Submitted:
22 January 2024
Posted:
23 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Wort and Beer Production
2.2. Beer Analysis
2.3. Statistical Analysis
3. Results
3.1. Foam Stability
3.2. Volatile Compounds Content
3.3. Beer Aging Markers
4. Discussion
4.1. Foam Stability
4.2. Volatile Compounds Content
4.3. Beer Aging Markers
5. Conclusions
Funding
References
- Puligundla, P.; Smogrovicova, D.; Mok, C.; Obulam, V. S. R. Recent developments in high gravity beer-brewing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102399. [Google Scholar] [CrossRef]
- Cadenas, R.; Caballero, I.; Nimubona, D.; Blanco, C. A. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 2021, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, L.H.G.; Mostert, J.; Zisopoulos, F.K.; Boom, R.M.; van der Goot, A.J. The use of enzymes for brewing: Thermodynamic comparison on resource use. Energy 2016, 115, 519–527. [Google Scholar] [CrossRef]
- Veřejná databáze ČSÚ. Osevní plochy zemědělských plodin k 31.5.2023. Available online: https://vdb.czso.cz/vdbvo2/faces/cs/index.jsf?page=vystup-objekt&z=T&f=TABULKA&ds=ds489&skupId=346&katalog=30840&pvo=ZEM02A&evo=v551_%21_ZEM02A-2022_1&str=v443#fx=0&w= (accessed on 2nd January 2023).
- Strong, G.; England, K. Beer Style Guidelines; BJCP, St. Louis Park, MN 55416, USA; 2015. [Google Scholar]
- Kosiv, R.; Kharandiuk, T.; Polyuzhun, L.; Palianytsia, L.; Brezovska, N. Effect of high gravity wort fermentation parameters on beer flavor profile. Chem. Chem. Technol. 2017, 11, 308–313. [Google Scholar] [CrossRef]
- Cooper, D. J.; Stewart, G. G.; Bryce, J. H. Some Reasons why High Gravity Brewing Has a Negative Effect on Head Retention. J. Inst. Brew. 1998, 104, 83–87. [Google Scholar] [CrossRef]
- Kincl, T.; Dostalek, P.; Branyik, T.; Olsovska, J. High-gravity brewing without adjuncts – The effect on beer parameters. LWT – Food Sci. Technol. 2021, 148, 111755. [Google Scholar] [CrossRef]
- McCaig, R.; McKee, J.; Pfisterer, E. A.; Hysert, D. W.; Munoz, E.; Ingledew, W. M. Very High Gravity Brewing – Laboratory and Pilot Plant Trials. J. Am. Soc. Brew. Chem. 1992, 50(1), 18–26. [Google Scholar] [CrossRef]
- Stewart, G. G. High-Gravity Brewing and Distilling – Past Experiences and Future Prospects. J. Am. Soc. Brew. Chem. 2010, 68(1), 1–9. [Google Scholar] [CrossRef]
- Yorke, J.; Cook, D.; Ford, R. Brewing with Unmalted Cereal Adjuncts: Sensory and Analytical Impacts on Beer Quality. Beverages 2021, 7, 4. [Google Scholar] [CrossRef]
- EBC Analytica. 9.4.—Original, Real, and Apparent Extract and Original Gravity of Beer. In Analytica EBC; EBC Analysis Commitee-Nürnberg, Carl Getranke-Fachverlag, Germany, 2010.
- EBC Analytica. 9.2.6.—Alcohol in Beer by Near Infrared Spectroscopy. In Analytica EBC; EBC Analysis Commitee-Nürnberg, Carl Getranke-Fachverlag, Germany, 2010.
- MEBAK. 2.18.2.—Foam stability, NIBEM. In MEBAK® –Wort, Beer and Beer-Based Beverages; Weihenstephan-Freising, Germany, 2012.
- EBC Analytica. 9.24.2.—Vicinal Diketones in Beer: Gas Chromatography Method. In Analytica EBC; EBC Analysis Commitee-Nürnberg, Carl Getranke-Fachverlag, Germany, 2010.
- EBC Analytica. 9.39.—Dimethyl Sulphide and Other Lower Boiling Poin Volatile Compounds in Beer by Gas Chromatography Method. In Analytica EBC; EBC Analysis Commitee-Nürnberg, Carl Getranke-Fachverlag, Germany, 2009.
- Cejka, P.; Culik, J.; Horak, T.; Jurkova, M.; Olsovska, J. Use of chemical indicators of beer aging for ex-post checking of storage conditions and prediction of the sensory stability of beer. J. Agric. Food Chem. 2013, 61, 12670–12675. [Google Scholar] [CrossRef]
- MEBAK. 2.4.—Thiobarbituric acid index (TBI). In: MEBAK® –Wort, Beer and Beer-Based Beverages; Weihenstephan-Freising, Germany, 2012.
