Submitted:
25 January 2024
Posted:
26 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Seed endophytes: recruitment and dynamics
3. Phytopathogenic bacteria in tomato and pepper seeds
3.1. Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. and Clavibacter capsici (Oh et al.) Li et al.
3.2. Pseudomonas syringae pv. tomato (Okabe) Young, Dye & Wilkie
3.3. Xanthomonads: Xanthomonas vesicatoria (Doidge) Vauterin, Hoste, Kersters & Swings, X. euvesicatoria pv. euvesicatoria (Jones et al) Constantin et al.; X. euvesicatoria pv. perforans (Jones et al.) Constantin et al., and X. hortorum pv. gardneri (Jones et al.) Morinière et al.
4. How phytopathogenic Clavibacters, Pst and Xanthomonads colonise tomato and pepper seeds
5. Detection of phytopathogenic bacteria in tomato and pepper seeds
5.1. Direct isolation on agar media
5.2. Serological detection
5.3. Molecular detection
6. Seed treatments
6.1. Tomato and pepper seeds extraction procedures
6.2. Seed sanitation methods and procedures
6.2.1. Chemical seed treatments
6.2.2. Physical seed treatments
6.2.2.1. Heat treatments
6.2.2.2. Ozone
6.2.2.3. UV-C light irradiation
6.2.3. Microorganisms and Natural Products
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Louwaars, N.P.; Manicad, G. Seed Systems Resilience—An Overview. Seeds 2022, 1, 340–356. [CrossRef]
- FAO Glossary of Phytosanitary Terms, ISPM 5. Available online: https://www.fao.org/3/mc891e/mc891e.pdf.
- Seed and GM Crop Market Analysis. Available online: https://www.spglobal.com/ratings/en/research-insights/topics/outlook-2023 (accessed on 17 July 2023).
- Dongyu, Q.U. A Statement by FAO Director-General of FAO. Available online: https://www.fao.org/director-general/speeches/detail/en/c/1321173/ (accessed on 4 November 2021).
- Malhotra, B. Global Vegetable Seeds Market Is Increasingly Fragmented and Diversified (accessed on 3 November 2021).
- Tomato Seed Global Market Report; The Business Research Company: Dublin, Ireland, 2023. Available online: https://www.thebusinessresearchcompany.com/report/tomato-seeds-global-market-report.
- The EU Seed Market – Key Facts and Figures. Available online: https://euroseeds.eu/.
- FAO. International Standard for Phytosanitary Measures n°38. International Movement of Seeds, 2018. Available online: http://www.fao.org/3/i7219en/i7219en.pdf.
- Oh, E.J.; Bae, C.; Lee, H.B.; Hwang, I.S.; Lee, H.I.; Yea, M.C.; Yim, K.O.; Lee, S.; Heu, S.; Cha, J.S.; et al. Clavibacter Michiganensis Subsp. Capsici Subsp. Nov., Causing Bacterial Canker Disease in Pepper. International Journal of Systematic and Evolutionary Microbiology 2016, 66, 4065–4070. [CrossRef]
- Wilson, D. Endophyte: The Evolution of a Term, and Clarification of Its Use and Definition. Oikos 1995, 73, 274–276. [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews 2015, 79, 293–320. [CrossRef]
- Chee-Sanford, J.C.; Williams, M.M.; Davis, A.S.; Sims, J.K. Do Microorganisms Influence Seed-Bank Dynamics? Weed Science 2006, 54, 575–587. [CrossRef]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; van Themaat, E.V.L.; Nahal Ahmadinejad; Ahmadinejad, N.; Federica Assenza; Assenza, F.; Rauf, P.; Huettel, B.; et al. Revealing Structure and Assembly Cues for Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature 2012, 488, 91–95. [CrossRef]
- Nelson, E.B. Microbial Dynamics and Interactions in the Spermosphere. Annual Review of Phytopathology 2004, 42, 271–309. [CrossRef]
- Agarwal, V.K.; Sinclair, J.B. Principles of Seed Pathology. CRC Press 1996. [CrossRef]
- Malfanova, N.; Lugtenberg, B.J.J.; Berg, G. Molecular Microbial Ecology of the Rhizosphere; Wiley-Blackwell: Hoboken, 2013.
- Santoyo, G. How Plants Recruit Their Microbiome? New Insights into Beneficial Interactions. Journal of Advanced Research 2021. [CrossRef]
- Herre, E.A.; Knowlton, N.; Mueller, U.G.; Stuart A. Rehner; Rehner, S.A. The Evolution of Mutualisms: Exploring the Paths between Conflict and Cooperation. Trends in Ecology and Evolution 1999, 14, 49–53. [CrossRef]
- Brader, G.; Compant, S.; Mitter, B.; Trognitz, F.; Sessitsch, A. Metabolic Potential of Endophytic Bacteria. Current Opinion in Biotechnology 2014, 27, 30–37. [CrossRef]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.J.; Li-J. M.; Sessitsch, A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. Annual Review of Phytopathology 2017, 55, 61–83. [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Exploring the Potentialities of Beneficial Endophytes for Improved Plant Growth. Saudi Journal of Biological Sciences 2020, 27, 3622–3633. [CrossRef]
- Ryan, R.P.; Germaine, K.J.; Franks, A.E.; Ryan, D.; Dowling, D.N. Bacterial Endophytes: Recent Developments and Applications. Fems Microbiology Letters 2008, 278, 1–9. [CrossRef]
- Bashir, M.A.; Silvestri, C.; Ahmad, T.; Hafiz, I.A.; Abbasi, N.A.; Manzoor, A.; Cristofori, V.; Rugini, E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. Plants 2020, 9, 992. [CrossRef]
- Samreen, T.; Naveed, M.; Nazir, M.Z.; et al. Seed Associated Bacterial and Fungal Endophytes: Diversity, Life Cycle, Transmission, and Application Potential. Applied Soil Ecology 2021, 168, 104–161.
