Submitted:
22 February 2024
Posted:
23 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
4. Current application of 3D skin models for cosmetic evaluation
4.1. Whitening effect
4.2. Moisturizing efficacy
4.3. Skin barrier efficacy
4.4. Comprehensive evaluation
5. Future Perspectives
Funding
Conflicts of Interest
References
- Jensen, J.M.; Proksch, E. The skin's barrier. G Ital Dermatol Venereol 2009, 144, 689–700. [Google Scholar]
- Kong, X.; Nie, P.J.; He, W.D.; Tang, Y. Safety evaluation of cosmetics based on in vitro three-dimensional reconstructed human epidermis (3D-RHE) models, Proceedings of the 11th China Cosmetics Symposium 2016, 350-357.
- Olejnik, A.; Semba, J.A.; Kulpa, A.; Dańczak-Pazdrowska, A.; Rybka, J.D.; Gornowicz-Porowska, J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022, 11, 26–38. [Google Scholar] [CrossRef]
- Gerber, P.A.; Buhren, B.A.; Schrumpf, H.; Homey, B.; Zlotnik, A.; Hevezi, P. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes. Biol Chem 2014, 395, 577–591. [Google Scholar] [CrossRef]
- Perrin, S. Preclinical research: Make mouse studieswork. Nature 2014, 507, 423–425. [Google Scholar] [CrossRef]
- Zhang, C.; Du, Z.; Wang, Z.; Zhang, Q. The application of 3D-artificial skin model in the evaluation of the safety and efficacy of cosmetics. Beijing Daily Chemical 2014, 2, 39–40. [Google Scholar]
- Yue, Y.; Shang, J. Application of animal substitution technology in cosmetics research and evaluation. Cosmetic Review 2023, 447, 16–21. [Google Scholar]
- Gordon, S.; Daneshian, M.; Bouwstra, J.; Caloni, F.; Constant, S.; Davies, D.E.; Dandekar, G.; Guzman, C.A.; Fabian, E.; Haltner, E.; Hartung, T.; Hasiwa, N.; Hayden, P.; Kandarova, H.; Khare, S.; Krug, H.F.; Kneuer, C.; Leist, M.; Lian, G.; Marx, U.; Metzger, M.; Ott, K.; Prieto, P.; Roberts, M.S.; Roggen, E.L.; Tralau, T.; Braak, C.; Walles, H.; Lehr, C.-M. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. Altex-Altern Animal Exper 2015, 32, 327–378. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, J.; Bennett, B.T. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J Am Assoc Lab Anim Sci 2015, 54, 120–132. [Google Scholar] [PubMed]
- Wu, W.; Zhang, Z.; Wang, J.; Zou, F.; Chen, D.; Li, H. 3D skin models of atopic dermatitis in vitro. China J Dermatovenereol 2022, 36, 133–138. [Google Scholar]
- Domaszewska-Szostek, A.P.; Krzyżanowska, M.O.; Czarnecka, A.M.; Siemionow, M. Local Treatment of Burns with Cell-Based Therapies Tested in Clinical Studies. J Clin Med 2021, 10, 396. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, L.M.; Watson, S.R.; Prosky, S.J.; Meunier, S.F.; Parenteau, N.L. Development of a Bilayered Living Skin Construct for Clinical Applications. Biotech Bioeng 1994, 43, 747–756. [Google Scholar] [CrossRef]
- Rheinwald, J.G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975, 6, 331–343. [Google Scholar] [CrossRef]
- Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci 2017, 18, 789. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Hui, G.; Zhao, Y. Tissue-engineered skin substitutes: a prospect evaluation from the aspects of morphology and function. CJTeR 2017, 21, 2600–2605. [Google Scholar]
- Lin, M.; Li, Y.; Liu, Y.; Chen, B.; Zhang, L. Research hotspots and application value of tissue-engineered skin. CJTeR 2022, 26, 153–159. [Google Scholar]
- Sun, W.; Liu, Z.; Xu, J.; Cheng, Y.; Yin, R.; Ma, L.; Li, H.; Qian, X.; Zhang, H. 3D skin models along with skin-on-a-chip systems: A critical review. Chinese Chemical Letters 2023, 34, 107819. [Google Scholar] [CrossRef]
- Ponec, M.; Boelsma, E.; Weerheim, A.; Mulder, A.; Bouwstra, J.; Mommaas, M. Lipid and Ultrastructural Characterization of Reconstructed Skin Models. Inter J Pharmaceu 2000, 203, 211–225. [Google Scholar] [CrossRef]
- Amano W, Nakajima S, Kabashima, K., et al., “The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal[J],” J Allergy Clin Immunol, 2015, 136(3):667-677.
