Submitted:
09 January 2024
Posted:
18 January 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Preparation of the Nigerian Plant Extracts
2.3. Rearing of Test Organism
2.4. Mosquito-Borne Larvicidal Activity against Ae. aegypti
2.5. Phytochemical Screening of Plant Extracts for Larvicidal Efficacy
2.6. Data Analysis
3. Results
3.1. Larvicidal Activity of Different Plant Extracts against Ae. aegypti
3.2. Phytochemical Screening of Plant Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Das, M.K.; Ansari, M.A. Evaluation of repellent action of Cymbopogan martinii martinii Stapf var Sofia oil against Anopheles sundiacus in tribal villages of Car Nicobar Island, Andaman & Nicobar Islands. India. J Vect Borne Dis 2003, 40, 101–104. [Google Scholar]
- Islam, M.T.; Quispe, C.; Herrera-Bravo, J.; Sarkar, C.; Sharma, R.; Garg, N.; Fredes, L.I.; Martorell, M.; Alshehri, M.M.; Sharifi-Rad, J.; Daştan, S.D.; Calina, D.; Alsafi, R.; Alghamdi, S.; Batiha, G.E.; Cruz-Martins, N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. Biomed Res Int 2021, 4224816. [Google Scholar] [CrossRef]
- World Health Organization. Vector-borne diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases. (accessed on 10 March 2022).
- Narkhede, C.P.; Patil, C.D; Suryawanshi, R.K; Koli, S.H.; Mohite, B.V.; Patil, S.V. Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae. Journal of Entomological and Acarological Research 2017, 49, 6265. [Google Scholar] [CrossRef]
- Braack, L.; GouveiaDeAlmeida, A.P.; Cornel, A.J.; Swanepoel, R.; De Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites & Vectors 2018, 11, 1. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Ilango, K.; Murugan, K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera:Culicidae). Parasitology Research 2010, 106(5), 1217–1223. [Google Scholar] [CrossRef]
- Artzy-Randrup, Y.; Alonso, D.; Pascual, M. Transimssion intensity and drug resistance in malaria population dynamics: implications for climate change. Plosone 2010, 5(6). [CrossRef]
- World Health Organization. Tables of malaria vaccine projects globally: The rainbow tables. 2003. Available online: www.who.int/immunization/research/development/ Rainbow_tables/en/ (accessed on 22 December 2022).
- Out, A.; Ebenso, B.; Etokidem, A.; Chukwuekezie, O. Dengue fever - an update review and implications for Nigeria, and similar countries. Afr Health Sci 2019, 19(2), 2000–2007. [Google Scholar] [CrossRef]
- van den, B.H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect 2012, 120(4), 577–82. [Google Scholar] [CrossRef] [PubMed]
- Sunaiyana, S.; MonthathiP, K.; Krajana, T.; Kornwika, S.; Unchalee, S.; Michael, J.B; Theeraphap, C. Comparison of Field and Laboratory-Based Tests for Behavioral Response of Aedes aegypti (Diptera: Culicidae) to Repellents. Journal Of Economic Entomology 2015, 108(6), 2770–2778. [Google Scholar] [CrossRef]
- McGaughey, W.H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 1985, 229, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Drakou, K.; Nikolaou, T.; Vasquez, M.; Petric, D.; Michaelakis, A.; Kapranas, A.; Papatheodoulou, A.; Koliou, M. The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus. Int J Environ Res Public Health 2020, 17(4), 1403. [Google Scholar] [CrossRef] [PubMed]