- Bergna, A.; Cernava, T.; Rändler, M.; Grosch, R.; Zachow, C.; Berg, G. Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiome Journal 2018, 2, 183–193. [CrossRef]
- López, S.M.Y.; Pastorino, G.N.; Franco, M.E.E.; Medina, R.; Lucentini, C. G.; et al. Microbial Endophytes That Live within the Seeds of Two Tomato Hybrids Cultivated in Argentina. Agronomy 2018, 8, 136. [CrossRef]
- Thomas, P.; Shaik, S.P. Molecular Profiling on Surface-Disinfected Tomato Seeds Reveals High Diversity of Cultivation-Recalcitrant Endophytic Bacteria with Low Shares of Spore-Forming Firmicutes. Microbial Ecology 2020, 79, 910–924. [CrossRef]
- Sharma, A.; Kaushik, N.; Sharma, S.; Sharma, A.; Bajaj, A.; Rasane, M.H.; Shouche, Y.S.; Marzouk, T.; Djébali, N. Screening of Tomato Seed Bacterial Endophytes for Antifungal Activity Reveals Lipopeptide Producing Bacillus Siamensis Strain NKIT9 as a Potential Bio-Control Agent. Frontiers in Microbiology 2021, 12, 609482–609482. [CrossRef]
- Yildirim, K.C.; Orel, D.C.; Okyay, H.; Gursan, M.M.; Demir, I. Quality of Immature and Mature Pepper (Capsicum Annuum L.) Seeds in Relation to Bio-Priming with Endophytic Pseudomonas and Bacillus Spp. Horticulturae 2021, 7, 75. [CrossRef]
- Corrigendum - PM 7/42 (3) Clavibacter Michiganensis Subsp. Michiganensis. Eppo Bulletin 2022. [CrossRef]
- PM 7/110 (2) Xanthomonas Spp. (Xanthomonas Euvesicatoria Pv. Euvesicatoria, Xanthomonas Hortorum Pv. Gardneri, Xanthomonas Euvesicatoria Pv. Perforans, Xanthomonas Vesicatoria) Causing Bacterial Spot of Tomato and Sweet Pepper. EPPO Bulletin 2023. [CrossRef]
- PM 7/21 (2) Ralstonia Solanacearum, R. pseudosolanacearum and R. Syzygii (Ralstonia Solanacearum species Complex). EPPO Bulletin 2018. [CrossRef]
- Sen, Y.; van der Wolf, J.M.; Visser, R.G.F.; van Heusden, A.W.; van Heusden, S. Bacterial Canker of Tomato: Current Knowledge of Detection, Management, Resistance, and Interactions. Plant Disease 2015, 99, 4–13. [CrossRef]
- Peritore-Galve, F.C.; Tancos, M.A.; Smart, C.D. Bacterial Canker of Tomato: Revisiting a Global and Economically Damaging Seedborne Pathogen. Plant Disease 2021, 105, 1581–1595. [CrossRef]
- Osdaghi, E.; Rahimi, T.; Taghavi, S.M.; Ansari, M.; Zarei, S.; Portier, P.; Briand, M.; Jacques, M.-A. Comparative Genomics and Phylogenetic Analyses Suggest Several Novel Species within the Genus Clavibacter, Including Nonpathogenic Tomato-Associated Strains. Applied and Environmental Microbiology 2020, 86. [CrossRef]
- Kyu-Ock Yim; Yim, K.-O.; Hyok-In Lee; Lee, H.-I.; Jung-Hee Kim; Kim, J.-H.; Seungdon Lee; Lee, S.; Jung-Hee Cho; Cho, J.-H.; et al. Characterization of Phenotypic Variants of Clavibacter Michiganensis Subsp. Michiganensis Isolated from Capsicum Annuum. European Journal of Plant Pathology 2012, 133, 559–575. [CrossRef]
- Chalupowicz, L.; Zellermann, E.-M.; Fluegel, M.; Dror, O.; Eichenlaub, R.; Gartemann, K.-H.; Savidor, A.; Sessa, G.; Iraki, N.; Barash, I.; et al. Colonization and Movement of GFP-Labeled Clavibacter Michiganensis Subsp. Michiganensis During Tomato Infection. Phytopathology 2012, 102, 23–31. [CrossRef]
- Nandi, M.; MacDonald, J.; Liu, P.; Weselowski, B.; Yuan, Z.; Yuan, Z.C. Clavibacter Michiganensis Ssp. Michiganensis: Bacterial Canker of Tomato, Molecular Interactions and Disease Management. Molecular Plant Pathology 2018, 19, 2036–2050. [CrossRef]
- Chang, R.J.; Ries, S.M.; Pataky, J.K. Dissemination of Clavibacter Michiganensis Subsp. Michiganensis by Practices Used to Produce Tomato Transplants. Phytopathology 1991, 81, 1276–1281. [CrossRef]
- Jones, J.B.; Zitter, T.A.; Momol, T.M.; Miller, S.A. Compendium of Tomato Diseases and Pests, Second Edition. 2014.
- Gullino, M.L.; et al. Integrated Pest and Disease Management in Greenhouse Crops.; 2nd ed.; Springer International Publishing, 2020.
- Quesada-Ocampo, L.M.; Landers, N.A.; Lebeis, A.C.; Fulbright, D.W.; Hausbeck, M.K. Genetic Structure of Clavibacter Michiganensis Subsp. Michiganensis Populations in Michigan Commercial Tomato Fields. Plant Disease 2012, 96, 788–796. [CrossRef]
- Tancos, M.A.; Chalupowicz, L.; Barash, I.; Manulis-Sasson, S.; Smart, C.D. Tomato Fruit and Seed Colonization by Clavibacter Michiganensis Subsp. Michiganensis through External and Internal Routes. Appl Environ Microbiol 2013, 79, 6948–6957. [CrossRef]
- Rossi, V. Scientific Opinion on the Pest Categorisation of Clavibacter Michiganensis Subsp. Michiganensis (Smith) Davis et Al. EFSA Journal 2014, 12, 1–29. [CrossRef]
- El-Fatah, B. A.; Imran, M.; Abo-Elyousr, K.; Mahmoud, A. Isolation of Pseudomonas Syringae Pv. Tomato Strains Causing Bacterial Speck Disease of Tomato and Marker-Based Monitoring for Their Virulence. Molecular Biology Reports 2023. [CrossRef]
- Wilson, M.; Campbell, H.L.; Ji, P.; Jones, J.B.; Cuppels, D.A. Biological Control of Bacterial Speck of Tomato under Field Conditions at Several Locations in North America. Phytopathology 2002, 92, 1284–1292. [CrossRef]
- Vasileva, K.; Ganeva, D.; Bogatzevska, N. Species Composition of the Bacterial Population Colonizing Tomato Flowers. Bulgarian Journal of Agricultural Science, 2022, 28 (4), 677–690.
- Basim, H.; Basim, E.; Yilmaz, S.; Dickstein, E.R.; Jones, J.B. An Outbreak of Bacterial Speck Caused by Pseudomonas Syringae Pv. Tomato on Tomato Transplants Grown in Commercial Seedling Companies Located in the Western Mediterranean Region of Turkey. Plant Disease 2004, 88, 1050–1050. [CrossRef]
- Orfei, B.; Pothier, J.; Fenske, L.; Blom, J.; Moretti, C.; Buonaurio, R.; Smits, T.H. Race-Specific Genotypes of Pseudomonas Syringae Pv. Tomato Are Defined by the Presence of Mobile DNA Elements within the Genome. Frontiers in Plant Science 2023. [CrossRef]
- Cement, A.; Saygili, H.; Horuz, S.; Aysan, Y. Potential of Bacteriophages to Control Bacterial Speck of Tomato (Pseudomonas Syringae pv. Tomato). Fresenius environmental bulletin 2018, 27, 9366-9373.