- Cooper, D. J.; Stewart, G. G.; Bryce, J. H. Yeast Proteolytic Activity During High and Low Gravity Wort Fermentations and its Effect on Head Retention. J. Inst. Brew. 2000, 106(4), 197–201. [Google Scholar] [CrossRef]
- Combe, A.L.; Ang, J.K.; Bamforth, Ch.W. Positive and negative impacts of specialty malts on beer foam: a comparison of various cereal products for their foaming properties. J. Sci. Food Agric. 2013, 93(9), 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Depraetere, S. A.; Delvaux, F.; Coghe, S.; Delvaux, F. R. Wheat Variety and Barley Malt Properties: Influence on Haze Intensity and Foam Stability of Wheat Beer. J. Inst. Brew. 2004, 110(3), 200–206. [Google Scholar] [CrossRef]
- Pires, E.; Branyik, T. By-products of Beer Fermentation. In Biochemistry of Beer Fermentation; SpringerBriefs in Biochemistry and Molecular Biology.
- Basarova, G.; Savel, J.; Basar, P.; Lejsek, T. Kvaseni mladiny a dokvasovani piva. In Pivovarstvi, 1st ed.; Vydavatelstvi VSCHT Praha: Prague, Czech republic, 2010. [Google Scholar]
- Otter, G. E.; Taylor, L. Estimation and occurrence of acetaldehyde in beer. J. Inst. Brew. 1971, 77, 467–472. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer – a review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Anderson, R. G.; Kirsop, B. H. The control of volatile ester synthesis during the fermentation of wort of high specific gravity. J. Inst. Brew. 1974, 80, 48–55. [Google Scholar] [CrossRef]
- Nespor, J.; Andres-Iglesias, C.; Karabin, M.; Montero, O.; Blanco, C. A.; Dostalek, P. Volatile Compound Profiling in Czech and Spanish Lager Beers in Relation to Used Production Technology. Food Anal. Methods 2019, 12, 2293–2305. [Google Scholar] [CrossRef]
- Younis, O. S.; Stewart, G.G. Effect of Malt Wort, Very-High-Gravity Malt Wort, and Very-High-Gravity Adjunct Wort on Volatile Production in Saccharomyces Cerevisiae. J. Am. Soc. Brew. Chem. 1999, 57, 39–45. [Google Scholar]
- Meilgaard, M. C. Flavour chemistry of beer: Part II: Flavour and threshold of 239 aroma volatiles. Tech. q.- Master Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Saerens, S. M. G.; Verbelen, P. J.; Vanbeneden, N.; Thevelein, J. M.; Delvaux, F. R. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl. Microbiol. Biotechnol. 2008, 80, 1039–1051. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information, PubChem Compound Summary for CID 7654, Phenethyl acetate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Phenethyl-acetate (accessed on 2nd January 2023).
- National Center for Biotechnology Information, PubChem Compound Summary for CID 31265, Ethyl hexanoate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-hexanoate (accessed on 2nd January 2023).
- Fast, R. B. Manufacturing Technology of Ready-to-Eat Cereals. In Breakfast Cereals and How They Are Made, 2nd ed.; Amer. Assn. of Cereal Chemists, 2000.