- Warikoo, R.; Kumar, S. Impact of the Argemone mexicana Stem Extracts on the Reproductive Fitness and Behavior of Adult Dengue Vector, Aedes aegypti L. (Diptera: Culicidae). International Journal of Insect Science 2014, 6, 71–78. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Huijben, S. Taking the ‘I’ out of LLINs: using insecticides in vector control tools other than long-lasting nets to fight malaria. Malar J 2020, 19, 73. [Google Scholar] [CrossRef]
- da Silva Sá, G.C.; Bezerra, P.V.V.; Alves da, M.F.; Barboza da, L.; Batista, P.; de Melo, M.F.F.; Uchôa, A.F. Arbovirus vectors insects: are botanical insecticides an alternative for its management. Journal of Pest Science 2022, 96(1), 1–20. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Sabesan, S.; Jegajeevanram, K.; Vijayalakshmi, J. The role of traditional anti-malarial plants in the battle against global malaria burden. Vect.-Borne Zoonot Disease 2013, 13, 521–544. [Google Scholar] [CrossRef] [PubMed]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 2021, 26(16), 4835. [Google Scholar] [CrossRef] [PubMed]
- Kaliyaperumal, K.; Askual, G.; Hayleeyesus, S.F. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. Journal of King Saud University – Science 2014, 26, 305–310. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga, L.L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complement Altern Med 2011, 8(1), 1–10. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel) 2017, 6(4), 42. [Google Scholar] [CrossRef] [PubMed]
- Demarque, D.P.; Espindola, L.S. Challenges, Advances and Opportunities in Exploring Natural Products to Control Arboviral Disease Vectors. Front Chem 2021, 9, 779049. [Google Scholar] [CrossRef] [PubMed]
- Ramzi, A.; El Ouali Lalami, A.; Annemer, S.; Ez zoubi, Y.; Assouguem, A.; Almutairi, M.H.; Kamel, M.; Peluso, I.; Ercisli, S.; Farah, A. Synergistic Effect of Bioactive Monoterpenes against the Mosquito, Culex pipiens (Diptera: Culicidae). Molecules 2022, 27, 4182. [Google Scholar] [CrossRef] [PubMed]
- Ayed, R.B.; Moreau, F.; Hlima, H.B.; Rebai, A.; Ercisli, S.; Kadoo, N.; Hanana, M.; Assouguem, A.; Ullah, R.; Ali, E.A. SNP discovery and structural insights into OeFAD2 unravelling high oleic/linoleic ratio in olive oil. Comput. Struct. Biotechnol. J. 2022, 20, 1229–1243. [Google Scholar] [CrossRef]
- Onah, G.T.; Ajaegbu, E.E.; Ezeagha, C.C.; Chigozie, V.U.; Bello, A.M.; Ezeagwu, P.C.; Nwigwe, J.O. Larvicidal and synergistic potentials of some plant extracts against Aedes aegypti. Journal of Entomology and Zoology Studies 2022, 10(2), 177–180. [Google Scholar] [CrossRef]
- Ajaegbu, E.E.; Onah, G.T.; Ikuesan, A.J.; Bello, A.M. Larvicidal synergistic efficacy of plant parts of Lantana camara against Aedes aegypti. Journal of Entomology and Zoology Studies 2022, 10(1), 187–192. [Google Scholar] [CrossRef]
- Ibe, I.C.; Ajaegbu, E.E.; Younoussa, L.; Danga, S.P.Y.; Ezugwu, C.O. Larvicidal Property of the Extract and Fractions of Hannoa klaineana against the Larvae of Aedes aegypti. Current Journal of Applied Science and Technology 2020, 39(17), 127–132. [Google Scholar] [CrossRef]
- Danga, S.P.Y.; Aboubakar, O.B.F.; Ndouwe, H.M.T.; Yonki, B.; Ngadvou, D.; Younoussa, L.; Ajaegbu, E.E.; Esimone, C.O.; Nukenine, E.N. Towards the use of extracts from Plectranthus glandulosus (Lamiaceae) and Callistemon rigidus (Myrtaceae) leaves to indoor-spray (control) Malaria and other arboviral diseases vector mosquitoes. Journal of Entomology and Zoology Studies 2020, 8(5), 2049–2054. [Google Scholar]
- World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. Geneva. Available online: https://www.who.int/publications/i/item/WHO-CDS-WHOPES-GCDPP-2005.13 (accessed on 28 January 2023).