- Preston, G.M. Pseudomonas Syringae Pv. Tomato: The Right Pathogen, of the Right Plant, at the Right Time. Molecular Plant Pathology 2000, 1, 263–275. [CrossRef]
- Santamaría-Hernando, S.; López-Maroto, A.; Galvez-Roldán, C.; Munar-Palmer, M.; Monteagudo-Cascales, E.; José-Juan Rodríguez-Herva; Tino Krell; López-Solanilla, E. Pseudomonas Syringae Pv. Tomato Infection of Tomato Plants Is Mediated by GABA and l-Pro Chemoperception. Molecular Plant Pathology 2022, 23, 1433–1445. [CrossRef]
- Devash, Y.; Bashan, Y.; Okon, Y.; Henis, Y. Survival of Pseudomonas Tomato in Soil and Seeds. Journal of Phytopathology 1979, 60, 597–601. [CrossRef]
- Bashan, Y.; Diab, S.; Okon, Y. Survival of Xanthomonas campestris pv. vesicatoria in pepper seeds and roots in symptomless and dry leaves in non-host plants and in the soil. 1982, Plant Soil 68, 161–170. [CrossRef]
- Vinatzer, B.A.; Monteil, C.L.; Clarke, C.R. Population Genomics of Pseudomonas Syringae pv. Tomato to Unravel Emergence and Modes and Routes of Transmission. Acta Hortic. 2015, 1069, 289–292. [CrossRef]
- Scortichini, M.; Stefani, E.; Elphinstone, J.G.; Vlami, M.B. PM 7/110 (1) Xanthomonas Spp. (Xanthomonas Euvesicatoria, Xanthomonas Gardneri, Xanthomonas Perforans, Xanthomona svesicatoria) Causing Bacterial Spot of Tomato and Sweet Pepper. EPPO Bulletin 2013, 43, 7–20. [CrossRef]
- Barak, J.D.; Vancheva, T.; Lefeuvre, P.; Jones, J.B.; Timilsina, S.; Minsavage, G.V.; Gary E. Vallad; Vallad, G.E.; Koebnik, R. Whole-Genome Sequences of Xanthomonas Euvesicatoria Strains Clarify Taxonomy and Reveal a Stepwise Erosion of Type 3 Effectors. Frontiers in Plant Science 2016, 7, 1805–1805. [CrossRef]
- Potnis, N.; Timilsina, S.; Strayer, A.; Shantharaj, D.; Barak, J.D.; Barak, J.D.; Paret, M.L.; Vallad, G.E.; Gary E. Vallad; Jones, J.B. Bacterial Spot of Tomato and Pepper: Diverse Xanthomonas Species with a Wide Variety of Virulence Factors Posing a Worldwide Challenge. Molecular Plant Pathology 2015, 16, 907–920. [CrossRef]
- Timilsina, S.; Jibrin, M.O.; Potnis, N.; Minsavage, G.V.; Kebede, M.; Schwartz, A.R.; Bart, R.; Staskawicz, B.J.; Boyer, C.; Gary E. Vallad; et al. Multilocus Sequence Analysis of Xanthomonads Causing Bacterial Spot of Tomato and Pepper Plants Reveals Strains Generated by Recombination among Species and Recent Global Spread of Xanthomonas Gardneri. Applied and Environmental Microbiology 2015, 81, 1520–1529. [CrossRef]
- Zitter, T.A. Pepper Disease Control It Starts with the Seed; Department of Plant Pathology, Cornell University: Ithaca, NY, USA, 2004; p. 14853.
- Jones, J.B.; Bouzar, H.; Stall, R.E.; Almira, E.C.; Pamela D. Roberts; Roberts, P.D.; B W Bowen; Bowen, B.W.; Bowen, B.W.; Sudberry, J.; et al. Systematic Analysis of Xanthomonads (Xanthomonas Spp.) Associated with Pepper and Tomato Lesions. International Journal of Systematic and Evolutionary Microbiology 2000, 50, 1211–1219. [CrossRef]
- Dutta, B.; Gitaitis, R.D.; S. Ray Smith; Smith, S.; Langston, D.B. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission. PLOS ONE 2014, 9. [CrossRef]
- Ryan, R.P.; Vorhölter, F.-J.; Potnis, N.; Jones, J.B.; Van Sluys, M.-A.; Bogdanove, A.J.; Dow, J.M. Pathogenomics of Xanthomonas: Understanding Bacterium-Plant Interactions. Nature Reviews Microbiology 2011, 9, 344–355. [CrossRef]
- Giovanardi, D.; Biondi, E.; Maja Ignjatov; Ignjatov, M.; Radivoje Jevtić; Jevtic, R.; Stefani, E. Impact of Bacterial Spot Outbreaks on the Phytosanitary Quality of Tomato and Pepper Seeds. Plant Pathology 2018, 67, 1168–1176. [CrossRef]
- Osdaghi, E. Xanthomonas Euvesicatoria Pv. Euvesicatoria (Bacterial Spot of Tomato and Pepper). CABI Compendium 2022. [CrossRef]
- Berg, G.; Jos M. Raaijmakers; Raaijmakers, J.M. Saving Seed Microbiomes. The ISME Journal 2018, 12, 1167–1170. [CrossRef]
- Frank, A.C.; Guzmán, J.P.S.; Shay, J.E. Transmission of Bacterial Endophytes. Microorganisms 2017, 5, 70. [CrossRef]
- Barret, M.; Guimbaud, J.F.; Darrasse, A.; Jacques, M.A. Plant Microbiota Affects Seed Transmission of Phytopathogenic Microorganisms. Molecular Plant Pathology 2016, 17, 791–795. [CrossRef]
- Yoav Bashan; Bashan, Y. Long-Term Survival ofPseudomonas Syringaepv.tomatoandXanthomonas Campestrispv.Vesicatoriain Tomato and Pepper Seeds. Phytopathology 1982, 72, 1143–1144. [CrossRef]
- Bashan, Y.; Bashan, Y. Detection of Cutinases and Pectic Enzymes During Infection of Tomato byPseudomonas Syringaepv.Tomato. Phytopathology 1985, 75, 940. [CrossRef]
- Agarwal, V.K.; Sinclair, J.B. Principles of Seed Pathology. 2nd ed.; Lewis Publisher: Boca Raton, FL, USA, 1997; ISBN 978-0-87371-670-3.
- Donati, I.; Fernández, J.A.; Cellini, A.; Buriani, G.; Mauri, S.; Kay, C.; Tacconi, G.; Spinelli, F. Pathways of Flower Infection and Pollen-Mediated Dispersion of Pseudomonas Syringae Pv. Actinidiae, the Causal Agent of Kiwifruit Bacterial Canker. Horticulture research 2018, 5, 56–56. [CrossRef]
- Dutta, B.; Avci, U.; Hahn, S.K.; Hahn, M.G.; Walcott, R. Location of Acidovorax Citrulli in Infested Watermelon Seeds Is Influenced by the Pathway of Bacterial Invasion. Phytopathology 2012, 102, 461–468. [CrossRef]
- Dutta, B.; Ha, Y.; Lessl, J.T.; Avci, U.; et al. Pathways of Bacterial Invasion and Watermelon Seed Infection by Acidovorax Citrulli. Plant Pathology 2015, 64, 537–544. [CrossRef]
- Furci, L.; Pascual-Pardo, D.; Ton, J. A Rapid and Non-Destructive Method for Spatial–Temporal Quantification of Colonization by Pseudomonas Syringae Pv. Tomato DC3000 in Arabidopsis and Tomato. Plant Methods 2021, 17. [CrossRef]
- Jacques, M.-A.; Arlat, M.; Boulanger, A.; et al. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. Annual Review of Phytopathology 2016, 54, 163–187. [CrossRef]
- Lamichhane, J.R.; Balestra, G.M.; Varvaro, L. Severe Outbreak of Bacterial Canker Caused by Clavibacter Michiganensis Subsp. Michiganensis on Tomato in Central Italy. Plant Disease 2011, 95, 221–221. [CrossRef]
- Dougherty, D.E. Yield Reduction in Tomato Caused by Bacterial Spot and Disease Control with Copper Sprays. In: Proceedings of the Florida State Horticultural Society, 1979; Vol. 91, pp. 291–293.
