, T. Effect of NbC on the microstructure and sinterability of Ti(C0.7, N0.3)-based cermets. Int. Journal of Refractory Metals & Hard Materials 2009, 27, 549–551. [Google Scholar]
- Zhang, X.; Liu, N.; Rong, C. Effect of molybdenum content on the microstructure and mechanical properties of ultra-fine Ti(C, N) based cermets. Materials Characterization 2008, 59, 1690–1696. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, D.; Tang, S. Preparation and properties of ultra-fine TiCN matrix cermets by vacuum microwave sintering. RARE METALS 2010, 29, 528–532. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kwon, W.T.; Seo, M.; Kang, S. Tool Performance of New Wear-resistant Cermets. International Journal Of Precision Engineering And Manufacturing 2012, 13, 941–946. [Google Scholar] [CrossRef]
- Jeon, E.T.; Joardar, J.; Kang, S. Microstructure and tribo-mechanical properties of ultrafine Ti(CN) cermets. International Journal of Refractory Metals & Hard Materials 2002, 20, 207–211. [Google Scholar]
- Xiong, J.; Guo, Z.; Yang, M.; Shen, B. Preparation of ultra-fine TiC0.7N0.3-based cermet. International Journal of Refractory Metals & Hard Materials 2008, 26, 212–219. [Google Scholar]
- Liu, Y.; Jin, Y.; Yu, H.; Ye, J. Ultrafine (Ti, M)(C, N)-based cermets with optimal mechanical properties. Int. Journal of Refractory Metals and Hard Materials 2011, 29, 104–107. [Google Scholar] [CrossRef]
- Jung, J.; Kang, S. Effect of ultra-fine powders on the microstructure of Ti(CN)–xWC–Ni cermets. Acta Materialia 2004, 52, 1379–1386. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, Z.; Shen, B.; Cao, D. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0. 7N0.3 cermet. Materials and Design 2007, 28, 1689–1694. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Ye, J. Influence of Ce–Co pre-alloyed powder addition on the microstructure and mechanical properties of Ti(C, N)-based cermets. Int. Journal of Refractory Metals and Hard Materials 2013, 37, 134–141. [Google Scholar] [CrossRef]
- Borrell, A.; Salvador, M.D.; Rocha, V.G.; Ferna, A.; Aviles, M.A.; Gotor, F.J. Bulk TiCxN1-x–15%Co cermets obtained by direct spark plasma sintering of mechanochemical synthesized powders. Materials Research Bulletin 2012, 47, 4487–4490. [Google Scholar] [CrossRef]
- Gong, J.; Pan, X.; Miao, H.; Zhao, Z. Effect of metallic binder content on the microhardness of TiCN-based cermets. Materials Science and Engineering A 2003, 359, 391–395. [Google Scholar] [CrossRef]
- Liu, N.; Yin, W.; Zhu, L. Effect of TiC/TiN powder size on microstructure and properties of Ti(C, N)-based cermets. Materials Science and Engineering A 2007, 445–446, 707–716. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiong, W.; Liu, W.; Lei, W.; Yuan, Q. Effect of nano addition on the microstructures and mechanical properties of Ti(C, N)-based cermets. Ceramics International 2005, 31, 165–170. [Google Scholar] [CrossRef]
- Liu, N.; Han, C.; Xu, Y.; Chao, S.; Shi, M.; Feng, J. Microstructures and mechanical properties of nano TiN modified TiC-based cermets for the milling tools. Materials Science and Engineering A 2004, 382, 122–131. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, Z.; Wen, B.; Li, C.; Shen, B. Microstructure and properties of ultra-fine TiC0.7N0.3 cermet. Materials Science and Engineering A 2006, 416, 51–58. [Google Scholar] [CrossRef]
- Cardinal, S.; Malchère, A.; Garnier, V.; Fantozzi, G. Review Microstructure and mechanical properties of TiC–TiN based cermets for tools application. Int. Journal of Refractory Metals & Hard Materials 2009, 27, 521–527. [Google Scholar]