- Younoussa, L.; Nukenin, N.E.; Danga, Y.S.P.; Ajaegbu, E.E.; Esimone, C.O. Laboratory Evaluations of the Fractions Efficacy of Annona senegalensis (Annonaceae) Leaf Extract on Immature Stage Development of Malarial and Filarial Mosquito Vectors. J Arthropod-Borne Dis 2015, 9(2), 226–237.
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J Econ Entomol 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Duraikannan, G. Larvicidal activity of plant extracts on Aedes Aegypti L. Asian Pacific Journal of Tropical Biomedicine 2012, S1578–S1582. [Google Scholar] [CrossRef]
- Ajaegbu, E.E.; Uzochukwu, I.C.; Danga, S.P.Y.; Okoye, F. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. Journal of vector borne diseases 2016, 53, 17–22. [Google Scholar] [PubMed]
- Radhika, W.; Naim, W.; Sarita K. Larvicidal potential of commercially available pine (Pinus longifolia) and cinnamon (Cinnamomum zeylanicum) oils against dengue fever mosquito, Aedes aegypti L. (Diptera; Culicidae) Acta Entomologica Sinka 2011, 54(7), 793-799.
- Choochote, W.; Kanjanapothi, D.; Panthong, A.; Taesotikul, T.; Jitpakdi, A.; Chaithomg, U. Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health 1999, 30(3), 470–6. [Google Scholar] [PubMed]
- Lee, H.L.; Chiang, Y.F. Insecticidal activity of the herbal plant, Stemona tuberosa Lour to mosquito larvae. Trop Biomed 1994, 11, 87–90. [Google Scholar]
- Eich, E. Solanaceae and Convolvulaceae: Secondary Metabolites, Biosynthesis, Chemotaxonomy, Biological and Economic Significance, 1st ed.; Springer Berlin, Heidelberg, Germany, 2007; pp. 1-9.
- Raj, P.D.; Dutt, P.N.; Bahadur, S.D.; Narayan, Y.U.; Prasad, K.D. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol 2017, 6(2). [CrossRef]
- Agidew, M.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull Natl Res Cent 2022, 46, 87. [Google Scholar] [CrossRef]
- Roopashree, T.S.; Raman, D.; Rani, R.; Narendra, C. Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int J Appl Res Nat Prod 2008, 1, 20–28. [Google Scholar]
| Plant Extracts |
Conc (ug/ml) | % Mortality (Mean ± SD) |
LC50(LCL–UCL) (ppm) |
LC90 (LCL–UCL) (ppm) |
Slope ± SE | χ2 |
|---|---|---|---|---|---|---|
| MUML | 125 250 500 1000 F-value |
0 ± 0a 3 ± 1b 5 ± 1c 8 ± 1d 45.33 |
1695.51 (941.86-16527.09) |
9643.95 (2901.56-1953785.82) |
1.70 ±0.555 |
1.41 |
| MISS | 125 250 500 1000 F-value |
5 ± 1a 10 ± 1b 13 ± 1c 15 ± 1.73c 37.83 |
515.632 (308.17-1435.39) |
6422.89 (1935.12-1738207.52) |
1.17 ±0.394 |
0.56 |
| MISL | 125 250 500 1000 F-value |
8 ± 1a 10 ± 2a 13 ± 1.73b 15 ± 1c 12.89* |
473.87 (191.64-18113.64) |
17315.88 (2544.20-5.309E+21) |
0.82 ± 0.382 |
0.03 |
| MNCL | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1b 27.0 |
2175.56 - |
4936.21 - |