- Yu, P.; Cai, J. Research progress on ReCell® cell autologous in vitro regeneration technology. Natl Med J China 2015, 95, 955–957. [Google Scholar]
- Fagan, S.; Hassan, Z.; Homsombath, B.; Sood, R.; Hardy, K.; Craft-Coffman, B.; . Hartman, B.C.; Cramer, C. , Griswold, J. Report of outcomes in burn patients enrolled in the Cultured epidermal autograft prospective Registry. Burns Open 2024, 8, 29–34. [Google Scholar] [CrossRef]
- Hafner, J.; Kühne, A.; Trüeb, R.M. Successful Grafting with EpiDex® in Pyoderma Gangrenosum. Dermatology 2006, 212, 258–259. [Google Scholar] [CrossRef]
- Moustafa, M.; Bullock, A.J.; Creagh, F.M.; Heller, S.; Jeffcoate, W.; Game, F.; Amery, C.; Tesfaye, S.; Ince, Z.; Haddow, D.B.; MacNeil, S. Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers. Regen med 2022, 2, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Molló, À.; Vlacho, B.; Gratacòs, M.; Mata-Cases, M.; Rubinat, E.; Berenguera, A.; Real, J.; Puig-Treserra, R.; Cos, X.; Franch-Nadal, J.; Khunti, K.; Mauricio, D. Impact of a multicomponent healthcare intervention on glycaemic control in subjects with poorly controlled type 2 diabetes: The INTEGRA study. Diabetes Obes Metab 2023, 25, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Haines, M.; Allan, J.; Wijewardana, A.; Cha, J.; Vandervord, J. Treating the burnt auricle using Biobrane. ANZ J Surg 2021, 91, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Hones, K.M.; Hones, J.; Satteson, E.S.; Chim, H. Treatment of complex extremity wounds with MatriDerm: first clinical experience in the US. J Wound Care 2023, 32, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Hart, C.E.; Loewen-Rodriguez, A.; Lessem, J. Dermagraft: Use in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2012, 1, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Asaad, M.; Morris, N.; Selber, J.C.; Liu, J.; Clemens, M.W.; Adelman, D.M.; Chang, E.I.; Butler, C.E. No Differences in Surgical and Patient-Reported Outcomes among AlloDerm, SurgiMend, and Dermacell for Prepectoral Implant-Based Breast Reconstruction. Plast Reconstr Surg 2023, 151, 719e–729e. [Google Scholar] [CrossRef]
- Wardhana, A.; Valeria, M. Efficacy Of Skin Substitutes For Management Of Acute Burn Cases: A Systematic Review. Ann Burns Fire Disasters. 2022, 35, 227–236. [Google Scholar]
- Steiglitz, B.M.; Maher, R.J.; Gratz, K.R.; Schlosser, S.; Foster, J.; Pradhan-Bhatt, S.; Comer, A.R.; Allen-Hoffmann, B.L. The viable bioengineered allogeneic cellularized construct StrataGraft® synthesizes, deposits, and organizes human extracellular matrix proteins into tissue type-specific structures and secretes soluble factors associated with wound healing. Burns 2023. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.B.; Lu, Y.; Jin, Y. Efficacy evaluation of cosmetics (Ⅷ) The application of 3D reconstructed skin models in the evaluation of cosmetic efficacy. China Surfactant Detergent & Cosmetics 2018, 48, 489–494. [Google Scholar]
- An, Z. The Construction of Skin Model and its Testing Application in Cosmeceutical. Master thesis, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding 071001 Hebei P. R. China Hebei, 5/27/2013.
