Submitted:
11 September 2024
Posted:
12 September 2024
You are already at the latest version
Abstract
Keywords:
MSC: 15A09; 15A24; 15B33
1. Introduction
2. Preliminaries
3. Solving the Matrix Equation (1) over
4. Numerical example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Assefa, D.; Mansinha, L.; Tiampo, K.F.; Rasmussen, H.; Abdella, K. Local quaternion Fourier transform and color image texture analysis. Signal Process. 2010, 90, 1825–1835. [Google Scholar] [CrossRef]
- Cyrus, J.; Clive, C.T.; Danilo, P.M. A class of quaternion valued affine projection algorithms. Signal Process. 2013, 93, 1712–1723. [Google Scholar] [CrossRef]
- Bihan, N.L.E.; Mars, J. Singular value decomposition of matrices of quaternions: A new tool for vector-sensor signal processing. IEEE Trans. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- Qi, L.Q.; Luo, Z.Y.; Wang, Q.W.; Zhang, X.Z. Quaternion matrix optimization: Motivation and analysis. J. Optim. Theory Appl. 2022, 193, 621–648. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Q.W. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. 2023, 14, 53. [Google Scholar] [CrossRef]
- Dehghan, M.; Hajarian, M. On the generalized reflexive and anti-reflexive solutions to a system of matrix equations. Linear Algebra Appl. 2012, 437, 2793–2812. [Google Scholar] [CrossRef]
- Liu, X.; Song, G.J.; Zhang, Y. Determinantal representations of the solutions to systems of generalized sylvester equations. Adv. Appl. Clifford Algebr. 2019, 30, 12. [Google Scholar] [CrossRef]
- Dmytryshyn, A.; Kagstrom, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, H. Conjugate gradient least squares algorithm for solving the generalized coupled sylvester matrix equations. Comput. Math. Appl. 2017, 12, 2529–2547. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Chen, J.F. An exact solution to a quaternion matrix equation with an application. Symmetry 2022, 14, 375. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge Philosophical Society. 1955, 51, 406–413. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Zhang, Y. Least-squares solutions of the generalized reduced biquaternion matrix equations. Filomat 2023, 37, 863–870. [Google Scholar] [CrossRef]
- Catoni, F. Commutative (Segre’s) quaternion fields and relation with Maxwell equations. Adv. Appl. Clifford Algebras 2008, 18, 9–28. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, M.; Ge, X. Reduced biquaternion canonical transform, convolution and correlation. Signal Process. 2011, 91, 2147–2153. [Google Scholar] [CrossRef]
- Isokawa, T.; Nishimura, H.; Matsui, N. Commutative quaternion and multistate Hopfield neural networks. The 2010 International Joint Conference on Neural Networks (IJCNN). Barcelona, Spain, 2010, 1–6.
- Pei, S.C.; Chang, J.H.; Ding, J.J. Commutative reduced biquaternions and their Fourier transform for signal and image processing applications. IEEE Trans. Signal Process. 2004, 52, 2012–2031. [Google Scholar] [CrossRef]
- Clifford, W.K. Preliminary sketch of bi-quaternions. Proc. Lond. Math. Soc. 1873, 4, 381–395. [Google Scholar] [CrossRef]
- Cheng, J.; Kim, J.; Jiang, Z.; Che, W. Dual quaternion-based graph SLAM. Robot. Auton. Syst. 2016, 77, 15–24. [Google Scholar] [CrossRef]
- Brambley, G.; Kim, J. Unit dual quaternion-based pose optimization for visual runway observations. IET Cyber Syst. Robot. 2020, 2, 181–189. [Google Scholar] [CrossRef]
- Wang, X.; Yu, C.; Lin, Z. A dual quaternion solution to attitude and position control for rigid body coordination. IEEE Trans. Rob. 2012, 28, 1162–1170. [Google Scholar] [CrossRef]
- Liao, A.P.; Bai, Z.Z. The constrained solutions of two matrix equations. Acta Math. Appl. Sin. Engl. Ser. 2002, 18, 671–678. [Google Scholar] [CrossRef]
- Peng, Z.Y. The centro-symmetric solutions of linear matrix equation AXB=C and its optimal approximation. Chin. J. Eng. Math. 2003, 20, 60–64. [Google Scholar] [CrossRef]
- Deng, Y.B.; Bai, Z.Z.; Gao, Y.H. Iterative orthogonal direction methods for Hermitian minimum norm solutions of two consistent matrix equations. Numer. Linear Algebra Appl. 2006, 13, 801–823. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- Ren, B.Y.; Wang, Q.W.; Chen, X.Y. The η-anti-Hermitian solution to a constrained matrix equation over the generalized Segre quaternion algebra. Symmetry 2023, 15, 592. [Google Scholar] [CrossRef]
- Kosal, H.H.; Tosun, M. Universal similarity factorization equalities for commutative quaternions and their matrices. Linear Multilinear A 2019, 67, 926–938. [Google Scholar] [CrossRef]
- Wang, Q.W. A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl. 2004, 384, 43–54. [Google Scholar] [CrossRef]
- Qi, L.Q.; Ling, C.; Yan, H. Dual quaternions and dual quaternion vectors. Commun. Appl. Math. Comput. 2022, 4, 1494–1508. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.W.; Xie, L.M. Dual quaternion matrix equation AXB=C with applications. Symmetry 2024, 16, 287. [Google Scholar] [CrossRef]
- Si, K.W.; Wang, Q.W. The general solution to a classical matrix equation AXB=C over the dual split quaternion algebra. Symmetry 2024, 16, 491. [Google Scholar] [CrossRef]
- Yuan, S.F.; Wang, Q.W.; Yu, Y.B.; Tian, Y. On hermitian solutions of the split quaternion matrix equation AXB+CXD=E. Adv. Appl. Clifford Algebras 2017, 27, 3235–3252. [Google Scholar] [CrossRef]
- Hamilton, W.R. Lectures on Quaternions. In Landmark Writings in Western Mathematics 1640–1940; Hodges and Smith: Dublin, Ireland, 1853. [Google Scholar] [CrossRef]
- Segre, C. The real representations of complex elements and extension to bicomplex systems. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Angeles, J. The dual generalized inverses and their applications in kinematic synthesis. In Latest Advances in Robot Kinematics; Springer, Dordrecht, 2022.
- Gu, Y.L.; Luh, J. Dual-number transformation and its applications to robotics. IEEE J. Robot. Autom. 1987, 3, 615–623. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).