3.06±2.476 |
0.30 |
| MNCS | 125 250 500 1000 F-value |
0 ± 0a 13 ± 1.73b 15 ± 1b 18 ± 1c 151.2 |
412.90 - |
1581.25 - |
2.20±0.450 |
9.55 |
| MNCR | 125 250 500 1000 F-value |
0 ± 0a 3 ± 1b 3 ± 1b 3 ± 1b 9.0* |
17640.41 - |
646470.32 - |
0.82±0.576 |
2.57 |
| MCGS | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 6 ± 1b 108.0 |
1612.22 (1101.48-870933.150) |
3555.40 (1737.40-3799407100) |
3.73±1.725 |
0.84 |
| MUGL | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1b 27.0 |
2175.56 - |
4936.21 - |
3.60±2.476 |
0.30 |
| MELS | 125 250 500 1000 F-value |
6 ± 1.73a 6 ± 1a 8 ± 1.73b 10 ± 2b 4.0* |
3463.29 - |
837509.55 - |
0.54±0.395 |
0.20 |
| MELL | 125 250 500 1000 F-value |
3 ± 1.73a 6 ± 1b 8 ± 1c 10 ± 1c 17.83* |
1645.17 (726.39-5292069.42) |
34761.00 (4239.23-2.481E+15) |
0.967±0.419 |
0.22 |
| MUMS | 125 250 500 1000 F-value |
0 ± 0 0 ± 0 0 ± 0 0 ± 0 - |
- |
- |
- |
- |
| MULL | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1.73b 9.0* |
2175.56 - |
4936.21 - |
3.60±2.476 |
0.30 |
| MCSS | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1b 27.0 |
2175.56 - |
4936.21 - |
3.60±2.476 |
0.30 |
| MOML | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1b 27.0 |
2175.56 - |
4936.21 - |
3.60±2.476 |
0.30 |
| MOMS | 125 250 500 1000 F-value |
0 ± 0 0 ± 0 0 ± 0 0 ± 0 - |
- |
- |
- |
- |
| MMML | 125 250 500 1000 F-value |
0 ± 0a 0 ± 0a 0 ± 0a 3 ± 1b 27.0 |
2175.56 - |
4936.21 - |
3.60±2.476 |
0.30 |
| MELR | 125 250 500 1000 F-value |
0 ± 0a 3 ± 1b 3 ± 1b 5 ± 1c 17.0* |
4438.49 (1375.81-9.723E+15) |
51152.60 (5158.47-3.534E+30 |
1.21±0.571 |
2.04 |
| MMNL | 125 250 500 1000 F-value |
0 ± 0 0 ± 0 0 ± 0 0 ± 0 - |
- |
- |
- |
- |
| MMGL | 125 250 500 1000 F-value |
0 ± 0 0 ± 0 0 ± 0 0 ± 0 - |
- |
- |
- |
- |
| MONS | 125 250 500 1000 F-value |
0 ± 0 0 ± 0 0 ± 0 0 ± 0 - |
- |
- |
- |
- |
| Plant Extracts | Phytochemical | |||||
|---|---|---|---|---|---|---|
| Saponins | Tannins | Alkaloids | Flavonoids | Resins | Steroids | |
| MUML | - | +++ | ++ | - | + | + |
| MISS | ++ | ++ | + | + | - | + |
| MISL | - | +++ | ++ | + | - | ++ |
| MNCL | - | ++ | ++ | - | - | ++ |
| MNCS | - | +++ | +++ | - | - | ++ |
| MNCR | - | +++ | ++ | + | - | + |
| MCGS | - | ++ | + | - | - | ++ |
| MUGL | - | + | ++ | - | - | ++ |
| MELS | - | ++ | + | - | - | + |
| MELL | +++ | ++ | + | - | - | + |
| MUMS | - | +++ | + | - | - | +++ |
| MULL | - | ++ | ++ | - | + | + |
| MCSS | - | + | + | - | - | ++ |
| MOML | +++ | ++ | ++ | - | + | + |
| MOMS | - | + | + | - | - | + |
| MMML | +++ | +++ | - | - | - | + |
| MELR | - | - | - | + | - | - |
| MMNL | ++ | ++ | + | - | - | + |
| MMGL | + | +++ | +++ | - | - | - |
| MONS | +++ | +++ | +++ | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).