- Briggs, D.E.; Boulton, Ch.; Brookes, P.A.; Stevens, R. Metabolism of wort by yeast. In Brewing: Science and Practice; Woodhead Pub.: Cambridge, UK, 2004. [Google Scholar]
- Zhu, L.; Xu, S.; Li, Y.; Shi, G. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS ONE 2021, 16(10), e0258180. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Ge, J.; Song, Y.; Feng, P.; Lin, L.; Guo, L.; Zhang, C. Regulating the ratio of higher alcohols to esters by simultaneously overexpressing ATF1 and deleting BAT2 in brewer’s yeast Saccharomyces pastorianus. Food Biosci. 2021, 43, 101231. [Google Scholar] [CrossRef]
- Andres-Iglesias, C.; Nespor, J.; Karabin, M.; Montero, O.; Blanco, C. A.; Dostalek, P. Comparison of carbonyl profiles from Czech and Spanish lagers: Traditional and modern technology. LWT – Food Sci. Technol. 2016, 66, 390–397. [Google Scholar] [CrossRef]
- Nadasky, P.; Smogrovicova, D. Senzoricka stabilita piva. Chem. Listy 2010, 104, 838–845. [Google Scholar]
- Olsovska, J.; Sterba, K.; Vrzal, T.; Jurkova, M.; Cejka, P. Sensory Beer Aging. Kvasny prumysl 2016, 62. [Google Scholar]
| Beer Sample | OG (% wt.) | ABV (% vol.) | RDF (%) |
|---|---|---|---|
| WF UDB | 10.36 ± 0.03 | 4.39 ± 0.01 | 66.3 ± 0.2 |
| WF HGB before | 18.15 ± 0.03 | 7.61 ± 0.01 | 63.3 ± 0.2 |
| WF HGB | 10.54 ± 0.03 | 4.26 ± 0.01 | 63.1 ± 0.2 |
| WG UDB | 10.26 ± 0.03 | 4.23 ± 0.01 | 64.6 ± 0.2 |
| WG HGB before | 15.90 ± 0.03 | 6.35 ± 0.01 | 60.9 ± 0.2 |
| WG HGB | 10.57 ± 0.03 | 4.12 ± 0.01 | 60.9 ± 0.2 |
| C UDB | 10.77 ± 0.03 | 4.57 ± 0.01 | 66.2 ± 0.2 |
| Adjunct Type | Beer Sample | NIBEM (s) |
|---|---|---|
| Wheat Flakes | UDB | 212.7 ± 3.4 |
| HGB | 210.2 ± 2.5 | |
| Wheat Grits | UDB | 215.8 ± 2.0 |
| HGB | 216.8 ± 4.7 | |
| Control Beer | UDB | 197.0 ± 4.2 |
| Compound (mg/L) | WF Beer | WG Beer | C Beer | TH Beer (mg/L) | ||
|---|---|---|---|---|---|---|
| UDB | HGB | UDB | HGB | UDB | ||
| Acetaldehyde | 7.85 ± 0.20 | 6.16 ± 0.13 | 5.34 ± 0.12 | 7.60 ± 0.33 | n.e. | 10–25 |
| Esters | ||||||
| Ethyl acetate | 17.06 ± 0.45 | 27.80 ± 0.57 | 24.21 ± 0.98 | 34.63 ± 1.71 | 19.57 ± 1.27 | 25–30 |
| Isoamyl acetate | 0.99 ± 0.08 | 1.99 ± 0.08 | 1.37 ± 0.14 | 2.94 ± 0.12 | 1.15 ± 0.12 | 1–2 |
| 2-Methylpropyl acetate | 0.04 ± 0.02 | 0.05 ± 0.00 | 0.04 ± 0.01 | 0.07 ± 0.02 | n.e. | 0.5–1.6 |
| Propyl acetate | 0.02 ± 0.01 | 0.02 ± 0.00 | 0.02 ± 0.02 | n.d. | 0.02 ± 0.00 | 30 |
| Butyl acetate | n.d. | n.d. | n.d. | n.d. | n.d. | 7.5 |
| 2-Phenylethyl acetate | 1.30 ± 0.08 | 1.01 ± 0.16 | 1.43 ± 0.11 | 0.24 ± 0.03 | 1.00 ± 0.16 | 0.2–3.8 |
| Ethyl formate | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.01 | n.e. | 150 |
| Ethyl-2-hydroxy propanoate | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01 | n.d. | n.e. | 25 |
| Ethyl butyrate | 0.15 ± 0.02 | 0.24 ± 0.05 | 0.18 ± 0.03 | 0.12 ± 0.03 | 0.14 ± 0.03 | 0.4 |
| Ethyl hexanoate | 1.15 ± 0.08 | 1.16 ± 0.13 | 1.26 ± 0.13 | 1.80 ± 0.16 | 1.19 ± 0.08 | 0.2 |
| Ethyl octanoate | 2.59 ± 0.17 | 1.95 ± 0.12 | 3.19 ± 0.16 | 3.42 ± 0.25 | 2.85 ± 0.12 | 0.5–1.0 |