- Bashan, Y.; Bashan, Y.; Azaizeh, M.; Shaher Diab; Diab, S.; H. Yunis; Yunis, H.; Yaacov Okon; Okon, Y. Crop Loss of Pepper Plants Artificially Infected with Xanthomonas Campestris Pv. Vesicatoria in Relation to Symptom Expression. Crop Protection 1985, 4, 77–84. [CrossRef]
- OECD Seed Schemes. Rules and Regulations; Organization for Economic Co-operation and Development (OECD); 2023; p. 181.
- International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland 2023.
- FAO. Instruction to Authors, Diagnostic Protocols for Regulated Pests; International Plant Protection Organization (IPPC) 2016; p. 35.
- Gitaitis, R.D.; Walcott, R. The Epidemiology and Management of Seedborne Bacterial Diseases. Annual Review of Phytopathology 2007, 45, 371–397. [CrossRef]
- Koike, H. The Aluminum-Cap Method for Testing Sugarcane Varieties against Leaf Scald Disease. Phytopathology 1965, 55, 317–319.
- Schaad, N.W.; Franken, A.A.J.M. ISTA Handbook on Seed Health Testing Working Sheet No 50; 2nd ed.; ISTA: Zurich, Switzerland, 1996.
- Sijam, K.; Chang, C.J.; Gitaitis, R.D. A Medium for Differentiating Tomato and Pepper Strains of Xanthomonas Campestris Pv. Vesicatoria. Canadian Journal of Plant Pathology 1992, 14, 182–184. [CrossRef]
- Alvarez, A.M. Integrated Approaches For Detection Of Plant Pathogenic Bacteria And Diagnosis Of Bacterial Diseases. Annu. Rev. Phytopathol. 2004, 42, 339–366. [CrossRef]
- Schaad, N.W. Detection of Seedborne Bacterial Plant Pathogens. Plant Disease 1982, 66, 885–890. [CrossRef]
- Paul Chu; Chu, P.W.G.; P. M. Waterhouse; Waterhouse, P.M.; Robert R. Martín; Martin, R.R.; R. R. Martin; W. L. Gerlach; Gerlach, W.L. New Approaches to the Detection of Microbial Plant Pathogens. Biotechnology & Genetic Engineering Reviews 1989, 7, 45–112. [CrossRef]
- De León, L.; Rodríguez, A.; López, M.M.; Siverio, F. Evaluation of the Efficacy of Immunomagnetic Separation for the Detection of Clavibacter Michiganensis Subsp. Michiganensis in Tomato Seeds. J Appl Microbiol 2008, 104, 776–786. [CrossRef]
- De León, L.; Siverio, F.; Rodríguez, A. Detection of Clavibacter Michiganensis Subsp. Michiganensis in Tomato Seeds Using Immunomagnetic Separation. Journal of Microbiological Methods 2006, 67, 141–149. [CrossRef]
- Van Den Mooter, M.; Swings, J. Numerical Analysis of 295 Phenotypic Features of 266 Xanthomonas Strains and Related Strains and an Improved Taxonomy of the Genus. International Journal of Systematic Bacteriology 1990, 40, 348–369. [CrossRef]
- Bouzar, H.; Jones, J.B.; Stall, R.E.; Hodge, N.C.; Minsavage, G.V.; A. A. Benedict; Benedict, A.A.; Alvarez, A.M. Physiological, Chemical, Serological, and Pathogenic Analyses of a Worldwide Collection of Xanthomonas Campestris Pv. Vesicatoria Strains. Phytopathology 1994, 84, 663–671. [CrossRef]
- Ovod, V.V.; Rudolph, K.; Krohn, K. Serological Classification of Pseudomonas Syringae Pathovars Based on Mononoclonal Antibodies Towards the Lipopolysaccharide O-Chains. J Bacteriol. 1997, 526–531. [CrossRef]
- Pastrik, K.H.; Rainey, F.A. Identification and Differentiation of Clavibacter Michiganensis Subspecies by Polymerase Chain Reaction-Based Techniques. Journal of Phytopathology 1999, 147, 687–693. [CrossRef]
- Oosterhof, J.; Berendsen, S. The Development of a Specific Real-Time TaqMan for the Detection of Clavibacter Michiganensis Subsp. Michiganensis. In: Proceedings of the Phytopathology 2011; Vol. 101.
- Wu, Y.-D.; Chen, L.-H.; Wu, X.-J.; Shang, S.; Lou, J.; Du, L.-Z.; Zhao, Z. Gram Stain-Specific-Probe-Based Real-Time PCR for Diagnosis and Discrimination of Bacterial Neonatal Sepsis. Journal of Clinical Microbiology 2008, 46, 2613–2619. [CrossRef]
- Versalovic, J.; Schneider, M.; De Bruijn, F.J.; Lupski, J.R. Genomic Fingerprinting of Bacteria Using Repetitive Sequence-Based Polymerase Chain Reaction. Methods in molecular and cellular biology 1994, 5, 25–40.
- Yasuhara-Bell, J.; Baysal-Gurel, F.; Miller, S.A.; Alvarez, A.M. Utility of a Loop-Mediated Amplification Assay for Detection of Clavibacter Michiganensis Subsp. Michiganensis in Seeds and Plant Tissues. Canadian Journal of Plant Pathology 2015, 37, 260–266. [CrossRef]
- Yasuhara-Bell, J.; Kubota, R.; Jenkins, D.M.; Alvarez, A.M. Loop-Mediated Amplification of the Clavibacter Michiganensis Subsp. Michiganensis Mica Gene Is Highly Specific. Phytopathology 2013, 103, 1220–1226. [CrossRef]
- Morcia, C.; Piazza, I.; Ghizzoni, R.; Terzi, V.; Carrara, I.; Bolli, G.; Chiusa, G. Molecular Diagnostics in Tomato: Chip Digital PCR Assays Targeted to Identify and Quantify Clavibacter Michiganensis Subsp. Michiganensis and Ralstonia Solanacearum in Planta. Horticulturae 2023, 9, 553. [CrossRef]
- Han, S.; Jiang, N.; Lv, Q.; Kan, Y.; Hao, J.; Li, J.; Luo, L. Detection of Clavibacter Michiganensis Subsp. Michiganensis in Viable but Nonculturable State from Tomato Seed Using Improved qPCR. PLoS ONE, 2018, 13, 5, e0196525. [CrossRef]
- Koenraadt, H.; Van Betteray, B.; Germain, R.; Hiddink, G.; Jones, J.B.; Oosterhof, J. Development Of Specific Primers For The Molecular Detection Of Bacterial Spot Of Pepper And Tomato. Acta Horticulturae 2009, 99–102. [CrossRef]
- Strayer, A.L.; Jeyaprakash, A.; Minsavage, G.V.; Timilsina, S.; Vallad, G.E.; Jones, J.B.; Paret, M.L. A Multiplex Real-Time PCR Assay Differentiates Four Xanthomonas Species Associated with Bacterial Spot of Tomato. Plant Disease 2016, 100, 1660–1668. [CrossRef]
- Strayer-Scherer, A.; Jones, J.B.; Paret, M.L. Recombinase Polymerase Amplification Assay for Field Detection of Tomato Bacterial Spot Pathogens. Phytopathology 2019, 109, 690–700. [CrossRef]
- Zaccardelli, M.; Spasiano, A.; Bazzi, C.; Merighi, M. Identification and in Planta Detection of Pseudomonas Syringae Pv. Tomato Using PCR Amplification of hrpZPst. European Journal of Plant Pathology 2005, 111, 85–90. [CrossRef]
- Fanelli, V.; Cariddi, C.; Finetti-Sialer, M. Selective Detection of Pseudomonas Syringae Pv. Tomato Using Dot Blot Hybridization and Real-time PCR. Plant Pathology 2007, 56, 683–691. [CrossRef]
- Na, J.; Lv, Q.Y.; Xu, X.; Cao, Y.S.; Walcott, R.; J. Q. Li; Li, J.; Luo, L.X. Induction of the Viable but Nonculturable State in Clavibacter Michiganensis Subsp. Michiganensis and in Planta Resuscitation of the Cells on Tomato Seedlings. Plant Pathology 2016, 65, 826–836. [CrossRef]
- Wang, H.; Wagnon, R.; Moreno, D.; Timilsina, S.; Jones, J.; Vallad, G.; Turechek, W.W. A Long-Amplicon Viability-qPCR Test for Quantifying Living Pathogens That Cause Bacterial Spot in Tomato Seed. Plant Disease 2022, 106, 1474–1485. [CrossRef]
- Denancé, N.; Grimault, V. Seed Pathway for Pest Dissemination: The ISTA Reference Pest List, a Bibliographic Resource in Non-vegetable Crops. EPPO Bulletin 2022. [CrossRef]
- Strider, D.L. Bacterial Canker of Tomato Caused by Corynebacterium Michiganense: a Literature Review and Bibliography. Technical Bulletin 1969, 193. Raleigh, NC: North Carolina Agricultural Experiment Station.No. pp 1-110.