- Alépée, N.; Grandidier, M.H.; Cotovio, J. Sub-Categorisation of Skin Corrosive Chemicals by the EpiSkin™ Reconstructed Human Epidermis Skin Corrosion Test Method According to UN GHS: Revision of OECD Test Guideline 431. Toxicol In Vitro 2014, 28, 131–145. [Google Scholar] [CrossRef]
- Cotovio, J.; Grandidier, M.H.; Portes, P.; Roguet, R.; Rubinstenn, G. The in vitro skin irritation of chemicals: optimisation of the EPISKIN prediction model within the framework of the ECVAM validation process. Altern Lab Anim 2005, 33, 329–49. [Google Scholar] [CrossRef] [PubMed]
- Michelet, J.F.; Olive, C.; Rieux, E.; Fagot, D.; Simonetti, L.; Galey, J.B.; Dalko-Csiba, M.; Bernard, B.A.; Pereira, R. The anti-ageing potential of a new jasmonic acid derivative (LR2412): in vitro evaluation using reconstructed epidermis Episkin™. Exp Dermatol 2012, 21, 390–340. [Google Scholar] [CrossRef] [PubMed]
- Netzlaff, F.; Lehr, C.M.; Wertz, P.W.; Schaefer, U.F. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 2005, 60, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, H.; Hoffmann, S.; Liebsch, M.; Botham, P.; Fentem, J.H.; Eskes, C.; Roguet, R.; Cotovio, J.; Cole, T.; Worth, A.; Heylings, J.; Jones, P.; Robles, C.; Kandárová, H.; Gamer, A.; Remmele, M.; Curren, R.; Raabe, H.; Cockshott, A.; Gerner, I.; Zuang, V. The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim 2007, 35, 559–601. [Google Scholar] [CrossRef]
- Portes, P.; Grandidier, M.H.; Cohen, C.; Roguet, R. Refinement of the Episkin protocol for the assessment of acute skin irritation of chemicals: follow-up to the ECVAM prevalidation study. Toxicol In Vitro 2002, 16, 765–770. [Google Scholar] [CrossRef]
- Alépée, N.; Leblanc, V.; Adriaens, E.; Grandidier, M.H.; Lelièvre, D.; Meloni, M.; Nardelli, L.; Roper, C.S.; Santirocco, E.; Toner, F.; Van Rompay, A.; Vinall, J.; Cotovio, J. Multi-laboratory validation of SkinEthic HCE test method for testing serious eye damage/eye irritation using liquid chemicals. Toxicol In Vitro 2016, 31, 43–53. [Google Scholar] [CrossRef]
- Kandárová, H.; Liebsch, M.; Spielmann, H.; Genschow, E.; Schmidt, E.; Traue, D.; Guest, R.; Whittingham, A.; Warren, N.; Gamer, A.O.; Remmele, M.; Kaufmann, T.; Wittmer, E.; De Wever, B.; Rosdy, M. Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol In Vitro 2006, 20, 547–559. [Google Scholar] [CrossRef]
- Pellevoisin, C.; Videau, C.; Briotet, D.; Grégoire, C.; Tornier, C.; Alonso, A.; Rigaudeau, A.S.; Bouez, C.; Seyler, N. SkinEthic™ RHE for in vitro evaluation of skin irritation of medical device extracts. Toxicol In Vitro 2018, 50, 418–425. [Google Scholar] [CrossRef]
- Tornier, C.; Roquet, M.; Fraissinette, A.B. Adaptation of the Validated SkinEthic™ Reconstructed Human Epidermis (RHE) Skin Corrosion Test Method to 0.5 cm2 Tissue Sample. Toxicol. In Vitro 2010, 24, 1379–1385. [Google Scholar] [CrossRef]
- Desprez, B.; Barroso, J.; Griesinger, C.; Kandárová, H.; Alépée, N.; Fuchs, H.W. Two novel prediction models improve predictions of skin corrosive sub-categories by test methods of OECD Test Guideline No. 431. Toxicol In Vitro 2015, 29, 2055–2080. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.; Lee, S.H.; Kim, J.S.; Chang, Y.J.; Jeong, T.C.; Kang, M.J.; Kim, T.S.; Yoon, H.S.; Lee, G.Y.; Bae, S.; Lim, K.M. Me-too validation study for in vitro skin irritation test with a reconstructed human epidermis model, KeraSkin™ for OECD test guideline 439. Regul Toxicol Pharmacol 2020, 117, 104725. [Google Scholar] [CrossRef] [PubMed]