- Feng, P.; Xiong, W.H.; Zheng, Y.; Yu, L.X.; Xia, Y.H. Spark Plasma Sintering Properties of Ultrafine Ti ( C, N)-based Cermet. Journal of Wuhan Universityof Technology Mater.Sci.Ed. 2004, 19, 69–72. [Google Scholar]
- Zhang, G.; Huang, M.; Zhao, X.; Zhang, H.; Wang, Y.; Zhang, X.; Zheng, H.; Lu, P.; Zhao, Z. Preparation and properties of Ti(C,N)-based cermets with graphene nanosheet addition by spark plasma sintering. journal of materials research and technology 2023, 24, 185–199 doiorg/101016/jjmrt202303007. [Google Scholar] [CrossRef]
- Yan, H.; Deng, Y.; Su, Y.Y.; Jiang, S.; Chen, Q.W.; Cao, S.X.; Liu, B. Ti(C, N)-Based Cermets with Two Kinds of Core-Rim Structures Constructed by β-Co Microspheres. Advances in Materials Science and Engineering, 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Shankar, E.; Prabu, S.B.; Padmanabhan, K.A. Mechanical properties and microstructures of TiCN/nano-TiB 2 /TiN cermets prepared by spark plasma sintering. Ceramics International 2018, 44, 9384–9394. [Google Scholar] [CrossRef]
- Zhang, M.M.; Jiang, Y.; Lin, N.; Kang, X.Y.; Yan, Y.; Huang, J.H.; Liu, Y.; Qiu, S.; He, Y.H. Investigation of the oxidation behavior and high oxidation-resistant mechanism of Ti(C,N)-based cermets. Corrosion Science 2020, 108959. [Google Scholar] [CrossRef]
- De la Obra, A.G.; Sayagués, M.J.; Chicardi, E.; Gotor, F.J. Development of Ti(C,N)-based cermets with (Co,Fe,Ni)-based high entropy alloys as binder phase. Journal of Alloys and Compounds 2019, 152218. [Google Scholar] [CrossRef]
- Jose, S.A.; John, M.; Menezes, P.L. Cermet Systems: Synthesis, Properties, and Applications. Ceramics 2022, 5, 210–236. [Google Scholar] [CrossRef]
- Hard Cemented Carbide Material. United States Patent 2,033,513, 10 March 1936.
- Wear Resistant Alloy. United States Patent 4,145,213, 20 March 1979.
- Cermet Cutting Tool. United States Patent Office 4,942,097, 17 July 1990.
- Titanium carbo-nitride and chromium carbide-based ceramics containing metals. United States Patent 4,948,425, 14 August 1990.
- Cermet alloy containing nitrogen. United States Patent 5,186,739, 16 February 1993.
- Wear resistant titanium carbonitride-based cermet cutting insert. United States Patent 5,370,719, 6 December 1994.
- Titanium-based carbonitride alloy with controlled structure. United States Patent 5,395,421, 7 March 1995.
- Cutting blade made of titanium carbonitride-base cermet, and cutting blade made of coated cermet. United States Patent 5,766,742, 16 June 1998.
- Titanium-based carbonitride alloy with controllable wear resistance and toughness. United States Patent 6,004,371, 21 December 1999.
- Titanium-based carbonitride alloy with controllable wear resistance and toughness. United States Patent 6,129,891, 10 October 2000.
- Cermet cutting insert. European Patent Application – EP 1 043 414 A1, 5 aPRIL 2000.
- Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for milling cutting tool applications. United States Patent Office – US 7,332,122 B2, 19 February 2008.
- Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for milling cutting tool applications. United States Patent Office – US 7,588,621 B2, 15 September 2009.
- United States Patent Office – US 7,645,316 B2. Ti(C,N)-(Ti,Nb,W)(C,N)-Co alloy for finishing and semifinishing turning cutting tool applications. Patented January 12, 2010. d January 12, 2010.
- United States Patent Office – US 8,007,561 B2. Cermet insert and cutting tool. Patented August 30, 2011.
- United States Patent Office – US 8,202,344 B2. Cemented carbide with ultra-low thermal conductivity. Patented June 19, 2012.






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