- GSPP Standard for Tomato Seed and Young Plant Production Sites (Valid from 1st June 2022) 2022. https://Www.Gspp.Eu/Images/Documents/GSPP_Standard_V3.3.Pdf.
- Management of Seed-Borne Diseases: An Integrated Approach. In: Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management; Kumar, R., Gupta, A., Eds.; Springer Singapore: Singapore, 2020; pp. 717–745. ISBN 978-981-329-045-7.
- Jones, J.B.; Pohronezny, K.L.; Stall, R.E.; Jones, J.P. Survival of Xanthomonas Campestris Pv. Vesicatoria in Florida on Tomato Crop Residue, Weeds, Seeds, and Volunteer Tomato Plants. Phytopathology 1986, 76, 430–434. [CrossRef]
- Lo Cantore, P.; Shanmugaiah, V.; Iacobellis, N.S. Antibacterial Activity of Essential Oil Components and Their Potential Use in Seed Disinfection. Journal of Agricultural and Food Chemistry 2009, 57, 9454–9461. [CrossRef]
- European Commission European Commission, 2018. Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018.
- Cooksey, D.A. Genetics of Bactericide Resistance in Plant Pathogenic Bacteria. Annual Review of Phytopathology 1990, 28, 201–219. [CrossRef]
- Jones, J.B.; Lacy, G.H.; Bouzar, H.; Stall, R.E.; Schaad, N.W. Reclassification of the Xanthomonads Associated with Bacterial Spot Disease of Tomato and Pepper. Systematic and Applied Microbiology 2004, 27, 755–762. [CrossRef]
- Shenge, K.C.; Mabagala, R.B.; Mortensen, C.N.; Wydra, K. Resistance of Xanthomonas Campestris Pv. Vesicatoria Isolates from Tanzania to Copper and Implications for Bacterial Spot Management. African Journal of Microbiology Research 2014, 8, 2881–2885. [CrossRef]
- Griffin, K.; Gambley, C.F.; Brown, P.H.; Li, Y. Copper-Tolerance in Pseudomonas Syringae Pv. Tomato and Xanthomonas Spp. and the Control of Diseases Associated with These Pathogens in Tomato and Pepper. A Systematic Literature Review. Crop Protection 2017, 96, 144–150. [CrossRef]
- Van Der Plank, J.E. Plant Diseases: Epidemics and Control. Soil Science 1964, 98, 279. [CrossRef]
- Lordon, M. Sweet Pepper Breeding and Seed Saving Guide, Department of Agriculture: USDA, Minnesota, 2022.
- Welbaum, G. Tomato. Publisher: VCE Publication, Department of Horticulture, Virginia Tech: Blacksburg, VA, 2021. Available at: https://pubs.ext.vt.edu/426/426-418/mobile-version.html.
- Agrios, G.N. Plant Pathology; 5th ed.; Elsevier Academic Press: Amsterdam, 2005.
- Zitter, T.A. Bacterial Diseases of Tomato, Vegetable MD Online; Cornell University: Ithaca, NY, USA, 1985.
- Sauer, D.B.; Burroughs, R. Disinfection of Seed Surfaces with Sodium Hypochlorite. Phytopathology 1986, 76, 745–749. [CrossRef]
- Dhanvantari, B.N. Effect of Seed Extraction Methods and Seed Treatments on Control of Tomato Bacterial Canker. Canadian Journal of Plant Pathology 1989, 11, 400–408. [CrossRef]
- Raval, A; Sasidharan, N.; Rao, K. Effect of seed extraction procedures on seed quality parameters in tomato. Advances in Life Sciences, 2016, 5, 20, 9020-9024.
- Degwale, A.; Tesfa, T.; Meseret B.; Fantaw, S. Seed Extraction Methods Affect the Physiological Quality of Tomato Seed and Developing Seedlings. International Journal of Vegetable Science 2022, 1–9. [CrossRef]
- Ercolani, G.L. Effettività e Misura Della Trasmissione Di Xanthomonas Vesicatoria e Di Corynebacterium Michiganense Attraverso Il Seme Del Pomodoro. Industria Conserve 1968, 43, 14–22.
- Chambers, S.; Merriman, P. Perennation and Control of Pseudomonas Tomato in Victoria. Crop & Pasture Science 1975, 26, 657–663. [CrossRef]
- Pradhanang, P.M.; Collier, G. How Effective Is Hydrochloric Acid Treatment to Control Clavibacter Michiganensis Subsp. Michiganensis Contamination in Tomato Seed. Acta Horticulturae 2009, 81–85. [CrossRef]
- McCormack, J. Pepper Seed Production. 2005. Available online at: https://www.carolinafarmstewards.org/wp-content/uploads/2012/05/PepperSeedProductionVer1_2.pdf.