- Kandárová, H.; Liebsch, M.; Genschow, E.; Gerner, I.; Traue, D.; Slawik, B.; Spielmann, H. Optimisation of the EpiDerm test protocol for the upcoming ECVAM validation study on in vitro skin irritation tests. ALTEX 2004, 21, 107–114. [Google Scholar] [PubMed]
- Liebsch, M.; Traue, D.; Barrabas, C.; Spielmann, H.; Uphill, P.; Wilkins, S.; McPherson, J.P.; Wiemann, C.; Kaufmann, T.; Remmele, M.; Holzhütter, H.G. The ECVAM Prevalidation Study on the Use of EpiDerm for Skin Corrosivity Testing. Altern Lab Anim 2000, 28, 371–401. [Google Scholar] [CrossRef]
- Hoffmann, J.; Heisler, E.; Karpinski, S.; Losse, J.; Thomas, D.; Siefken, W.; Ahr, H.J.; Vohr, H.W.; Fuchs, H.W. Epidermal-skin-test 1,000 (EST-1,000)--a new reconstructed epidermis for in vitro skin corrosivity testing. Toxicol.In Vitro 2005, 19, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Hamajima, F.; Ogasawara, T.; Hata, K. Assessment of the human epidermal model LabCyte EPI-MODEL for In vitro skin corrosion testing according to the OECD test guideline 431. J Toxicol Sci 2010, 35, 411–417. [Google Scholar] [CrossRef]
- Kojima, H.; Ando, Y.; Idehara, K.; Katoh, M.; Kosaka, T.; Miyaoka, E.; Shinoda, S.; Suzuki, T.; Yamaguchi, Y.; Yoshimura, I.; Yuasa, A.; Watanabe, Y.; Omori, T. Validation study of the in vitro skin irritation test with the LabCyte EPI-MODEL24. Altern Lab Anim 2012, 40, 33–50. [Google Scholar] [CrossRef]
- Jung, K.M.; Lee, S.H.; Jang, W.H.; Jung, H.S.; Heo, Y.; Park, Y.H.; Bae, S.; Lim, K.M.; Seok, S.H. KeraSkin-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol in vitro 2014, 28, 742–750. [Google Scholar] [CrossRef]
- Page, K.; Westerink, W.; Sullivan, K.; McDonald, T.; Roper, C. Assessment of the utility of the novel Phenion® full thickness human skin model for detecting the skin irritation potential of antimicrobial cleaning products. Toxicol in Vitro 2023, 94, 105726. [Google Scholar] [CrossRef]
- Barroso, J.; Pfannenbecker, U.; Adriaens, E.; Alépée, N.; Cluzel, M.; De Smedt, A.; Hibatallah, J.; Klaric, M.; Mewes, K.R.; Millet, M.; Templier, M.; McNamee, P. Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD). Arch Toxicol 2017, 91, 521–547. [Google Scholar] [CrossRef]
- Kolle, S.N.; Moreno, M.C.R.; Mayer, W.; van Cott, A.; van Ravenzwaay, B.; Landsiedel, R. The EpiOcular™ Eye Irritation Test is the Method of Choice for In Vitro Eye Irritation Testing of Agrochemical Formulations: Correlation Analysis of EpiOcular™ Eye Irritation Test and BCOP Test Data to UN GHS, US EPA and Brazil ANIVSA Classifications. Altern Lab Anim 2015, 43, 1–18. [Google Scholar] [CrossRef]
