Submitted:
05 February 2024
Posted:
06 February 2024
You are already at the latest version
Abstract
Keywords:
MSC: 15A03; 15A09; 15A24; 15B33; 15B57
1. Introduction
2. Preliminaries
3. The solution of the matrix equation (1)
4. Applications
5. Numerical example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- S. DeLeo, G. Scolarici. Right eigenvalue equation in quaternionic quantum mechanics. J. Phys. A. 2000, 33, 2971–2995. [Google Scholar] [CrossRef]
- S. C. Pei, C.M. Cheng. Color image processing by using binary quaternion-moment-preserving thresholding techniqe. IEEE Trans. Image Process. 1999, 8, 614–628. [Google Scholar] [CrossRef]
- N. LE. Bihan, J. Mars. Singular value decomposition of matrices of quaternions: A new tool for vector-sensor signal processing. IEEE Trans. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- L. Q. Qi, Z.Y. Luo, Q.W. Wang, X.Z. Zhang. Quaternion matrix optimization: motivation and analysis. J. Optim. Theory Appl. 2022, 193, 621–648. [Google Scholar] [CrossRef]
- M. Dehghan, M. Hajarian. On the generalized reflexive and anti-reflexive solutions to a system of matrix equations. Linear Algebra Appl. 2012, 437, 2793–2812. [Google Scholar] [CrossRef]
- A. P. Liao, Z.Z. Bai. Least-squares solution of AXB=D over symmetric positive semidefinite matrices X. J. Comput. Math. 2003, 21, 175–182. [Google Scholar] [CrossRef]
- L. S. Liu, Q.W. Wang, S.M. Mahmoud. A Sylvester-type Hamilton quaternion matrix equation with an application. Mathematics. 2022, 10, 1758. [Google Scholar] [CrossRef]
- Q. W. Wang, Z.H. He, Y. Zhang. Constrained two-side coupled Sylvester-type quaternion matrix equations. Automatica. 2019, 101, 207–213. [Google Scholar] [CrossRef]
- L. S. Liu, Q.W. Wang, J.F. Chen. An exact solution to a quaternion matrix equation with an application. Symmetry. 2022, 14, 375. [Google Scholar] [CrossRef]
- A. Ben-Israel, T.N.E. Greville. Generalized Inverses: theory and application. JohnWiley and Sons: New, York, USA, 1974. [Google Scholar] [CrossRef]
- A. P. Liao, Z.Z. Bai. The constrained solutions of two matrix equations. Acta Math. Appl. Sin. Engl. Ser. 2002, 18, 671–678. [Google Scholar] [CrossRef]
- G. X. Huang, F. Yin, K. Guo. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C. J. Comput Appl. Math. 2008, 212, 231–244. [Google Scholar] [CrossRef]
- Z. Y. Peng. The centro-symmetric solutions of linear matrix equation AXB=C and its optimal approximation. Chinese J. Eng. Math. 2003, 20, 60–64. [Google Scholar] [CrossRef]
- Y. B. Deng, Z.Z. Bai, Y.H. Gao. Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations. Numer. Linear Algebra Appl. 2006, 13, 801–823. [Google Scholar] [CrossRef]
- M. Y. Xie, Q.W. Wang. The reducible solution to a quaternion tensor equation. Front. Math. China. 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- D. S. Cvetković-IIić, A. Dajić , J.J. Koliha. Positive and real-positive solutions to the equation axa*=c in C*-algebras. Linear Multilinear Algebra. 2007, 55, 535–543. [Google Scholar] [CrossRef]
- J. Größ. A note on the general Hermitian solution to AXA*=B. Bull. Malays. Math. Sci. Soc. 1998, 21, 57–62. [Google Scholar]
- J. K. Baksalary. Nonnegative definite and positive definite solutions to the matrix equation AXA*=B. Linear Multilinear Algebra. 1984, 16, 133–139. [Google Scholar] [CrossRef]
- J. Größ. Nonnegative-definite and positive-definite solutions to the matrix equation AXA*=B revisited. Linear Algebra Appl. 2000, 321, 123–129. [Google Scholar] [CrossRef]
- C. C.Took; D.P.Mandic. On the unitary diagonalisation of a special class of quaternion matrices. Appl. Math. Lett. 2011, 24, 1806–1809. [Google Scholar] [CrossRef]
- C. C. Took, D.P. Mandic. Augmented second-order statistics of quaternion random signals. Signal Process. 2011, 91, 214–224. [Google Scholar] [CrossRef]
- Ivan Kyrchei. Cramer’s rules of eta -(skew-) Hermitian solutions to the quaternion Sylvester-type matrix equations. Adv. Appl. Clifford Algebr. 2019, 29, 1–31. [Google Scholar] [CrossRef]
- G. Brambley, J. Kim. Unit dual quaternion-based pose optimization for visual runway observations. Iet Cyber Syst. Robot. 2020, 2, 181–189. [Google Scholar] [CrossRef]
- J. Cheng, J.Kim, Z. Jiang, W. Che. Dual quaternion-based graph SLAM. Robot. Auton. Syst. 2016, 77, 15–24. [Google Scholar] [CrossRef]
- K. Daniilidis. Hand-eye calibration using dual quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [Google Scholar] [CrossRef]
- X. Wang, C. Yu, Z. Lin. A dual quaternion solution to attitude and position control for rigid body coordination. IEEE Trans. Rob. 2012, 28, 1162–1170. [Google Scholar] [CrossRef]
- L. Rodman. Topics in quaternion linear algebra. Princeton University Press 2014. [Google Scholar]
- L. Q. Qi, C. Ling, H. Yan. Dual quaternions and dual quaternion vectors. Commun. Appl. Math. Comput. 2022, 4, 1494–1508. [Google Scholar] [CrossRef]
- Z. H. He , Q.W.Wang. The general solutions to some systems of matrix equations. Linear Multilinear Algebra. 2015, 63, 2017–2032. [Google Scholar] [CrossRef]
- G. Marsaglia, G.P. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra. 1974, 2, 269–292. [Google Scholar] [CrossRef]
- L.M. Xie, Q.W. Wang. A system of dual quaternion matrix equations with its applications. arXiv:2312.10037, arXiv:2312.10037. https://arxiv.org/abs/2312.10037.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).