- Carisse, O.; Ouimet, A.; Toussaint, V.; Philion, V. Philion Evaluation of the Effect of Seed Treatments, Bactericides, and Cultivars on Bacterial Leaf Spot of Lettuce Caused by Xanthomonas Campestris Pv. Vitians. Plant Disease 2000, 84, 295–299. [CrossRef]
- Mbega, E.R.; Mabagala, R.B.; Mortensen, C.N.; Wulff, E.G.; Wulff, E.G. Evaluation of Essential Oils as Seed Treatment for the Control of Xanthomonas Spp. Associated with the Bacterial Leaf Spot of Tomato in Tanzania. Journal of Plant Pathology 2012, 94, 273–281. [CrossRef]
- Mbega, E.R.; Mortensen, C.N.; Mabagala, R.B.; Wulff, E.G. The Effect of Plant Extracts as Seed Treatments to Control Bacterial Leaf Spot of Tomato in Tanzania. Journal of General Plant Pathology 2012, 78, 277–286. [CrossRef]
- Kasselaki, A.-M.; Goumas, D.E.; Tamm, L.; Jacques Fuchs; Fuchs, J.G.; Cooper, J.; Leifert, C. Effect of Alternative Strategies for the Disinfection of Tomato Seed Infected with Bacterial Canker (Clavibacter Michiganensis Subsp Michiganensis). NJAS: Wageningen Journal of Life Sciences 2011, 58, 145–147. [CrossRef]
- Cardarelli, M.; Woo, S.L.; Rouphael, Y.; Colla, G. Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants 2022, 11, 259. [CrossRef]
- Lamichhane, J.R.; You, M.P.; Laudinot, V.; Barbetti, M.J.; Aubertot, J.N. Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Disease 2020, 104, 610–623. [CrossRef]
- Shoemaker, P.B.; Echandi, E. Seed and Plant Bed Treatments for Bacterial Canker of Tomato. Plant disease reporter 1976, 60, 163–166.
- van der Wolf, J.M.; Y.E. Birnbaum; Birnbaum, Y.E.; P.S. van der Zouwen; van der Zouwen, P.S.; Groot, S.P.C.; Groot, S.P.C. Disinfection of Vegetable Seed by Treatment with Essential Oils, Organic Acids and Plant Extract. Seed Science and Technology 2008, 36, 76–88. [CrossRef]
- Maude, R.B. Seedborne Diseases and Their Control: Principles and Practice. Publisher: Wallingford, UK, CAB International, 1996, pp. 1–280.
- Chun, S.-C.; Schneider, R.W.; Cohn, M.A. Sodium Hypochlorite: Effect of Solution pH on Rice Seed Disinfestation and Its Direct Effect on Seedling Growth. Plant Disease 1997, 81, 821–824. [CrossRef]
- Fatmi, M.; Schaad, N.W.; Schaad, N.W.; H. A. Bolkan; Bolkan, H.A. Seed Treatments for Eradicating Clavibacter Michiganensis Subsp. Michiganensis from Naturally Infected Tomato Seeds. Plant Disease 1991, 75, 383–385. [CrossRef]
- Thyr, B.D.; Webb, R.E.; Jaworski, C.A.; Toby Ratcliffe; Ratcliffe, T.J. Tomato Bacterial Canker: Control by Seed Treatment. Plant disease reporter 1973, 57, 974–977.
- Black & Veatch Corporation. White’s handbook of chlorination and alternative disinfectants, 5th ed. Publisher: John Wiley & Sons, Inc., Hoboken, NJ, US. 2010; pp. 1–1062.
- Ritchie, D.F.; Averre, C.W. Bacterial Spot of Pepper and Tomato. Phytopathology 1996, 86, 952-958. [CrossRef]
- Khah, E.M.; Passam, H.C. Sodium Hypochlorite Concentration, Temperature, and Seed Age Influence Germination of Sweet Pepper. Hortscience 1992, 27, 821–823. [CrossRef]
- Rutala, W.A.; Weber, D.J. Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008. Infection Control and Hospital Epidemiology 2008, 18, 240–264.
- McFarquhar, J. Organic Seed Treatments for the Reduction of Xanthomonas Euvesicatoria on Tomato Seed. Dissertation MS’s Thesis. University of Georgia (USA), 2015. http://getd.libs.uga.edu/pdfs/mcfarquhar_judith_201505_ms.pdf.
- Le Buanec, B. Organic Seed. APSA; APSA: Seoul, South Korea, 2004.
- Borgen, A.; Bent Nielsen. Effect of seed treatment with acetic acid in control of seed borne diseases. In: Biddle, A. J. (Ed.) Proceedings of the BCPC Symposium No. 76: “Seed Treatment: Challenges & Opportunities”, Farnham, 76, British Crop Protection Council. 2001. http://orgprints.org/1116/1/acidBCPC.htm.
- Mtui, H.D.; Bennett; Maerere, A.P.; Miller, S.A.; Kleinhenz, M.D.; K. P. Sibuga; Sibuga, K.P. Effect of Seed Treatments and Mulch on Seedborne Bacterial Pathogens and Yield of Tomato (Solanum Lycopersicum Mill.) in Tanzania. Journal of Animal and Plant Sciences 2010, 8, 1006–1015.
- Kuhar, T.P.; Rideout, S.L.; Reiter, M.S. Southeastern U.S. Vegetable Crop Handbook. 2021. [CrossRef]
- Scott, G.; Almasrahi, A.; Mansoorkhani, F.M.; M. Rupar; Rupar, M.; M. Rupar; M. Dickinson; Dickinson, M.; Gilbert Shama; Shama, G. Hormetic UV-C Seed Treatments for the Control of Tomato Diseases. Plant Pathology 2019, 68, 700–707. [CrossRef]
- Schaad, N.W. Emerging Plant Pathogenic Bacteria and Global Warming. In: Pseudomonas syringae pathovars and related pathogens–identification, epidemiology and genomics. M. Fatmi, A. Collmer, N. S. Lacobellis, J. W. Mansfield, J. Murillo, N. W. Schaad, and M. Ullrich, Eds. Springer, Dordrecht, Netherlands, 2008, 369–379. [CrossRef]
- Bryan, M.K. Studies on Bacterial Canker of Tomato. Journal of Agricultural Research 1930, 41.
- McGee, D.C. Seed Pathology: Its Place in Modern Seed Production. Plant Disease 1981, 65, 638–642. [CrossRef]
- Goode, M.J.; Sasser, M. Prevention--the Key to Controlling Bacterial Spot and Bacterial Speck of Tomato. Plant Disease 1980, 64, 831–834. [CrossRef]
- Nega, E.; Roswitha Ulrich; Ulrich, R.; S. Werner; Werner, S.; Marga Jahn; Jahn, M. Hot Water Treatment of Vegetable Seed – an Alternative Seed Treatment Method to Control Seed Borne Pathogens in Organic Farming. Journal of Plant Disease and Protection, 2003, 110, 220–234.
- du Toit, L.J.; Pablo Hernandez-Perez; Hernandez-Perez, P. Efficacy of Hot Water and Chlorine for Eradication of Cladosporium Variabile, Stemphylium Botryosum, and Verticillium Dahliae from Spinach Seed. Plant Disease 2005, 89, 1305–1312. [CrossRef]
- McGrath, M.T. Hot Water Seed Treatment Protocols 2013.
- Marinescu, G. Recherches Sur La Desinfection Des Semences de Tomates Contaminees Par Corynebacterium Rnichiganense (E. F. Smith). Jensen. Bull. Acad. Sci. Agric. For. 1975, 5, 101–109.
- Murata, A.; Numata, I. Heat Endurance of Corynebacterium Michiganense and Tomato Seeds to Dry Seeds. In: Proceedings Kanto Pl. Protocol Soc. 1970, 17, 55–56.