- Katoh, M.; Hamajima, F.; Ogasawara, T.; Hata, K. Establishment of a new in vitro test method for evaluation of eye irritancy using a reconstructed human corneal epithelial model, LabCyte CORNEA-MODEL. Toxicol In Vitro 2013, 27, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kim, D.E.; Jang, W.H.; An, S.; Cho, S.A.; Jung, M.S.; Lee, J.E.; Yeo, K.W.; Koh, S.B.; Jeong, T.C.; Kang, M.J.; Chun, Y.J.; Lee, S.H.; Lim, K.M.; Bae, S. Prevalidation trial for a novel in vitro eye irritation test using the reconstructed human cornea-like epithelial model, MCTT HCE™. Toxicol In Vitro 2017, 39, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhou, C.X.; Wu, Y. Reconstruction of 3D skin model and its application in evaluation the efficacy of cosmetic raw materials to be used as active ingredients. China Surfactant Detergent & Cosmetics 2017, 47, 633–636. [Google Scholar]
- Kong, X.; Zhao, H.; Tang, Y. ; Progress in field of research work for application of human skin models in efficacy evaluation of cosmetics. China Surfactant Detergent & Cosmetics, 2017, 47, 228–236. [Google Scholar]
- Zhang, B.; Xu, Q.; Gu, W.; Zhang, Z.; Dai, Y.; Han, Z.; Xu, M.; Wang, Y. Overview of Recombinant Skin models and progress in their application in vitro assessment of toxicity and efficacy. China Detergent & Cosmetics 2023, 38–44. [Google Scholar]
- Ma, J. The iterative acceleration of the cosmetics industry. Business China 2023, 1, 22–23. [Google Scholar]
- Ning, X.; Huang, J. Evaluation for Whitening Efficacy of Combinational Cosmetic Compositions by 3D Skin Model. Guangdong Chemical Industry 2022, 49, 65–67. [Google Scholar]
- He, L.; Li, X.; Qian, S.; Yan, J.; Wan, Q. Study on Whitening Effect of Aloe Vera Flower Extract by 3D Skin Model. Flavour Fragrance Cosmetics 2021, 4, 33–36. [Google Scholar]
- Jiang, Y.; Li, G.; Liao, N.; Wu, J.; Huang, X.; Liu, X. Evaluation of the whitening efficacy of α-arbutin by 3D melanin skin model. Detergent & Cosmetics 2023, 46, 34–36. [Google Scholar]
- Ko, H.; Choi, H.; Han, Y.; An, S.; Min, D.; Park, W.S.; Jin, S.H.; Kim, H.J.; Noh, M. 3,4,5-Trimethoxycinnamate thymol ester inhibits melanogenesis in normal human melanocytes and 3D human epidermal equivalents via the PGC-1α-independent PPARγ partial agonism. J Dermatol Sci 2022, 106, 12–20. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Y.; Xiang, W.; Lin, S.; Li, C. Study on skin repairing and skin moisturizing of a Spirulina Platensis mutant induced by space-flight breeding. Detergent & Cosmetics 2023, 46, 15–18. [Google Scholar]
- Wang, X.; Zhao, B.; Cong, L.; Pan, Q.; Yang, H.; Li, X. Evaluation of Moisturizing Efficacy of Compound Moisturizers in Cosmetics. China Cleaning Industry 2022, 9, 62–67. [Google Scholar]
- Fang, T.; Jang, Q.; Tang, L.; Wu, K. Mechanism on improving anti-inflammation and skin barrier of phytosterol ester based on 3D skin model. Flavour fragarance cosmetics 2023, 4, 37–41. [Google Scholar]
- Fan, Y.; Zhao, H.; Tie, H.; Su, N.; Liao, F. Repair skin barrier function of donkey milk powder and its safety evaluation. China daily inductry 2022, 50, 30–33. [Google Scholar]
- Li, W.; Jiang, Q.; Tang, L. In Vitro Research on Moisturizer containing camellia oil against eczema and anti-inflammatory. Flavour fragarance cosmetics 2022, 5, 113–117. [Google Scholar]
- Cai, Z.; Lu, Y.; Wang, B.; Liu, Q.Y. Efficacy evaluation of ceramide complex on 3D full-thickness skin model under UV-induction. China Suefactant Detergent & Cosmetics 2023, 53, 47–53. [Google Scholar]