| Ethyl decanoate | 0.48 ± 0.06 | 0.92 ± 0.08 | 0.70 ± 0.08 | 9.10 ± 0.16 | 0.85 ± 0.20 | 0.6–1.5 |
| Ethyl dodecanoate | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.00 | n.e. | 2–3.5 |
| Ethyl tetradecanoate | n.d. | n.d. | n.d. | n.d. | n.e. | 2.5 |
| Ethyl hexadecanoate | n.d. | n.d. | n.d. | n.d. | n.e. | 5 |
| Esters total | 23.84 | 35.19 | 32.46 | 52.34 | 26.77 1 | |
| Higher alcohols | ||||||
| n-Propanol | 20.60 ± 1.71 | 16.20 ± 1.47 | 21.60 ± 1.31 | 14.50 ± 0.82 | n.e. | 600–800 |
| Ethylhexanol | 1.10 ± 0.16 | 0.70 ± 0.12 | 1.00 ± 0.41 | 0.30 ± 0.16 | n.e. | 400 |
| Isobutanol | 5.60 ± 0.49 | 4.18 ± 0.15 | 5.73 ± 0.73 | 4.08 ± 0.49 | 5.95 ± 0.41 | 100–200 |
| Isoamyl alcohol | 32.20 ± 0.98 | 31.10 ± 0.90 | 31.52 ± 1.22 | 29.89 ± 0.73 | 30.04 ± 0.82 | 50–70 |
| Furfuryl alcohol | 0.11 ± 0.02 | 0.11 ± 0.01 | 0.23 ± 0.09 | 0.06 ± 0.05 | 0.10 ± 0.04 | 3000 |
| 2-Phenyl ethanol | 60.21 ± 1.64 | 49.16 ± 3.68 | 74.01 ± 1.63 | 10.93 ± 1.23 | 81.12 ± 1.71 | 20–40 |
| 2-Methyl butanol | 14.69 ± 0.65 | 12.76 ± 0.82 | 14.58 ± 0.90 | 12.53 ± 0.57 | 14.59 ± 0.49 | 65 |
| 2,3-Butanediol | 1.01 ± 0.33 | 2.12 ± 0.49 | 1.35 ± 0.29 | 2.08 ± 0.41 | 1.35 ± 0.29 | 4500 |
| Higher alcohols total | 135.52 | 116.33 | 150.02 | 74.37 | 133.15 1 | |
| Higher alcohols - esters ratio | 5.68 | 3.31 | 4.62 | 1.42 | 4.97 1 | |
| Compound (mg/L) | WF Beer | WG Beer | TH Beer (mg/L) | ||
|---|---|---|---|---|---|
| UDB | HGB | UDB | HGB | ||
| Diacetyl | 334 ± 11 | 281 ± 15 | 387 ± 20 | 286 ± 29 | 150 |
| 2,3-Pentanedione | 76 ± 3 | 109 ± 8 | 95 ± 12 | 54 ± 3 | 900 |
| Dimethyl sulphide | 14 ± 1 | 11 ± 1 | 16 ± 1 | 11 ± 0 | 50 |
| Compound (µg/L) | WF Beer | WG Beer | TH Beer (mg /L) | ||
|---|---|---|---|---|---|
| UDB | HGB | UDB | HGB | ||
| 2-Methylpropanal | 2.76 ± 0.12 | 2.58 ± 0.06 | 2.40 ± 0.49 | 3.60 ± 0.41 | 1000 |
| 3-Methyl-2-butanone | 2.67 ± 0.14 | 3.65 ± 0.20 | 3.31 ± 0.24 | n.d. | 60000 |
| 2-Methylbutanal | 2.76 ± 0.20 | 2.26 ± 0.14 | 2.18 ± 0.15 | 4.60 ± 0.33 | 1250 |
| 3-Methylbutanal | 11.07 ± 0.82 | 8.24 ± 1.02 | 8.09 ± 0.24 | 10.23 ± 1.06 | 600 |
| Trans-2-butenal | 0.80 ± 0.12 | 1.00 ± 0.16 | 1.00 ± 0.16 | 0.60 ± 0.16 | 8000 |
| Hexanal | 1.25 ± 0.04 | 1.37 ± 0.12 | 1.56 ± 0.13 | 1.29 ± 0.24 | 350 |
| Furfural | 2.81 ± 0.20 | 1.53 ± 0.12 | 2.83 ± 0.19 | 2.83 ± 0.11 | 150000 |
| Heptanal | 0.18 ± 0.02 | 0.21 ± 0.04 | 0.27 ± 0.06 | n.d. | 16 |
| Oktanal | 0.52 ± 0.08 | 0.36 ± 0.04 | 1.01 ± 0.08 | n.d. | 40 |
| Benzaldehyde | 2.40 ± 0.16 | 2.50 ± 0.08 | 2.60 ± 0.24 | 1.70 ± 0.41 | 2000 |
| Trans-2-octenal | 0.02 ± 0.00 | 0.03 ± 0.01 | 0.03 ± 0.02 | 0.02 ± 0.01 | 0.20 |
| Trans-2-nonenal | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.02 | 0.01 ± 0.01 | 0.11 |
| Phenylacetaldehyde | 3.11 ± 0.24 | 4.14 ± 0.51 | 3.61 ± 0.24 | 7.74 ± 0.33 | 1600 |
| Carbonyls total | 30.40 | 27.91 | 28.93 | 32.62 | |
| TBA | 19 ± 1.63 | 18 ± 1.39 | 13 ± 0.82 | 17 ± 1.22 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