- Fu-xin, G. Effect of Dry-Heat Treatment of Different Temperature on Germination of Vegetable Seed. China Vegetables 2011.
- Akman, Z. Comparison of High Temperature Tolerance in Maize, Rice and Sorghum Seeds by Plant Growth Regulators. Journal of Animal and Veterinary Advances 2009, 8, 358–361.
- Pérez-Calvo, M. Sanitation With Ozone. Gases in Agro-Food Processes 2019, 561–567. [CrossRef]
- Mohan, N.; Kirit Patel; Patel, K.; Padmanabhan, K.; S. Ananthi; Ananthi, S. Ozone for Plant Pathological Applications. Ozone-science & Engineering 2005, 27, 499–502. [CrossRef]
- Pascual, A.; Llorca, I.; Albert Canut; Canut, A. Use of Ozone in Food Industries for Reducing the Environmental Impact of Cleaning and Disinfection Activities. Trends in Food Science and Technology 2007, 18. [CrossRef]
- Bocci, V.; Borrelli, E.; Travagli, V.; Zanardi, I. The Ozone Paradox: Ozone Is a Strong Oxidant as Well as a Medical Drug. Medicinal Research Reviews 2009, 29. [CrossRef]
- Cho, M.; Kim, J.Y.; Yoon, J.; Kim, J.H. Mechanisms of Escherichia Coli Inactivation by Several Disinfectants. Water Research 2010, 44, 3410–3418. [CrossRef]
- Çetinkaya, N.; Pazarlar, S.; Paylan, İ.C. Ozone Treatment Inactivates Common Bacteria and Fungi Associated with Selected Crop Seeds and Ornamental Bulbs. Saudi Journal of Biological Sciences 2022, 29, 103480. [CrossRef]
- Czarnek, K.; Tatarczak-Michalewska, M.; Dreher, P.; Rajput, V. D.; Wójcik, G.; Gierut-Kot A.; Szopa, A.; Blicharska, E. UV-C Seed Surface Sterilization and Fe, Zn, Mg, Cr Biofortification of Wheat Sprouts as an Effective Strategy of Bioelement Supplementation. International Journal of Molecular Sciences 2023, 24, 10367–10367. [CrossRef]
- Neelamegam, R.; Sutha, T. UV-C Irradiation Effect on Seed Germination, Seedling Growth and Productivity of Groundnut (Arachis Hypogaea L.). Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 430–443.
- Falconí, C.E.; Yánez-Mendizábal, V. Efficacy of UV-C Radiation to Reduce Seedborne Anthracnose (Colletotrichum Acutatum) from Andean Lupin (Lupinus Mutabilis). Plant Pathology 2018, 67, 831–838. [CrossRef]
- Brown, J.E.; Lu, T.Y.; Stevens, C.; Khan, V.A.; Lu, J.Y.; Wilson, C.L.; Collins, D.J.; Wilson, M.A.; Igwegbe, E.C.K.; Chalutz, E.; et al. The Effect of Low Dose Ultraviolet Light-C Seed Treatment on Induced Resistance in Cabbage to Black Rot (Xanthomonas Campestris Pv. Campestris). Crop Protection 2001, 20, 873–883. [CrossRef]
- Shude, S.P.N.; Yobo, K.S.; Mbili, N.C. Progress in the Management of Fusarium Head Blight of Wheat: An Overview. South African Journal of Science 2020, 116, 1–7. [CrossRef]
- R. B. Maude; Maude, R.B.; Ann M. Kyle; Kyle, A.M. Seed Treatments with Benomyl and Other Fungicides for the Control of Ascochyta Pisi on Peas. Annals of Applied Biology 1970, 66, 37–41. [CrossRef]
- European Commision Commission Implementing Regulation (EU) 2018/1500 of 9 October 2018 Concerning the Non-Renewal of Approval of the Active Substance Thiram, and Prohibiting the Use and Sale of Seeds Treated with Plant Protection Products Containing Thiram, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending Commission Implementing Regulation (EU) No 540/2011 2018.
- Sain, S.K.; Pandey, A.K. Biological Spectrum of Trichoderma Harzianum Rifai Isolates to Control Fungal Diseases of Tomato (Solanum Lycopersicon L.). Archives of Phytopathology and Plant Protection 2016, 49, 507–521. [CrossRef]
- Chandel, S.; Allan, E.J.; Woodward, S. Biological Control of Fusarium Oxysporum f. sp. Lycopersici on Tomato by Brevibacillus Brevis. Journal of Phytopathology 2010, 158, 470–478. [CrossRef]
- Jambhulkar, P.P.; Sharma, P. Promotion of Rice Seedling Growth Characteristics by Development and Use of Bioformulation of Pseudomonas Fluorescens. Indian Journal of Agricultural Sciences 2013, 83.
- Paravar, A.; Piri, R.; Balouchi, H.; Ma, Y. Microbial Seed Coating: An Attractive Tool for Sustainable Agriculture. Biotechnology Reports 2023, 37, e00781–e00781. [CrossRef]
- Bejarano, A.; Puopolo, G. Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture. Progress in Biological Control 2020, 275–293. [CrossRef]
- Jambhulkar, P.P.; Sharma, P.; Rakesh Yadav; Yadav, R. Delivery Systems for Introduction of Microbial Inoculants in the Field. In: Microbial Inoculants in Sustainable Agricultural Productivity (New Delhi: Springer), 2016, 199–218. [CrossRef]
- Grimaldi, A.; Galy, R. An Overview of European Regulatory of Biopesticides. 4th International Symposium on Biological Control of Bacterial Plant Diseases. J Plant Pathol 2019, 101, 849–883. [CrossRef]
- Rocha, I.; Ma, Y.; Souza-Alonso, P.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science 2019, 10, 1357–1357. [CrossRef]
- Pyke, N.B.; Milne, K.S.; Neilson, H.F. Tomato Seed Treatments for the Control of Bacterial Speck. New Zealand journal of experimental agriculture 1984, 12, 161–164. [CrossRef]
- Kotan, R.; Dadaşoğlu, F.; Karagöz, K.; Cakir, A.; Hakan Özer; Özer, H.; Saban Kordali; Kordali, S.; Saban Kordali; Cakmakci, R.; et al. Antibacterial Activity of the Essential Oil and Extracts of Satureja Hortensis against Plant Pathogenic Bacteria and Their Potential Use as Seed Disinfectants. Scientia Horticulturae 2013, 153, 34–41. [CrossRef]
- Karabuyuk, F.; Aysan, Y. Aqueous Plant Extracts as Seed Treatments on Tomato Bacterial Speck Disease. Acta Horticulturae 2018. [CrossRef]
- Umesha, S.; Kavitha, R. Prevalence of Bacterial Spot in Tomato Fields of Karnataka and Effect of Biological Seed Treatment on Disease Incidence. Crop Protection 2006, 25, 375–381. [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; de-Bashan, L.E. Protection of Tomato Seedlings against Infection by Pseudomonas Syringae Pv. Tomato by Using the Plant Growth-Promoting Bacterium Azospirillum Brasilense. Applied and Environmental Microbiology 2002, 68, 2637–2643. [CrossRef]
- Kritzman, G. A. Chemi-Thermal Treatment for Control of Seedborne Bacterial Pathogens of Tomato. Phytoparasitica 1993, 21, 101–109. [CrossRef]
- Bashan, Y.; de-Bashan, L.E. Reduction of Bacterial Speck (Pseudomonas Syringae Pv. Tomato) of Tomato by Combined Treatments of Plant Growth-Promoting Bacterium, Azospirillum Brasilense, Streptomycin Sulfate, and Chemo-Thermal Seed Treatment. European Journal of Plant Pathology 2002, 108, 821–829. [CrossRef]
- Sanogo, S.; Clary, M. Bacterial Leaf Spot of Chile Pepper: A Short Guide for Growers 2008. New Mexico State University, College of Agriculture and Home Economics. https://pubs.nmsu.edu/research/horticulture/NMCA30/index.html.