- Lee, W.; Debasitis, J.C.; Lee, V.K.; Lee, J.H.; Fischer, K.; Edminster, K.; Park, J.K.; Yoo, S.S.; Lee, W.; Debasitis, J.C.; Lee, V.K. Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes through Three-Dimensional Freeform Fabrication. Biomaterials 2009, 30, 1587–1595. [Google Scholar] [CrossRef]
- Perez-Valle, A.; Del Amo, C.; Andia, I. Overview of Current Advances in Extrusion Bioprinting for Skin Applications. Int J Mol Sci 2020, 21, 6679. [Google Scholar] [CrossRef]
- Jin, S.; Oh, Y.N.; Son, Y.R.; Kwon, B.; Park, J.H.; Gang, M.J.; Kim, B.W.; Kwon, H.J. Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells. J. Microbiol. Biotechnol 2022, 32, 238–247. [Google Scholar] [CrossRef]
- Baltazar, T.; Merola, J.; Catarino, C.; Xie, C.B.; Kirkiles-Smith, N.C.; Lee, V.; Hotta, S.; Dai, G.; Xu, X.; Ferreira, F.C.; Saltzman, W.M.; Pober, J.S.; Karande, P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. ,” Tissue Eng Part A 2020, 26, 227–238. [Google Scholar] [CrossRef]
- Brohem, C.A.; Cardeal, L.B.; Tiago, M.; Soengas, M.S.; Barros, S.B.; Maria-Engler, S.S. Artificial skin in perspective: concepts and applications. Pigment Cell Melanoma Res. 2010, 24, 35–50. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Xu, He.; Zhang, X.; Hua, J.; Zhang, T.; Zhao, F.; Zhu, Z. Research Progress in Establishment, Function and Application of Skin Organoids. Progress in Biochemistry and Biophysics 2022, 49, 1961–1973. [Google Scholar]
- Zhang, J.; Chen, Z.; Zhang, Y.; Wang, X.; Ouyang, J.; Zhu, J.; Yan, Y.; Sun, X.; Wang, F.; Li, X.; Ye, H.; Sun, S.; Yu, Q.; Sun, J.; Ge, J.; Li, Q.; Han, Q.; Pu, Y.; Gu, Z. Construction of a high fidelity epidermis-on-a-chip for scalable in vitro irritation evaluation. Lab Chip 2021, 21, 3804–3818. [Google Scholar] [CrossRef]
- Risueño, I.; Valencia, L.; Jorcano, J.L.; Velasco, D. Skin-on-a-chip models: General overview and future perspectives. APL Bioeng 2021, 5, 030901. [Google Scholar] [CrossRef]
- Hu, N.; Cheng, K.; Zhang, S.; Liu, S.; Wang, L.; Du, X.; Li, Y.; Li, C. Advancements in microfluidics for skin cosmetic screening. Analyst 2023, 148, 1653–1671. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Carro, E.; Angenent, M.; Gracia-Cazaña, T.; Gilaberte, Y.; Alcaine, C.; Ciriza, J. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022, 14, 1417. [Google Scholar] [CrossRef]
- Govey-Scotland, J.; Johnstone, L.; Myant, C.; Friddin, M.S. Towards skin-on-a-chip for screening the dermal absorption of cosmetics. Lab Chip 2023, 23, 5068–5080. [Google Scholar] [CrossRef]
- Bergal, M.; Puginier, M.; Gerbeix, C.; Groux, H.; Roso, A.; Cottrez, F.; Milius, A. In vitro testing strategy for assessing the skin sensitizing potential of “difficult to test” cosmetic ingredients. Toxicol in Vitro 2020, 65, 104781. [Google Scholar] [CrossRef]
- Schmook, F.P.; Meingassner, J.G.; Billich, A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 2001, 215, 51–56. [Google Scholar] [CrossRef]
| Skin model | Commercial Name | Manufacture | Country | Method for manufacture | OECD |
|---|---|---|---|---|---|
| Epidermal skin | EpiSkinTM | L'Oréal | France | Epidermal reconstruction model cultured in collagen medium using epidermal keratinocytes from skin tissue removed by mammoplasty as seed cells; | TG 431; TG 439 |