| Nature of seed treatment | Principle of the method | Substance / Antimicrobial compound | Operating conditions | Target pathogen | Crop plants | Efficacy and additional notes | Reference |
|---|---|---|---|---|---|---|---|
| Physical | Hot water | / | Soaking infected seeds at 53, 54 and 55°C for 10–60 min. | Cmm | Tomato | Partial seed disinfection after 30 min at 53 and 54°C and complete disinfection after 40 min treatments. Germination unaffected up to 55°C for 30 min; | [157] |
| Physical | Hot water | / | Soaking infected seeds at 56°C for 30 min. | Cmm | Tomato | Reduced disease quantity observed in the field; seed germination slightly reduced. | [140] |
| Physical | Hot water | / | Soaking infected seeds at 48°C for 60 min. | Pst | Tomato | No disease observed under greenhouse conditions; seed germination not affected. | [53] |
| Physical | Hot water | / | Soaking infected seeds at 50°C for 30 min. | Pst | Tomato | Pathogen infecting seeds reduced by 93.9%, as evidenced by agar plating. | [188] |
| Physical | Steam-air | / | Treating infected seeds at 55°C for 30 min. | Pst | Tomato | Pathogen infecting seeds reduced by 76.5%, as evidenced by agar plating. | [188] |
| Physical | Dry heating | / | Heating at 70°C for 4 to 6 days. | Cmm | Tomato | Complete seed disinfection, as evidenced by agar plating. | [164] |
| Physical | Ozone | Gaseous O3 | Gaseous O3 treatment at a concentration of 150 mg O3/Nm3 for 90 and 120 min. | Cmm, Pst | Tomato | Complete seed disinfection, as evidenced by agar plating. | [171] |
| Biological | Plant extracts | Plant extracts from Aloe vera, Coffea arabica, Glycyrrhiza uralensis and Yucca schidigera | Soaking infected seeds in 10 % plant extracts on a rotary shaker at 100 rpm overnight at 25°C. | Xep | Tomato | Complete seed disinfection, as evidenced by in vitro and in planta observations; germination performance and seedlings growth increase. | [136] |
| Biological | Plant extracts | Hexane–methanol extracts from Satureja hortensis | Soaking infected seeds in extracts dilutions (2.5, 5, 10, 20 and 40 mg ml−1) on a rotary shaker at 80 rpm for 3 h at 28° C. | Cmm, Xv | Tomato | Disease severity reduced up to 75.6% (Cmm) and 73.4% (Xv) under controlled conditions; germination performance decreased by up to 73.3% | [189] |
| Biological | Plant extracts | Aqueous plant extracts from coriander (Coriandrum sativum), eucalyptus (Eucalyptus sp.), Kastamonu garlic (Allium sativum ‘Kastamonu’), ginger (Zingiber officinale), Istanbul thyme (Origanum vulgare subsp. hirtum) and Izmir thyme (Origanum onites) | Soaking infected seeds in the extract’s dilutions on a rotary shaker at 150 rpm for 30 min. | Pst | Tomato | Disease incidence and severity on seedlings reduced by 63-100% and 57-100%, respectively, under controlled conditions. | [190] |
| Biological | Microorganisms (BCAs) |
Pseudomonas fluorescens | Soaking infected seeds both in (i) a bacterial suspension (1×108 CFU ml-1) and in (ii) a bacterial formulation (2.8 ×108 CFU g-1 in purified talcum powder (25% w/w) and Carboxy methyl cellulose (1% w/w) for 12 h. | Cmm | Tomato | Disease incidence reduced by 24%, as observed in the field. | [191] |
| Biological | Microorganisms (BCAs) |
Azospirillum brasilense | Soaking infected seeds both in a bacterial suspension (1×108 CFU ml-1) at 25±2°C for 1 h. | Pst | Tomato | No disease observed on seedlings under greenhouse conditions; seed germination not affected. | [192] |
| Chemical and Physical | Chemi-thermal Treatment | Cupric acetate (2.0 g L-1). Glacial acetic acid (1.0 ml L-1). Mixed solution of 23.2% pentachloronitrobenzene, and 5.8% 5-methoxy 3(trichloromethyl)-l,2,4-thiadiazole (4.5 ml L-1) Triton x-100 (0.2 ml L-1) |
Soaking infected seeds in the chemical solutions, at a ratio of 1:4 (w/v) for up to 90 min, at increasing temperatures ranging from 22 to 48°C. | Cmm, Xv, Pst | Tomato | Complete seed disinfection after 60 min of chemi-thermal treatment, as evidenced in vitro and in planta under controlled conditions; seed germination and seedlings vigour were not affected. | [193] |
| Chemical and Biological | Acidified nitrite / copper hydroxide / Bacillus spp. strains | Acidified nitrite solution (300 mmol l−1, pH 2). Kocide 101 (copper hydroxide 50% WP) at the rate of 3 g l−1. Bacillus spp. strains |
Soaking infected seeds into prepared solutions for 10 min. | Cmm | Tomato | Complete seed disinfection by copper hydroxide and Bacillus spp.; Seed disinfection by 98% using acidified nitrite solution, as observed under controlled conditions. | [194] |
| Chemical and Physical | Chemical treatment / Hot water |
NaHCl | Not available | Xanthomonads | Pepper | Reduction of bacterial populations on seed surface. | [195] |
| Physical, Chemical and Biological | Hot water, Chemical, Plant extracts | Hot water, NaHCl, Oxidate 2.0 and Thyme oil | Soaking infected seeds in: (i) Hot water: for 10 min at 37°C; 25 min at 50°C and 5 min at 10°C. (ii) NaHCl at 1.05% for 10 min. (iii) Oxidate 2.0 at 0.99% (1:100) dilution for 2 min. (iv) Thyme oil at 0.33% for 30 min |
Xe | Pepper | Complete seed disinfection by hot water and NaHCl; Seed disinfection by 80.3% using Oxidate 2.0 and by 93.9% using thyme oil, as evidenced by agar plating. |
[150] |
| Physical, Chemical | Hot water, Chemical, | NaHCl | Soaking infected seeds in: (i) Hot water: in a shaking water bath for 10 min at 37°C, 25 min at 50°C and 5 min at 10°C, respectively. (ii) NaHCl at 2% for 5 min. (iii) Metalaxyl-M (Ridomil) |
Cmm, Xv, Pst | Tomato | Hot water treatment: reduction of seed contamination by 99%; Chlorine: reduction of seed contamination by 99% (Xv and Pst), and by 97.4% (Cmm) as evidenced by agar plating. No disinfection observed using Metalaxyl-M. | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