| EpiEthicTM RHE | L'Oréal | France | Epidermal reconstruction model seeded with epidermal keratinocytes from foreskin tissue and cultured in inert polycarbonate lipase medium | TG 431; TG 439 | |
| epiCS® | Henkel | Germany | Epidermal reconstruction model seeded with epidermal keratinocytes from foreskin tissue and cultured in serum-free medium | TG 431; TG 439 | |
| EpiDermTM | MatTek | America | Epidermal reconstruction model using epidermal keratinocytes from foreskin tissue as seed cells in serum-free medium | TG 431; TG 439; TG 498; Micronucleus assay under peer-review | |
| LabCyteTM EPI-MODEL | J-TEC | Japan | Keratinocytes from neonatal foreskin and 3T3-J2 grown in an inert filter matrix and cultured using an air-liquid surface approach | TG 431; TG 439 | |
| Skin+ | Sterlab | France | Human primary representative dermal keratinocytes were used as seed cells and cultured in an air-liquid surface approach | TG439 | |
| KeraSkinTM | Biosolution | Korea | cultured with human primary keratinocytes as seed cells and 3T3 cells as trophectoderm | TG439 | |
| Full skin | Phenion® FT | Henkel | Germany | Neonatal foreskin primary keratinocytes cultured in collagen scaffolding fibroblasts to form connective tissue as the basis of a multilayered epithelial cell layer cultured in air-liquid surface | Comet assay under peer-review |
| Corneal Epithelium | SkinEthic™ HCE | L'Oréal | France | Corneal epithelial model without keratinization using cells from immortalized human corneal epithelial tissue as seed cells, cultured in air-liquid surface culture | TG492; TG492B |
| EpiOcular™ | MatTek | France | Corneal epithelial model without corneal stroma, seeded with cells from neonatal foreskin epithelial tissue and cultured in air-liquid surface culture with serum-free DMEM (EGF, insulin, HYD, etc.). | TG 492 | |
| LabCyteTM CORNEA-MODEL24 | J-TEC | Japan | Normal human corneal epithelial cells from Rocky Mountain Lions Eye Bank, USA | TG 492 | |
| MCTT HCETM | Biosolution | Korea | Prepared from corneal epithelial cells from corneal limbal tissue remaining after corneal transplantation | TG 492 |
| Country | Manufacturer | Commercial skin models | Manufacturer Information |
|---|---|---|---|
| China | BioCell | EpiKutisTM | Founded in 2014, started the development of 3D cells in the early 90 s with the support of tissue engineering research and development of the Fourth Military Medical University and the Xi'an Institute of Tissue Engineering and Regenerative Medicine |
| French | L'Oréal | EpiSkinTM | EpiSkin was constructed in 1991 by Estelle Tinois-Tessonneaud et al. of Imedex and acquired by L'Oreal in April 1997. |
| SkinEthicTM | SkinEthic was built in 1990 by Rodsy M, Clauss LC et al. It was originally part of SkinEthic, which was acquired by L'Oreal's Episkin in 2006. | ||
| Sterlab | Skin+® | The Sterlab Group was founded in 1977 and focuses on the development and application of implantable medical devices. | |
| Germany | Henkel | epiCS® | epiCS® was developed by SkinInVitro GmbH in Germany, acquired by Henkel in November 2020, and is now part of Phenion. |
| Phenion® | Phenion® was developed by Henkel in cooperation with the Johann WoKgang Goethe University in Frankfurt and a group of professors through the public‒private partnership Phenion GmbH. in 2007, K.R. Mewes and M. Raus, among others, developed the Phenion® model. in January 2009, Phenion GmbH became part of the Henkel Group. | ||
| America | MatTek | EpiDermTM | MatTek was founded in 1985 and Epiderm was launched in 1993. |
| Korea | Biosolution | MCTT HCETM | Biosolution founded in 2000, KeraSkin™ launched in 2002, MCTT HCETM launched in 2008. |
| KeraSkin™ | |||
| Japan | J-TEC | LabCyteTM | J-TEC founded in 1999, LabCyteTM EPI-MODEL launched in 2005 |
| Group Name | Standard No. | Standard Name | Release Date | Endpoint of the Evaluation | Skin Model | Manufacture |
|---|---|---|---|---|---|---|
| Shanghai Daily Chemistry Trade Association | T/SHRH 008—2018 | Cosmetics-In Vitro Skin Irritation Test Method (SIT) | 2018/12/10 | Safety-Skin irritation (SIT) | EpiKuis® | BioCell Biotech |
| Shanghai Daily Chemistry Trade Association | T/SHRH 007—2018 | Cosmetics-In Vitro Skin Irritation Test Method (ET-50) | 2018/12/10 | Safety-Skin irritation (ET-50) | EpiKuis® | BioCell Biotech |
| Shanghai Daily Chemistry Trade Association | T/SHRH 012—2018 | Cosmetics Eye Irritation test - In vitro Reconstructed human Cornea-like Epithelium (RhCE) test method | 2018/12/10 | Safety-Eye irritation | Reconstructed human Cornea-like Epithelium | Not specified |
| Shanghai Daily Chemistry Trade Association | T/SHRH 009—2018 | Cosmetics -3D Skin Comet Assay | 2018/12/10 | Safety-Genotoxicity | Phenion®FT | Henkel |
| Shanghai Daily Chemistry Trade Association | T/SHRH 024—2019 | Eye irritation test of cosmetics-In vitro reconstructed cornea model-Time to toxicity test method (ET50) | 2019/12/31 | Safety-Eye irritation (ET50) | BioOcullar® | BioCell Biotech |
| Shanghai Daily Chemistry Trade Association | T/SHRH 022—2019 | Moisturizing efficacy test of cosmetics-In vitro reconstructed human skin test method | 2019/12/31 | Moisturizing efficacy | EpiKutis® | BioCell Biotech |
| Shanghai Daily Chemistry Trade Association | T/SHRH 021—2019 | Cosmetics whitening efficacy test-In vitro Reconstructed human skin containing melanocytes test method | 2019/12/31 | Whitening efficacy | MelaKutis® | BioCell Biotech |
| Shanghai Daily Chemistry Trade Association | T/SHRH 023—2019 | Skin barrier efficacy test of cosmetics -In vitro reconstructed human skin test method | 2019/12/31 | Skin barrier efficacy | EpiKutis® | BioCell Biotech |
| ZheJiang Health Products & Cosmetics Industry Association | T/ZHCA 009—2019 | Method of skin irritation test in vitro for face cream cosmetic products-In vitro skin irritation test with reconstructed skin model | 2022/1/4 | Safety-Skin irritation | EpiKuis® RHE | BioCell Biotech |
| ZheJiang Health Products & Cosmetics Industry Association | T/ZHCA 013—2021 | Method of eye irritation test in vitro for facial cleanser cosmetic products—In vitro eye irritation test with reconstructed human cornea-like epithelium model | 2022/1/4 | Safety-Eye irritation | BioOcullar® | BioCell Biotech |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).